blob: 1d69ad7a22d8f197cc7bf3bd49d37c8874fb689b [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/logging.h"
#include "base/bind.h"
#include "base/callback.h"
#include "base/compiler_specific.h"
#include "base/macros.h"
#include "base/strings/string_piece.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_POSIX)
#include <signal.h>
#include <unistd.h>
#include "base/posix/eintr_wrapper.h"
#endif // OS_POSIX
#if defined(OS_LINUX) || defined(OS_ANDROID)
#include <ucontext.h>
#endif
#if defined(OS_WIN)
#include <excpt.h>
#include <windows.h>
#endif // OS_WIN
namespace logging {
namespace {
using ::testing::Return;
using ::testing::_;
// Needs to be global since log assert handlers can't maintain state.
int g_log_sink_call_count = 0;
#if !defined(OFFICIAL_BUILD) || defined(DCHECK_ALWAYS_ON) || !defined(NDEBUG)
void LogSink(const char* file,
int line,
const base::StringPiece message,
const base::StringPiece stack_trace) {
++g_log_sink_call_count;
}
#endif
// Class to make sure any manipulations we do to the min log level are
// contained (i.e., do not affect other unit tests).
class LogStateSaver {
public:
LogStateSaver() : old_min_log_level_(GetMinLogLevel()) {}
~LogStateSaver() {
SetMinLogLevel(old_min_log_level_);
g_log_sink_call_count = 0;
}
private:
int old_min_log_level_;
DISALLOW_COPY_AND_ASSIGN(LogStateSaver);
};
class LoggingTest : public testing::Test {
private:
LogStateSaver log_state_saver_;
};
class MockLogSource {
public:
MOCK_METHOD0(Log, const char*());
};
class MockLogAssertHandler {
public:
MOCK_METHOD4(
HandleLogAssert,
void(const char*, int, const base::StringPiece, const base::StringPiece));
};
TEST_F(LoggingTest, BasicLogging) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log())
.Times(DCHECK_IS_ON() ? 16 : 8)
.WillRepeatedly(Return("log message"));
SetMinLogLevel(LOG_INFO);
EXPECT_TRUE(LOG_IS_ON(INFO));
EXPECT_TRUE((DCHECK_IS_ON() != 0) == DLOG_IS_ON(INFO));
EXPECT_TRUE(VLOG_IS_ON(0));
LOG(INFO) << mock_log_source.Log();
LOG_IF(INFO, true) << mock_log_source.Log();
PLOG(INFO) << mock_log_source.Log();
PLOG_IF(INFO, true) << mock_log_source.Log();
VLOG(0) << mock_log_source.Log();
VLOG_IF(0, true) << mock_log_source.Log();
VPLOG(0) << mock_log_source.Log();
VPLOG_IF(0, true) << mock_log_source.Log();
DLOG(INFO) << mock_log_source.Log();
DLOG_IF(INFO, true) << mock_log_source.Log();
DPLOG(INFO) << mock_log_source.Log();
DPLOG_IF(INFO, true) << mock_log_source.Log();
DVLOG(0) << mock_log_source.Log();
DVLOG_IF(0, true) << mock_log_source.Log();
DVPLOG(0) << mock_log_source.Log();
DVPLOG_IF(0, true) << mock_log_source.Log();
}
TEST_F(LoggingTest, LogIsOn) {
#if defined(NDEBUG)
const bool kDfatalIsFatal = false;
#else // defined(NDEBUG)
const bool kDfatalIsFatal = true;
#endif // defined(NDEBUG)
SetMinLogLevel(LOG_INFO);
EXPECT_TRUE(LOG_IS_ON(INFO));
EXPECT_TRUE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
SetMinLogLevel(LOG_WARNING);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_TRUE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
SetMinLogLevel(LOG_ERROR);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(LOG_IS_ON(WARNING));
EXPECT_TRUE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_TRUE(LOG_IS_ON(DFATAL));
// LOG_IS_ON(FATAL) should always be true.
SetMinLogLevel(LOG_FATAL + 1);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(LOG_IS_ON(WARNING));
EXPECT_FALSE(LOG_IS_ON(ERROR));
EXPECT_TRUE(LOG_IS_ON(FATAL));
EXPECT_EQ(kDfatalIsFatal, LOG_IS_ON(DFATAL));
}
TEST_F(LoggingTest, LoggingIsLazyBySeverity) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
SetMinLogLevel(LOG_WARNING);
EXPECT_FALSE(LOG_IS_ON(INFO));
EXPECT_FALSE(DLOG_IS_ON(INFO));
EXPECT_FALSE(VLOG_IS_ON(1));
LOG(INFO) << mock_log_source.Log();
LOG_IF(INFO, false) << mock_log_source.Log();
PLOG(INFO) << mock_log_source.Log();
PLOG_IF(INFO, false) << mock_log_source.Log();
VLOG(1) << mock_log_source.Log();
VLOG_IF(1, true) << mock_log_source.Log();
VPLOG(1) << mock_log_source.Log();
VPLOG_IF(1, true) << mock_log_source.Log();
DLOG(INFO) << mock_log_source.Log();
DLOG_IF(INFO, true) << mock_log_source.Log();
DPLOG(INFO) << mock_log_source.Log();
DPLOG_IF(INFO, true) << mock_log_source.Log();
DVLOG(1) << mock_log_source.Log();
DVLOG_IF(1, true) << mock_log_source.Log();
DVPLOG(1) << mock_log_source.Log();
DVPLOG_IF(1, true) << mock_log_source.Log();
}
TEST_F(LoggingTest, LoggingIsLazyByDestination) {
MockLogSource mock_log_source;
MockLogSource mock_log_source_error;
EXPECT_CALL(mock_log_source, Log()).Times(0);
// Severity >= ERROR is always printed to stderr.
EXPECT_CALL(mock_log_source_error, Log()).Times(1).
WillRepeatedly(Return("log message"));
LoggingSettings settings;
settings.logging_dest = LOG_NONE;
InitLogging(settings);
LOG(INFO) << mock_log_source.Log();
LOG(WARNING) << mock_log_source.Log();
LOG(ERROR) << mock_log_source_error.Log();
}
// Official builds have CHECKs directly call BreakDebugger.
#if !defined(OFFICIAL_BUILD)
TEST_F(LoggingTest, CheckStreamsAreLazy) {
MockLogSource mock_log_source, uncalled_mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(8).
WillRepeatedly(Return("check message"));
EXPECT_CALL(uncalled_mock_log_source, Log()).Times(0);
ScopedLogAssertHandler scoped_assert_handler(base::Bind(LogSink));
CHECK(mock_log_source.Log()) << uncalled_mock_log_source.Log();
PCHECK(!mock_log_source.Log()) << mock_log_source.Log();
CHECK_EQ(mock_log_source.Log(), mock_log_source.Log())
<< uncalled_mock_log_source.Log();
CHECK_NE(mock_log_source.Log(), mock_log_source.Log())
<< mock_log_source.Log();
}
#endif // !defined(OFFICIAL_BUILD)
#if defined(OFFICIAL_BUILD) && defined(OS_WIN)
NOINLINE void CheckContainingFunc(int death_location) {
CHECK(death_location != 1);
CHECK(death_location != 2);
CHECK(death_location != 3);
}
int GetCheckExceptionData(EXCEPTION_POINTERS* p, DWORD* code, void** addr) {
*code = p->ExceptionRecord->ExceptionCode;
*addr = p->ExceptionRecord->ExceptionAddress;
return EXCEPTION_EXECUTE_HANDLER;
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
DWORD code1 = 0;
DWORD code2 = 0;
DWORD code3 = 0;
void* addr1 = nullptr;
void* addr2 = nullptr;
void* addr3 = nullptr;
// Record the exception code and addresses.
__try {
CheckContainingFunc(1);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code1, &addr1)) {
}
__try {
CheckContainingFunc(2);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code2, &addr2)) {
}
__try {
CheckContainingFunc(3);
} __except (
GetCheckExceptionData(GetExceptionInformation(), &code3, &addr3)) {
}
// Ensure that the exception codes are correct (in particular, breakpoints,
// not access violations).
EXPECT_EQ(STATUS_BREAKPOINT, code1);
EXPECT_EQ(STATUS_BREAKPOINT, code2);
EXPECT_EQ(STATUS_BREAKPOINT, code3);
// Ensure that none of the CHECKs are colocated.
EXPECT_NE(addr1, addr2);
EXPECT_NE(addr1, addr3);
EXPECT_NE(addr2, addr3);
}
#elif defined(OS_POSIX) && !defined(OS_NACL) && !defined(OS_IOS) && \
(defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY))
int g_child_crash_pipe;
void CheckCrashTestSighandler(int, siginfo_t* info, void* context_ptr) {
// Conversely to what clearly stated in "man 2 sigaction", some Linux kernels
// do NOT populate the |info->si_addr| in the case of a SIGTRAP. Hence we
// need the arch-specific boilerplate below, which is inspired by breakpad.
// At the same time, on OSX, ucontext.h is deprecated but si_addr works fine.
uintptr_t crash_addr = 0;
#if defined(OS_MACOSX)
crash_addr = reinterpret_cast<uintptr_t>(info->si_addr);
#else // OS_POSIX && !OS_MACOSX
struct ucontext* context = reinterpret_cast<struct ucontext*>(context_ptr);
#if defined(ARCH_CPU_X86)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.gregs[REG_EIP]);
#elif defined(ARCH_CPU_X86_64)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.gregs[REG_RIP]);
#elif defined(ARCH_CPU_ARMEL)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.arm_pc);
#elif defined(ARCH_CPU_ARM64)
crash_addr = static_cast<uintptr_t>(context->uc_mcontext.pc);
#endif // ARCH_*
#endif // OS_POSIX && !OS_MACOSX
HANDLE_EINTR(write(g_child_crash_pipe, &crash_addr, sizeof(uintptr_t)));
_exit(0);
}
// CHECK causes a direct crash (without jumping to another function) only in
// official builds. Unfortunately, continuous test coverage on official builds
// is lower. DO_CHECK here falls back on a home-brewed implementation in
// non-official builds, to catch regressions earlier in the CQ.
#if defined(OFFICIAL_BUILD)
#define DO_CHECK CHECK
#else
#define DO_CHECK(cond) \
if (!(cond)) \
IMMEDIATE_CRASH()
#endif
void CrashChildMain(int death_location) {
struct sigaction act = {};
act.sa_sigaction = CheckCrashTestSighandler;
act.sa_flags = SA_SIGINFO;
ASSERT_EQ(0, sigaction(SIGTRAP, &act, NULL));
ASSERT_EQ(0, sigaction(SIGBUS, &act, NULL));
ASSERT_EQ(0, sigaction(SIGILL, &act, NULL));
DO_CHECK(death_location != 1);
DO_CHECK(death_location != 2);
printf("\n");
DO_CHECK(death_location != 3);
// Should never reach this point.
const uintptr_t failed = 0;
HANDLE_EINTR(write(g_child_crash_pipe, &failed, sizeof(uintptr_t)));
};
void SpawnChildAndCrash(int death_location, uintptr_t* child_crash_addr) {
int pipefd[2];
ASSERT_EQ(0, pipe(pipefd));
int pid = fork();
ASSERT_GE(pid, 0);
if (pid == 0) { // child process.
close(pipefd[0]); // Close reader (parent) end.
g_child_crash_pipe = pipefd[1];
CrashChildMain(death_location);
FAIL() << "The child process was supposed to crash. It didn't.";
}
close(pipefd[1]); // Close writer (child) end.
DCHECK(child_crash_addr);
int res = HANDLE_EINTR(read(pipefd[0], child_crash_addr, sizeof(uintptr_t)));
ASSERT_EQ(static_cast<int>(sizeof(uintptr_t)), res);
}
TEST_F(LoggingTest, CheckCausesDistinctBreakpoints) {
uintptr_t child_crash_addr_1 = 0;
uintptr_t child_crash_addr_2 = 0;
uintptr_t child_crash_addr_3 = 0;
SpawnChildAndCrash(1, &child_crash_addr_1);
SpawnChildAndCrash(2, &child_crash_addr_2);
SpawnChildAndCrash(3, &child_crash_addr_3);
ASSERT_NE(0u, child_crash_addr_1);
ASSERT_NE(0u, child_crash_addr_2);
ASSERT_NE(0u, child_crash_addr_3);
ASSERT_NE(child_crash_addr_1, child_crash_addr_2);
ASSERT_NE(child_crash_addr_1, child_crash_addr_3);
ASSERT_NE(child_crash_addr_2, child_crash_addr_3);
}
#endif // OS_POSIX
TEST_F(LoggingTest, DebugLoggingReleaseBehavior) {
#if DCHECK_IS_ON()
int debug_only_variable = 1;
#endif
// These should avoid emitting references to |debug_only_variable|
// in release mode.
DLOG_IF(INFO, debug_only_variable) << "test";
DLOG_ASSERT(debug_only_variable) << "test";
DPLOG_IF(INFO, debug_only_variable) << "test";
DVLOG_IF(1, debug_only_variable) << "test";
}
TEST_F(LoggingTest, DcheckStreamsAreLazy) {
MockLogSource mock_log_source;
EXPECT_CALL(mock_log_source, Log()).Times(0);
#if DCHECK_IS_ON()
DCHECK(true) << mock_log_source.Log();
DCHECK_EQ(0, 0) << mock_log_source.Log();
#else
DCHECK(mock_log_source.Log()) << mock_log_source.Log();
DPCHECK(mock_log_source.Log()) << mock_log_source.Log();
DCHECK_EQ(0, 0) << mock_log_source.Log();
DCHECK_EQ(mock_log_source.Log(), static_cast<const char*>(NULL))
<< mock_log_source.Log();
#endif
}
void DcheckEmptyFunction1() {
// Provide a body so that Release builds do not cause the compiler to
// optimize DcheckEmptyFunction1 and DcheckEmptyFunction2 as a single
// function, which breaks the Dcheck tests below.
LOG(INFO) << "DcheckEmptyFunction1";
}
void DcheckEmptyFunction2() {}
TEST_F(LoggingTest, Dcheck) {
#if defined(NDEBUG) && !defined(DCHECK_ALWAYS_ON)
// Release build.
EXPECT_FALSE(DCHECK_IS_ON());
EXPECT_FALSE(DLOG_IS_ON(DCHECK));
#elif defined(NDEBUG) && defined(DCHECK_ALWAYS_ON)
// Release build with real DCHECKS.
ScopedLogAssertHandler scoped_assert_handler(base::Bind(LogSink));
EXPECT_TRUE(DCHECK_IS_ON());
EXPECT_TRUE(DLOG_IS_ON(DCHECK));
#else
// Debug build.
ScopedLogAssertHandler scoped_assert_handler(base::Bind(LogSink));
EXPECT_TRUE(DCHECK_IS_ON());
EXPECT_TRUE(DLOG_IS_ON(DCHECK));
#endif
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK(false);
EXPECT_EQ(DCHECK_IS_ON() ? 1 : 0, g_log_sink_call_count);
DPCHECK(false);
EXPECT_EQ(DCHECK_IS_ON() ? 2 : 0, g_log_sink_call_count);
DCHECK_EQ(0, 1);
EXPECT_EQ(DCHECK_IS_ON() ? 3 : 0, g_log_sink_call_count);
// Test DCHECK on std::nullptr_t
g_log_sink_call_count = 0;
const void* p_null = nullptr;
const void* p_not_null = &p_null;
DCHECK_EQ(p_null, nullptr);
DCHECK_EQ(nullptr, p_null);
DCHECK_NE(p_not_null, nullptr);
DCHECK_NE(nullptr, p_not_null);
EXPECT_EQ(0, g_log_sink_call_count);
// Test DCHECK on a scoped enum.
enum class Animal { DOG, CAT };
DCHECK_EQ(Animal::DOG, Animal::DOG);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(Animal::DOG, Animal::CAT);
EXPECT_EQ(DCHECK_IS_ON() ? 1 : 0, g_log_sink_call_count);
// Test DCHECK on functions and function pointers.
g_log_sink_call_count = 0;
struct MemberFunctions {
void MemberFunction1() {
// See the comment in DcheckEmptyFunction1().
LOG(INFO) << "Do not merge with MemberFunction2.";
}
void MemberFunction2() {}
};
void (MemberFunctions::*mp1)() = &MemberFunctions::MemberFunction1;
void (MemberFunctions::*mp2)() = &MemberFunctions::MemberFunction2;
void (*fp1)() = DcheckEmptyFunction1;
void (*fp2)() = DcheckEmptyFunction2;
void (*fp3)() = DcheckEmptyFunction1;
DCHECK_EQ(fp1, fp3);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(mp1, &MemberFunctions::MemberFunction1);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(mp2, &MemberFunctions::MemberFunction2);
EXPECT_EQ(0, g_log_sink_call_count);
DCHECK_EQ(fp1, fp2);
EXPECT_EQ(DCHECK_IS_ON() ? 1 : 0, g_log_sink_call_count);
DCHECK_EQ(mp2, &MemberFunctions::MemberFunction1);
EXPECT_EQ(DCHECK_IS_ON() ? 2 : 0, g_log_sink_call_count);
}
TEST_F(LoggingTest, DcheckReleaseBehavior) {
int some_variable = 1;
// These should still reference |some_variable| so we don't get
// unused variable warnings.
DCHECK(some_variable) << "test";
DPCHECK(some_variable) << "test";
DCHECK_EQ(some_variable, 1) << "test";
}
TEST_F(LoggingTest, DCheckEqStatements) {
bool reached = false;
if (false)
DCHECK_EQ(false, true); // Unreached.
else
DCHECK_EQ(true, reached = true); // Reached, passed.
ASSERT_EQ(DCHECK_IS_ON() ? true : false, reached);
if (false)
DCHECK_EQ(false, true); // Unreached.
}
TEST_F(LoggingTest, CheckEqStatements) {
bool reached = false;
if (false)
CHECK_EQ(false, true); // Unreached.
else
CHECK_EQ(true, reached = true); // Reached, passed.
ASSERT_TRUE(reached);
if (false)
CHECK_EQ(false, true); // Unreached.
}
TEST_F(LoggingTest, NestedLogAssertHandlers) {
::testing::InSequence dummy;
::testing::StrictMock<MockLogAssertHandler> handler_a, handler_b;
EXPECT_CALL(
handler_a,
HandleLogAssert(
_, _, base::StringPiece("First assert must be caught by handler_a"),
_));
EXPECT_CALL(
handler_b,
HandleLogAssert(
_, _, base::StringPiece("Second assert must be caught by handler_b"),
_));
EXPECT_CALL(
handler_a,
HandleLogAssert(
_, _,
base::StringPiece("Last assert must be caught by handler_a again"),
_));
logging::ScopedLogAssertHandler scoped_handler_a(base::Bind(
&MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_a)));
// Using LOG(FATAL) rather than CHECK(false) here since log messages aren't
// preserved for CHECKs in official builds.
LOG(FATAL) << "First assert must be caught by handler_a";
{
logging::ScopedLogAssertHandler scoped_handler_b(base::Bind(
&MockLogAssertHandler::HandleLogAssert, base::Unretained(&handler_b)));
LOG(FATAL) << "Second assert must be caught by handler_b";
}
LOG(FATAL) << "Last assert must be caught by handler_a again";
}
// Test that defining an operator<< for a type in a namespace doesn't prevent
// other code in that namespace from calling the operator<<(ostream, wstring)
// defined by logging.h. This can fail if operator<<(ostream, wstring) can't be
// found by ADL, since defining another operator<< prevents name lookup from
// looking in the global namespace.
namespace nested_test {
class Streamable {};
ALLOW_UNUSED_TYPE std::ostream& operator<<(std::ostream& out,
const Streamable&) {
return out << "Streamable";
}
TEST_F(LoggingTest, StreamingWstringFindsCorrectOperator) {
std::wstring wstr = L"Hello World";
std::ostringstream ostr;
ostr << wstr;
EXPECT_EQ("Hello World", ostr.str());
}
} // namespace nested_test
} // namespace
} // namespace logging