blob: 1afbb26eae2f409e4319b4eedd016e84058f48fc [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#define _CRT_SECURE_NO_WARNINGS
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include "base/bind.h"
#include "base/command_line.h"
#include "base/debug/alias.h"
#include "base/debug/stack_trace.h"
#include "base/files/file_enumerator.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/path_service.h"
#include "base/posix/eintr_wrapper.h"
#include "base/process/kill.h"
#include "base/process/launch.h"
#include "base/process/memory.h"
#include "base/process/process.h"
#include "base/process/process_metrics.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/utf_string_conversions.h"
#include "base/synchronization/waitable_event.h"
#include "base/test/multiprocess_test.h"
#include "base/test/scoped_task_environment.h"
#include "base/test/test_timeouts.h"
#include "base/threading/platform_thread.h"
#include "base/threading/simple_thread.h"
#include "base/threading/thread.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/multiprocess_func_list.h"
#if defined(OS_LINUX)
#include <malloc.h>
#include <sched.h>
#include <sys/syscall.h>
#endif
#if defined(OS_POSIX)
#include <sys/resource.h>
#endif
#if defined(OS_POSIX)
#include <dlfcn.h>
#include <errno.h>
#include <sched.h>
#include <signal.h>
#include <sys/wait.h>
#include <unistd.h>
#endif
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
#include <fcntl.h>
#include <sys/socket.h>
#include <sys/types.h>
#endif
#if defined(OS_WIN)
#include <windows.h>
#endif
#if defined(OS_MACOSX)
#include <mach/vm_param.h>
#include <malloc/malloc.h>
#endif
#if defined(OS_ANDROID)
#include "third_party/lss/linux_syscall_support.h"
#endif
#if defined(OS_FUCHSIA)
#include <lib/fdio/limits.h>
#include <zircon/process.h>
#include <zircon/processargs.h>
#include <zircon/syscalls.h>
#include "base/base_paths_fuchsia.h"
#include "base/files/scoped_temp_dir.h"
#include "base/fuchsia/file_utils.h"
#include "base/fuchsia/fuchsia_logging.h"
#endif
namespace base {
namespace {
const char kSignalFileSlow[] = "SlowChildProcess.die";
const char kSignalFileKill[] = "KilledChildProcess.die";
const char kTestHelper[] = "test_child_process";
#if defined(OS_POSIX)
const char kSignalFileTerm[] = "TerminatedChildProcess.die";
#endif
#if defined(OS_FUCHSIA)
const char kSignalFileClone[] = "ClonedTmpDir.die";
const char kDataDirHasStaged[] = "DataDirHasStaged.die";
const char kFooDirHasStaged[] = "FooDirHasStaged.die";
const char kFooDirDoesNotHaveStaged[] = "FooDirDoesNotHaveStaged.die";
#endif
#if defined(OS_WIN)
const int kExpectedStillRunningExitCode = 0x102;
const int kExpectedKilledExitCode = 1;
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
const int kExpectedStillRunningExitCode = 0;
#endif
// Sleeps until file filename is created.
void WaitToDie(const char* filename) {
FILE* fp;
do {
PlatformThread::Sleep(TimeDelta::FromMilliseconds(10));
fp = fopen(filename, "r");
} while (!fp);
fclose(fp);
}
// Signals children they should die now.
void SignalChildren(const char* filename) {
FILE* fp = fopen(filename, "w");
fclose(fp);
}
// Using a pipe to the child to wait for an event was considered, but
// there were cases in the past where pipes caused problems (other
// libraries closing the fds, child deadlocking). This is a simple
// case, so it's not worth the risk. Using wait loops is discouraged
// in most instances.
TerminationStatus WaitForChildTermination(ProcessHandle handle,
int* exit_code) {
// Now we wait until the result is something other than STILL_RUNNING.
TerminationStatus status = TERMINATION_STATUS_STILL_RUNNING;
const TimeDelta kInterval = TimeDelta::FromMilliseconds(20);
TimeDelta waited;
do {
status = GetTerminationStatus(handle, exit_code);
PlatformThread::Sleep(kInterval);
waited += kInterval;
} while (status == TERMINATION_STATUS_STILL_RUNNING &&
waited < TestTimeouts::action_max_timeout());
return status;
}
} // namespace
const int kSuccess = 0;
class ProcessUtilTest : public MultiProcessTest {
public:
void SetUp() override {
ASSERT_TRUE(PathService::Get(DIR_ASSETS, &test_helper_path_));
test_helper_path_ = test_helper_path_.AppendASCII(kTestHelper);
}
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
// Spawn a child process that counts how many file descriptors are open.
int CountOpenFDsInChild();
#endif
// Converts the filename to a platform specific filepath.
// On Android files can not be created in arbitrary directories.
static std::string GetSignalFilePath(const char* filename);
protected:
base::FilePath test_helper_path_;
};
std::string ProcessUtilTest::GetSignalFilePath(const char* filename) {
#if defined(OS_ANDROID) || defined(OS_FUCHSIA)
FilePath tmp_dir;
PathService::Get(DIR_TEMP, &tmp_dir);
tmp_dir = tmp_dir.Append(filename);
return tmp_dir.value();
#else
return filename;
#endif
}
MULTIPROCESS_TEST_MAIN(SimpleChildProcess) {
return kSuccess;
}
// TODO(viettrungluu): This should be in a "MultiProcessTestTest".
TEST_F(ProcessUtilTest, SpawnChild) {
Process process = SpawnChild("SimpleChildProcess");
ASSERT_TRUE(process.IsValid());
int exit_code;
EXPECT_TRUE(process.WaitForExitWithTimeout(TestTimeouts::action_max_timeout(),
&exit_code));
}
MULTIPROCESS_TEST_MAIN(SlowChildProcess) {
WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileSlow).c_str());
return kSuccess;
}
TEST_F(ProcessUtilTest, KillSlowChild) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileSlow);
remove(signal_file.c_str());
Process process = SpawnChild("SlowChildProcess");
ASSERT_TRUE(process.IsValid());
SignalChildren(signal_file.c_str());
int exit_code;
EXPECT_TRUE(process.WaitForExitWithTimeout(TestTimeouts::action_max_timeout(),
&exit_code));
remove(signal_file.c_str());
}
// Times out on Linux and Win, flakes on other platforms, http://crbug.com/95058
TEST_F(ProcessUtilTest, DISABLED_GetTerminationStatusExit) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileSlow);
remove(signal_file.c_str());
Process process = SpawnChild("SlowChildProcess");
ASSERT_TRUE(process.IsValid());
int exit_code = 42;
EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING,
GetTerminationStatus(process.Handle(), &exit_code));
EXPECT_EQ(kExpectedStillRunningExitCode, exit_code);
SignalChildren(signal_file.c_str());
exit_code = 42;
TerminationStatus status =
WaitForChildTermination(process.Handle(), &exit_code);
EXPECT_EQ(TERMINATION_STATUS_NORMAL_TERMINATION, status);
EXPECT_EQ(kSuccess, exit_code);
remove(signal_file.c_str());
}
#if defined(OS_FUCHSIA)
MULTIPROCESS_TEST_MAIN(CheckDataDirHasStaged) {
if (!PathExists(base::FilePath("/data/staged"))) {
return 1;
}
WaitToDie(ProcessUtilTest::GetSignalFilePath(kDataDirHasStaged).c_str());
return kSuccess;
}
// Test transferred paths override cloned paths.
TEST_F(ProcessUtilTest, HandleTransfersOverrideClones) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kDataDirHasStaged);
remove(signal_file.c_str());
// Create a tempdir with "staged" as its contents.
ScopedTempDir tmpdir_with_staged;
ASSERT_TRUE(tmpdir_with_staged.CreateUniqueTempDir());
{
base::FilePath staged_file_path =
tmpdir_with_staged.GetPath().Append("staged");
base::File staged_file(staged_file_path,
base::File::FLAG_CREATE | base::File::FLAG_WRITE);
ASSERT_TRUE(staged_file.created());
staged_file.Close();
}
base::LaunchOptions options;
options.spawn_flags = FDIO_SPAWN_CLONE_STDIO;
// Attach the tempdir to "data", but also try to duplicate the existing "data"
// directory.
options.paths_to_clone.push_back(
base::FilePath(base::fuchsia::kPersistedDataDirectoryPath));
options.paths_to_clone.push_back(base::FilePath("/tmp"));
options.paths_to_transfer.push_back(
{FilePath(base::fuchsia::kPersistedDataDirectoryPath),
base::fuchsia::OpenDirectory(
base::FilePath(tmpdir_with_staged.GetPath()))
.TakeChannel()
.release()});
// Verify from that "/data/staged" exists from the child process' perspective.
Process process(SpawnChildWithOptions("CheckDataDirHasStaged", options));
ASSERT_TRUE(process.IsValid());
SignalChildren(signal_file.c_str());
int exit_code = 42;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_EQ(kSuccess, exit_code);
}
MULTIPROCESS_TEST_MAIN(CheckMountedDir) {
if (!PathExists(base::FilePath("/foo/staged"))) {
return 1;
}
WaitToDie(ProcessUtilTest::GetSignalFilePath(kFooDirHasStaged).c_str());
return kSuccess;
}
// Test that we can install an opaque handle in the child process' namespace.
TEST_F(ProcessUtilTest, TransferHandleToPath) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kFooDirHasStaged);
remove(signal_file.c_str());
// Create a tempdir with "staged" as its contents.
ScopedTempDir new_tmpdir;
ASSERT_TRUE(new_tmpdir.CreateUniqueTempDir());
base::FilePath staged_file_path = new_tmpdir.GetPath().Append("staged");
base::File staged_file(staged_file_path,
base::File::FLAG_CREATE | base::File::FLAG_WRITE);
ASSERT_TRUE(staged_file.created());
staged_file.Close();
// Mount the tempdir to "/foo".
zx::channel tmp_channel =
base::fuchsia::OpenDirectory(new_tmpdir.GetPath()).TakeChannel();
ASSERT_TRUE(tmp_channel.is_valid());
LaunchOptions options;
options.paths_to_clone.push_back(base::FilePath("/tmp"));
options.paths_to_transfer.push_back(
{base::FilePath("/foo"), tmp_channel.release()});
options.spawn_flags = FDIO_SPAWN_CLONE_STDIO;
// Verify from that "/foo/staged" exists from the child process' perspective.
Process process(SpawnChildWithOptions("CheckMountedDir", options));
ASSERT_TRUE(process.IsValid());
SignalChildren(signal_file.c_str());
int exit_code = 42;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_EQ(kSuccess, exit_code);
}
MULTIPROCESS_TEST_MAIN(CheckTmpFileExists) {
// Look through the filesystem to ensure that no other directories
// besides "tmp" are in the namespace.
base::FileEnumerator enumerator(
base::FilePath("/"), false,
base::FileEnumerator::FILES | base::FileEnumerator::DIRECTORIES);
base::FilePath next_path;
while (!(next_path = enumerator.Next()).empty()) {
if (next_path != base::FilePath("/tmp")) {
LOG(ERROR) << "Clone policy violation: found non-tmp directory "
<< next_path.MaybeAsASCII();
return 1;
}
}
WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileClone).c_str());
return kSuccess;
}
TEST_F(ProcessUtilTest, CloneTmp) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileClone);
remove(signal_file.c_str());
LaunchOptions options;
options.paths_to_clone.push_back(base::FilePath("/tmp"));
options.spawn_flags = FDIO_SPAWN_CLONE_STDIO;
Process process(SpawnChildWithOptions("CheckTmpFileExists", options));
ASSERT_TRUE(process.IsValid());
SignalChildren(signal_file.c_str());
int exit_code = 42;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_EQ(kSuccess, exit_code);
}
MULTIPROCESS_TEST_MAIN(CheckMountedDirDoesNotExist) {
if (PathExists(base::FilePath("/foo"))) {
return 1;
}
WaitToDie(
ProcessUtilTest::GetSignalFilePath(kFooDirDoesNotHaveStaged).c_str());
return kSuccess;
}
TEST_F(ProcessUtilTest, TransferInvalidHandleFails) {
LaunchOptions options;
options.paths_to_clone.push_back(base::FilePath("/tmp"));
options.paths_to_transfer.push_back(
{base::FilePath("/foo"), ZX_HANDLE_INVALID});
options.spawn_flags = FDIO_SPAWN_CLONE_STDIO;
// Verify that the process is never constructed.
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kFooDirDoesNotHaveStaged);
remove(signal_file.c_str());
Process process(
SpawnChildWithOptions("CheckMountedDirDoesNotExist", options));
ASSERT_FALSE(process.IsValid());
}
TEST_F(ProcessUtilTest, CloneInvalidDirFails) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileClone);
remove(signal_file.c_str());
LaunchOptions options;
options.paths_to_clone.push_back(base::FilePath("/tmp"));
options.paths_to_clone.push_back(base::FilePath("/definitely_not_a_dir"));
options.spawn_flags = FDIO_SPAWN_CLONE_STDIO;
Process process(SpawnChildWithOptions("CheckTmpFileExists", options));
ASSERT_FALSE(process.IsValid());
}
// Test that we can clone other directories. CheckTmpFileExists will return an
// error code if it detects a directory other than "/tmp", so we can use that as
// a signal that it successfully detected another entry in the root namespace.
TEST_F(ProcessUtilTest, CloneAlternateDir) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileClone);
remove(signal_file.c_str());
LaunchOptions options;
options.paths_to_clone.push_back(base::FilePath("/tmp"));
options.paths_to_clone.push_back(base::FilePath("/data"));
options.spawn_flags = FDIO_SPAWN_CLONE_STDIO;
Process process(SpawnChildWithOptions("CheckTmpFileExists", options));
ASSERT_TRUE(process.IsValid());
SignalChildren(signal_file.c_str());
int exit_code = 42;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_EQ(1, exit_code);
}
TEST_F(ProcessUtilTest, HandlesToTransferClosedOnSpawnFailure) {
zx::handle handles[2];
zx_status_t result = zx_channel_create(0, handles[0].reset_and_get_address(),
handles[1].reset_and_get_address());
ZX_CHECK(ZX_OK == result, result) << "zx_channel_create";
LaunchOptions options;
options.handles_to_transfer.push_back({0, handles[0].get()});
// Launch a non-existent binary, causing fdio_spawn() to fail.
CommandLine command_line(FilePath(
FILE_PATH_LITERAL("đź’©magical_filename_that_will_never_exist_ever")));
Process process(LaunchProcess(command_line, options));
ASSERT_FALSE(process.IsValid());
// If LaunchProcess did its job then handles[0] is no longer valid, and
// handles[1] should observe a channel-closed signal.
EXPECT_EQ(
zx_object_wait_one(handles[1].get(), ZX_CHANNEL_PEER_CLOSED, 0, nullptr),
ZX_OK);
EXPECT_EQ(ZX_ERR_BAD_HANDLE, zx_handle_close(handles[0].get()));
ignore_result(handles[0].release());
}
TEST_F(ProcessUtilTest, HandlesToTransferClosedOnBadPathToMapFailure) {
zx::handle handles[2];
zx_status_t result = zx_channel_create(0, handles[0].reset_and_get_address(),
handles[1].reset_and_get_address());
ZX_CHECK(ZX_OK == result, result) << "zx_channel_create";
LaunchOptions options;
options.handles_to_transfer.push_back({0, handles[0].get()});
options.spawn_flags = options.spawn_flags & ~FDIO_SPAWN_CLONE_NAMESPACE;
options.paths_to_clone.emplace_back(
"đź’©magical_path_that_will_never_exist_ever");
// LaunchProces should fail to open() the path_to_map, and fail before
// fdio_spawn().
Process process(LaunchProcess(CommandLine(FilePath()), options));
ASSERT_FALSE(process.IsValid());
// If LaunchProcess did its job then handles[0] is no longer valid, and
// handles[1] should observe a channel-closed signal.
EXPECT_EQ(
zx_object_wait_one(handles[1].get(), ZX_CHANNEL_PEER_CLOSED, 0, nullptr),
ZX_OK);
EXPECT_EQ(ZX_ERR_BAD_HANDLE, zx_handle_close(handles[0].get()));
ignore_result(handles[0].release());
}
#endif // defined(OS_FUCHSIA)
// On Android SpawnProcess() doesn't use LaunchProcess() and doesn't support
// LaunchOptions::current_directory.
#if !defined(OS_ANDROID)
static void CheckCwdIsExpected(FilePath expected) {
FilePath actual;
CHECK(GetCurrentDirectory(&actual));
actual = MakeAbsoluteFilePath(actual);
CHECK(!actual.empty());
CHECK_EQ(expected, actual);
}
// N.B. This test does extra work to check the cwd on multiple threads, because
// on macOS a per-thread cwd is set when using LaunchProcess().
MULTIPROCESS_TEST_MAIN(CheckCwdProcess) {
// Get the expected cwd.
FilePath temp_dir;
CHECK(GetTempDir(&temp_dir));
temp_dir = MakeAbsoluteFilePath(temp_dir);
CHECK(!temp_dir.empty());
// Test that the main thread has the right cwd.
CheckCwdIsExpected(temp_dir);
// Create a non-main thread.
Thread thread("CheckCwdThread");
thread.Start();
auto task_runner = thread.task_runner();
// A synchronization primitive used to wait for work done on the non-main
// thread.
WaitableEvent event(WaitableEvent::ResetPolicy::AUTOMATIC);
RepeatingClosure signal_event =
BindRepeating(&WaitableEvent::Signal, Unretained(&event));
// Test that a non-main thread has the right cwd.
task_runner->PostTask(FROM_HERE, BindOnce(&CheckCwdIsExpected, temp_dir));
task_runner->PostTask(FROM_HERE, signal_event);
event.Wait();
// Get a new cwd for the process.
FilePath home_dir;
CHECK(PathService::Get(DIR_HOME, &home_dir));
// Change the cwd on the secondary thread. IgnoreResult is used when setting
// because it is checked immediately after.
task_runner->PostTask(FROM_HERE,
BindOnce(IgnoreResult(&SetCurrentDirectory), home_dir));
task_runner->PostTask(FROM_HERE, BindOnce(&CheckCwdIsExpected, home_dir));
task_runner->PostTask(FROM_HERE, signal_event);
event.Wait();
// Make sure the main thread sees the cwd from the secondary thread.
CheckCwdIsExpected(home_dir);
// Change the directory back on the main thread.
CHECK(SetCurrentDirectory(temp_dir));
CheckCwdIsExpected(temp_dir);
// Ensure that the secondary thread sees the new cwd too.
task_runner->PostTask(FROM_HERE, BindOnce(&CheckCwdIsExpected, temp_dir));
task_runner->PostTask(FROM_HERE, signal_event);
event.Wait();
// Change the cwd on the secondary thread one more time and join the thread.
task_runner->PostTask(FROM_HERE,
BindOnce(IgnoreResult(&SetCurrentDirectory), home_dir));
thread.Stop();
// Make sure that the main thread picked up the new cwd.
CheckCwdIsExpected(home_dir);
return kSuccess;
}
TEST_F(ProcessUtilTest, CurrentDirectory) {
// TODO(rickyz): Add support for passing arguments to multiprocess children,
// then create a special directory for this test.
FilePath tmp_dir;
ASSERT_TRUE(GetTempDir(&tmp_dir));
LaunchOptions options;
options.current_directory = tmp_dir;
Process process(SpawnChildWithOptions("CheckCwdProcess", options));
ASSERT_TRUE(process.IsValid());
int exit_code = 42;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_EQ(kSuccess, exit_code);
}
#endif // !defined(OS_ANDROID)
#if defined(OS_WIN)
// TODO(cpu): figure out how to test this in other platforms.
TEST_F(ProcessUtilTest, GetProcId) {
ProcessId id1 = GetProcId(GetCurrentProcess());
EXPECT_NE(0ul, id1);
Process process = SpawnChild("SimpleChildProcess");
ASSERT_TRUE(process.IsValid());
ProcessId id2 = process.Pid();
EXPECT_NE(0ul, id2);
EXPECT_NE(id1, id2);
}
#endif // defined(OS_WIN)
#if !defined(OS_MACOSX) && !defined(OS_ANDROID)
// This test is disabled on Mac, since it's flaky due to ReportCrash
// taking a variable amount of time to parse and load the debug and
// symbol data for this unit test's executable before firing the
// signal handler.
//
// TODO(gspencer): turn this test process into a very small program
// with no symbols (instead of using the multiprocess testing
// framework) to reduce the ReportCrash overhead.
//
// It is disabled on Android as MultiprocessTests are started as services that
// the framework restarts on crashes.
const char kSignalFileCrash[] = "CrashingChildProcess.die";
MULTIPROCESS_TEST_MAIN(CrashingChildProcess) {
WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileCrash).c_str());
#if defined(OS_POSIX)
// Have to disable to signal handler for segv so we can get a crash
// instead of an abnormal termination through the crash dump handler.
::signal(SIGSEGV, SIG_DFL);
#endif
// Make this process have a segmentation fault.
volatile int* oops = nullptr;
*oops = 0xDEAD;
return 1;
}
// This test intentionally crashes, so we don't need to run it under
// AddressSanitizer.
#if defined(ADDRESS_SANITIZER) || defined(OS_FUCHSIA)
// TODO(crbug.com/753490): Access to the process termination reason is not
// implemented in Fuchsia.
#define MAYBE_GetTerminationStatusCrash DISABLED_GetTerminationStatusCrash
#else
#define MAYBE_GetTerminationStatusCrash GetTerminationStatusCrash
#endif
TEST_F(ProcessUtilTest, MAYBE_GetTerminationStatusCrash) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileCrash);
remove(signal_file.c_str());
Process process = SpawnChild("CrashingChildProcess");
ASSERT_TRUE(process.IsValid());
int exit_code = 42;
EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING,
GetTerminationStatus(process.Handle(), &exit_code));
EXPECT_EQ(kExpectedStillRunningExitCode, exit_code);
SignalChildren(signal_file.c_str());
exit_code = 42;
TerminationStatus status =
WaitForChildTermination(process.Handle(), &exit_code);
EXPECT_EQ(TERMINATION_STATUS_PROCESS_CRASHED, status);
#if defined(OS_WIN)
EXPECT_EQ(static_cast<int>(0xc0000005), exit_code);
#elif defined(OS_POSIX)
int signaled = WIFSIGNALED(exit_code);
EXPECT_NE(0, signaled);
int signal = WTERMSIG(exit_code);
EXPECT_EQ(SIGSEGV, signal);
#endif
// Reset signal handlers back to "normal".
debug::EnableInProcessStackDumping();
remove(signal_file.c_str());
}
#endif // !defined(OS_MACOSX) && !defined(OS_ANDROID)
MULTIPROCESS_TEST_MAIN(KilledChildProcess) {
WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileKill).c_str());
#if defined(OS_WIN)
// Kill ourselves.
HANDLE handle = ::OpenProcess(PROCESS_ALL_ACCESS, 0, ::GetCurrentProcessId());
::TerminateProcess(handle, kExpectedKilledExitCode);
#elif defined(OS_POSIX)
// Send a SIGKILL to this process, just like the OOM killer would.
::kill(getpid(), SIGKILL);
#elif defined(OS_FUCHSIA)
zx_task_kill(zx_process_self());
#endif
return 1;
}
#if defined(OS_POSIX)
MULTIPROCESS_TEST_MAIN(TerminatedChildProcess) {
WaitToDie(ProcessUtilTest::GetSignalFilePath(kSignalFileTerm).c_str());
// Send a SIGTERM to this process.
::kill(getpid(), SIGTERM);
return 1;
}
#endif // defined(OS_POSIX) || defined(OS_FUCHSIA)
#if defined(OS_FUCHSIA)
// TODO(crbug.com/753490): Access to the process termination reason is not
// implemented in Fuchsia.
#define MAYBE_GetTerminationStatusSigKill DISABLED_GetTerminationStatusSigKill
#else
#define MAYBE_GetTerminationStatusSigKill GetTerminationStatusSigKill
#endif
TEST_F(ProcessUtilTest, MAYBE_GetTerminationStatusSigKill) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileKill);
remove(signal_file.c_str());
Process process = SpawnChild("KilledChildProcess");
ASSERT_TRUE(process.IsValid());
int exit_code = 42;
EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING,
GetTerminationStatus(process.Handle(), &exit_code));
EXPECT_EQ(kExpectedStillRunningExitCode, exit_code);
SignalChildren(signal_file.c_str());
exit_code = 42;
TerminationStatus status =
WaitForChildTermination(process.Handle(), &exit_code);
#if defined(OS_CHROMEOS)
EXPECT_EQ(TERMINATION_STATUS_PROCESS_WAS_KILLED_BY_OOM, status);
#else
EXPECT_EQ(TERMINATION_STATUS_PROCESS_WAS_KILLED, status);
#endif
#if defined(OS_WIN)
EXPECT_EQ(kExpectedKilledExitCode, exit_code);
#elif defined(OS_POSIX)
int signaled = WIFSIGNALED(exit_code);
EXPECT_NE(0, signaled);
int signal = WTERMSIG(exit_code);
EXPECT_EQ(SIGKILL, signal);
#endif
remove(signal_file.c_str());
}
#if defined(OS_POSIX)
// TODO(crbug.com/753490): Access to the process termination reason is not
// implemented in Fuchsia. Unix signals are not implemented in Fuchsia so this
// test might not be relevant anyway.
TEST_F(ProcessUtilTest, GetTerminationStatusSigTerm) {
const std::string signal_file =
ProcessUtilTest::GetSignalFilePath(kSignalFileTerm);
remove(signal_file.c_str());
Process process = SpawnChild("TerminatedChildProcess");
ASSERT_TRUE(process.IsValid());
int exit_code = 42;
EXPECT_EQ(TERMINATION_STATUS_STILL_RUNNING,
GetTerminationStatus(process.Handle(), &exit_code));
EXPECT_EQ(kExpectedStillRunningExitCode, exit_code);
SignalChildren(signal_file.c_str());
exit_code = 42;
TerminationStatus status =
WaitForChildTermination(process.Handle(), &exit_code);
EXPECT_EQ(TERMINATION_STATUS_PROCESS_WAS_KILLED, status);
int signaled = WIFSIGNALED(exit_code);
EXPECT_NE(0, signaled);
int signal = WTERMSIG(exit_code);
EXPECT_EQ(SIGTERM, signal);
remove(signal_file.c_str());
}
#endif // defined(OS_POSIX)
TEST_F(ProcessUtilTest, EnsureTerminationUndying) {
test::ScopedTaskEnvironment task_environment;
Process child_process = SpawnChild("process_util_test_never_die");
ASSERT_TRUE(child_process.IsValid());
EnsureProcessTerminated(child_process.Duplicate());
#if defined(OS_POSIX)
errno = 0;
#endif // defined(OS_POSIX)
// Allow a generous timeout, to cope with slow/loaded test bots.
bool did_exit = child_process.WaitForExitWithTimeout(
TestTimeouts::action_max_timeout(), nullptr);
#if defined(OS_POSIX)
// Both EnsureProcessTerminated() and WaitForExitWithTimeout() will call
// waitpid(). One will succeed, and the other will fail with ECHILD. If our
// wait failed then check for ECHILD, and assumed |did_exit| in that case.
did_exit = did_exit || (errno == ECHILD);
#endif // defined(OS_POSIX)
EXPECT_TRUE(did_exit);
}
MULTIPROCESS_TEST_MAIN(process_util_test_never_die) {
while (1) {
PlatformThread::Sleep(TimeDelta::FromSeconds(500));
}
return kSuccess;
}
TEST_F(ProcessUtilTest, EnsureTerminationGracefulExit) {
test::ScopedTaskEnvironment task_environment;
Process child_process = SpawnChild("process_util_test_die_immediately");
ASSERT_TRUE(child_process.IsValid());
// Wait for the child process to actually exit.
child_process.Duplicate().WaitForExitWithTimeout(
TestTimeouts::action_max_timeout(), nullptr);
EnsureProcessTerminated(child_process.Duplicate());
// Verify that the process is really, truly gone.
EXPECT_TRUE(child_process.WaitForExitWithTimeout(
TestTimeouts::action_max_timeout(), nullptr));
}
MULTIPROCESS_TEST_MAIN(process_util_test_die_immediately) {
return kSuccess;
}
#if defined(OS_WIN)
// TODO(estade): if possible, port this test.
TEST_F(ProcessUtilTest, LaunchAsUser) {
UserTokenHandle token;
ASSERT_TRUE(OpenProcessToken(GetCurrentProcess(), TOKEN_ALL_ACCESS, &token));
LaunchOptions options;
options.as_user = token;
EXPECT_TRUE(
LaunchProcess(MakeCmdLine("SimpleChildProcess"), options).IsValid());
}
static const char kEventToTriggerHandleSwitch[] = "event-to-trigger-handle";
MULTIPROCESS_TEST_MAIN(TriggerEventChildProcess) {
std::string handle_value_string =
CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
kEventToTriggerHandleSwitch);
CHECK(!handle_value_string.empty());
uint64_t handle_value_uint64;
CHECK(StringToUint64(handle_value_string, &handle_value_uint64));
// Give ownership of the handle to |event|.
WaitableEvent event(
win::ScopedHandle(reinterpret_cast<HANDLE>(handle_value_uint64)));
event.Signal();
return 0;
}
TEST_F(ProcessUtilTest, InheritSpecifiedHandles) {
// Manually create the event, so that it can be inheritable.
SECURITY_ATTRIBUTES security_attributes = {};
security_attributes.nLength = static_cast<DWORD>(sizeof(security_attributes));
security_attributes.lpSecurityDescriptor = NULL;
security_attributes.bInheritHandle = true;
// Takes ownership of the event handle.
WaitableEvent event(
win::ScopedHandle(CreateEvent(&security_attributes, true, false, NULL)));
LaunchOptions options;
options.handles_to_inherit.emplace_back(event.handle());
CommandLine cmd_line = MakeCmdLine("TriggerEventChildProcess");
cmd_line.AppendSwitchASCII(
kEventToTriggerHandleSwitch,
NumberToString(reinterpret_cast<uint64_t>(event.handle())));
// Launch the process and wait for it to trigger the event.
ASSERT_TRUE(LaunchProcess(cmd_line, options).IsValid());
EXPECT_TRUE(event.TimedWait(TestTimeouts::action_max_timeout()));
}
#endif // defined(OS_WIN)
TEST_F(ProcessUtilTest, GetAppOutput) {
base::CommandLine command(test_helper_path_);
command.AppendArg("hello");
command.AppendArg("there");
command.AppendArg("good");
command.AppendArg("people");
std::string output;
EXPECT_TRUE(GetAppOutput(command, &output));
EXPECT_EQ("hello there good people", output);
output.clear();
const char* kEchoMessage = "blah";
command = base::CommandLine(test_helper_path_);
command.AppendArg("-x");
command.AppendArg("28");
command.AppendArg(kEchoMessage);
EXPECT_FALSE(GetAppOutput(command, &output));
EXPECT_EQ(kEchoMessage, output);
}
TEST_F(ProcessUtilTest, GetAppOutputWithExitCode) {
const char* kEchoMessage1 = "doge";
int exit_code = -1;
base::CommandLine command(test_helper_path_);
command.AppendArg(kEchoMessage1);
std::string output;
EXPECT_TRUE(GetAppOutputWithExitCode(command, &output, &exit_code));
EXPECT_EQ(kEchoMessage1, output);
EXPECT_EQ(0, exit_code);
output.clear();
const char* kEchoMessage2 = "pupper";
const int kExpectedExitCode = 42;
command = base::CommandLine(test_helper_path_);
command.AppendArg("-x");
command.AppendArg(base::NumberToString(kExpectedExitCode));
command.AppendArg(kEchoMessage2);
#if defined(OS_WIN)
// On Windows, anything that quits with a nonzero status code is handled as a
// "crash", so just ignore GetAppOutputWithExitCode's return value.
GetAppOutputWithExitCode(command, &output, &exit_code);
#elif defined(OS_POSIX) || defined(OS_FUCHSIA)
EXPECT_TRUE(GetAppOutputWithExitCode(command, &output, &exit_code));
#endif
EXPECT_EQ(kEchoMessage2, output);
EXPECT_EQ(kExpectedExitCode, exit_code);
}
#if defined(OS_POSIX) || defined(OS_FUCHSIA)
namespace {
// Returns the maximum number of files that a process can have open.
// Returns 0 on error.
int GetMaxFilesOpenInProcess() {
#if defined(OS_FUCHSIA)
return FDIO_MAX_FD;
#else
struct rlimit rlim;
if (getrlimit(RLIMIT_NOFILE, &rlim) != 0) {
return 0;
}
// rlim_t is a uint64_t - clip to maxint. We do this since FD #s are ints
// which are all 32 bits on the supported platforms.
rlim_t max_int = static_cast<rlim_t>(std::numeric_limits<int32_t>::max());
if (rlim.rlim_cur > max_int) {
return max_int;
}
return rlim.rlim_cur;
#endif // defined(OS_FUCHSIA)
}
const int kChildPipe = 20; // FD # for write end of pipe in child process.
#if defined(OS_MACOSX)
// <http://opensource.apple.com/source/xnu/xnu-2422.1.72/bsd/sys/guarded.h>
#if !defined(_GUARDID_T)
#define _GUARDID_T
typedef __uint64_t guardid_t;
#endif // _GUARDID_T
// From .../MacOSX10.9.sdk/usr/include/sys/syscall.h
#if !defined(SYS_change_fdguard_np)
#define SYS_change_fdguard_np 444
#endif
// <http://opensource.apple.com/source/xnu/xnu-2422.1.72/bsd/sys/guarded.h>
#if !defined(GUARD_DUP)
#define GUARD_DUP (1u << 1)
#endif
// <http://opensource.apple.com/source/xnu/xnu-2422.1.72/bsd/kern/kern_guarded.c?txt>
//
// Atomically replaces |guard|/|guardflags| with |nguard|/|nguardflags| on |fd|.
int change_fdguard_np(int fd,
const guardid_t *guard, u_int guardflags,
const guardid_t *nguard, u_int nguardflags,
int *fdflagsp) {
return syscall(SYS_change_fdguard_np, fd, guard, guardflags,
nguard, nguardflags, fdflagsp);
}
// Attempt to set a file-descriptor guard on |fd|. In case of success, remove
// it and return |true| to indicate that it can be guarded. Returning |false|
// means either that |fd| is guarded by some other code, or more likely EBADF.
//
// Starting with 10.9, libdispatch began setting GUARD_DUP on a file descriptor.
// Unfortunately, it is spun up as part of +[NSApplication initialize], which is
// not really something that Chromium can avoid using on OSX. See
// <http://crbug.com/338157>. This function allows querying whether the file
// descriptor is guarded before attempting to close it.
bool CanGuardFd(int fd) {
// Saves the original flags to reset later.
int original_fdflags = 0;
// This can be any value at all, it just has to match up between the two
// calls.
const guardid_t kGuard = 15;
// Attempt to change the guard. This can fail with EBADF if the file
// descriptor is bad, or EINVAL if the fd already has a guard set.
int ret =
change_fdguard_np(fd, NULL, 0, &kGuard, GUARD_DUP, &original_fdflags);
if (ret == -1)
return false;
// Remove the guard. It should not be possible to fail in removing the guard
// just added.
ret = change_fdguard_np(fd, &kGuard, GUARD_DUP, NULL, 0, &original_fdflags);
DPCHECK(ret == 0);
return true;
}
#endif // defined(OS_MACOSX)
} // namespace
MULTIPROCESS_TEST_MAIN(ProcessUtilsLeakFDChildProcess) {
// This child process counts the number of open FDs, it then writes that
// number out to a pipe connected to the parent.
int num_open_files = 0;
int write_pipe = kChildPipe;
int max_files = GetMaxFilesOpenInProcess();
for (int i = STDERR_FILENO + 1; i < max_files; i++) {
#if defined(OS_MACOSX)
// Ignore guarded or invalid file descriptors.
if (!CanGuardFd(i))
continue;
#endif
if (i != kChildPipe) {
int fd;
if ((fd = HANDLE_EINTR(dup(i))) != -1) {
close(fd);
num_open_files += 1;
}
}
}
int written = HANDLE_EINTR(write(write_pipe, &num_open_files,
sizeof(num_open_files)));
DCHECK_EQ(static_cast<size_t>(written), sizeof(num_open_files));
int ret = IGNORE_EINTR(close(write_pipe));
DPCHECK(ret == 0);
return 0;
}
int ProcessUtilTest::CountOpenFDsInChild() {
int fds[2];
if (pipe(fds) < 0)
NOTREACHED();
LaunchOptions options;
options.fds_to_remap.emplace_back(fds[1], kChildPipe);
Process process =
SpawnChildWithOptions("ProcessUtilsLeakFDChildProcess", options);
CHECK(process.IsValid());
int ret = IGNORE_EINTR(close(fds[1]));
DPCHECK(ret == 0);
// Read number of open files in client process from pipe;
int num_open_files = -1;
ssize_t bytes_read =
HANDLE_EINTR(read(fds[0], &num_open_files, sizeof(num_open_files)));
CHECK_EQ(bytes_read, static_cast<ssize_t>(sizeof(num_open_files)));
#if defined(THREAD_SANITIZER)
// Compiler-based ThreadSanitizer makes this test slow.
TimeDelta timeout = TimeDelta::FromSeconds(3);
#else
TimeDelta timeout = TimeDelta::FromSeconds(1);
#endif
int exit_code;
CHECK(process.WaitForExitWithTimeout(timeout, &exit_code));
ret = IGNORE_EINTR(close(fds[0]));
DPCHECK(ret == 0);
return num_open_files;
}
#if defined(ADDRESS_SANITIZER) || defined(THREAD_SANITIZER)
// ProcessUtilTest.FDRemapping is flaky when ran under xvfb-run on Precise.
// The problem is 100% reproducible with both ASan and TSan.
// See http://crbug.com/136720.
#define MAYBE_FDRemapping DISABLED_FDRemapping
#else
#define MAYBE_FDRemapping FDRemapping
#endif // defined(ADDRESS_SANITIZER) || defined(THREAD_SANITIZER)
TEST_F(ProcessUtilTest, MAYBE_FDRemapping) {
int fds_before = CountOpenFDsInChild();
// open some dummy fds to make sure they don't propagate over to the
// child process.
int dev_null = open("/dev/null", O_RDONLY);
DPCHECK(dev_null != -1);
int sockets[2];
int ret = socketpair(AF_UNIX, SOCK_STREAM, 0, sockets);
DPCHECK(ret == 0);
int fds_after = CountOpenFDsInChild();
ASSERT_EQ(fds_after, fds_before);
ret = IGNORE_EINTR(close(sockets[0]));
DPCHECK(ret == 0);
ret = IGNORE_EINTR(close(sockets[1]));
DPCHECK(ret == 0);
ret = IGNORE_EINTR(close(dev_null));
DPCHECK(ret == 0);
}
const char kPipeValue = '\xcc';
MULTIPROCESS_TEST_MAIN(ProcessUtilsVerifyStdio) {
// Write to stdio so the parent process can observe output.
CHECK_EQ(1, HANDLE_EINTR(write(STDOUT_FILENO, &kPipeValue, 1)));
// Close all of the handles, to verify they are valid.
CHECK_EQ(0, IGNORE_EINTR(close(STDIN_FILENO)));
CHECK_EQ(0, IGNORE_EINTR(close(STDOUT_FILENO)));
CHECK_EQ(0, IGNORE_EINTR(close(STDERR_FILENO)));
return 0;
}
TEST_F(ProcessUtilTest, FDRemappingIncludesStdio) {
int dev_null = open("/dev/null", O_RDONLY);
ASSERT_LT(2, dev_null);
// Backup stdio and replace it with the write end of a pipe, for our
// child process to inherit.
int pipe_fds[2];
int result = pipe(pipe_fds);
ASSERT_EQ(0, result);
int backup_stdio = HANDLE_EINTR(dup(STDOUT_FILENO));
ASSERT_LE(0, backup_stdio);
result = dup2(pipe_fds[1], STDOUT_FILENO);
ASSERT_EQ(STDOUT_FILENO, result);
// Launch the test process, which should inherit our pipe stdio.
LaunchOptions options;
options.fds_to_remap.emplace_back(dev_null, dev_null);
Process process = SpawnChildWithOptions("ProcessUtilsVerifyStdio", options);
ASSERT_TRUE(process.IsValid());
// Restore stdio, so we can output stuff.
result = dup2(backup_stdio, STDOUT_FILENO);
ASSERT_EQ(STDOUT_FILENO, result);
// Close our copy of the write end of the pipe, so that the read()
// from the other end will see EOF if it wasn't copied to the child.
result = IGNORE_EINTR(close(pipe_fds[1]));
ASSERT_EQ(0, result);
result = IGNORE_EINTR(close(backup_stdio));
ASSERT_EQ(0, result);
result = IGNORE_EINTR(close(dev_null));
ASSERT_EQ(0, result);
// Read from the pipe to verify that it is connected to the child
// process' stdio.
char buf[16] = {};
EXPECT_EQ(1, HANDLE_EINTR(read(pipe_fds[0], buf, sizeof(buf))));
EXPECT_EQ(kPipeValue, buf[0]);
result = IGNORE_EINTR(close(pipe_fds[0]));
ASSERT_EQ(0, result);
int exit_code;
ASSERT_TRUE(
process.WaitForExitWithTimeout(TimeDelta::FromSeconds(5), &exit_code));
EXPECT_EQ(0, exit_code);
}
#if defined(OS_FUCHSIA)
const uint16_t kStartupHandleId = 43;
MULTIPROCESS_TEST_MAIN(ProcessUtilsVerifyHandle) {
zx_handle_t handle =
zx_take_startup_handle(PA_HND(PA_USER0, kStartupHandleId));
CHECK_NE(ZX_HANDLE_INVALID, handle);
// Write to the pipe so the parent process can observe output.
size_t bytes_written = 0;
zx_status_t result = zx_socket_write(handle, 0, &kPipeValue,
sizeof(kPipeValue), &bytes_written);
CHECK_EQ(ZX_OK, result);
CHECK_EQ(1u, bytes_written);
CHECK_EQ(ZX_OK, zx_handle_close(handle));
return 0;
}
TEST_F(ProcessUtilTest, LaunchWithHandleTransfer) {
// Create a pipe to pass to the child process.
zx_handle_t handles[2];
zx_status_t result =
zx_socket_create(ZX_SOCKET_STREAM, &handles[0], &handles[1]);
ASSERT_EQ(ZX_OK, result);
// Launch the test process, and pass it one end of the pipe.
LaunchOptions options;
options.handles_to_transfer.push_back(
{PA_HND(PA_USER0, kStartupHandleId), handles[0]});
Process process = SpawnChildWithOptions("ProcessUtilsVerifyHandle", options);
ASSERT_TRUE(process.IsValid());
// Read from the pipe to verify that the child received it.
zx_signals_t signals = 0;
result = zx_object_wait_one(
handles[1], ZX_SOCKET_READABLE | ZX_SOCKET_PEER_CLOSED,
(base::TimeTicks::Now() + TestTimeouts::action_timeout()).ToZxTime(),
&signals);
ASSERT_EQ(ZX_OK, result);
ASSERT_TRUE(signals & ZX_SOCKET_READABLE);
size_t bytes_read = 0;
char buf[16] = {0};
result = zx_socket_read(handles[1], 0, buf, sizeof(buf), &bytes_read);
EXPECT_EQ(ZX_OK, result);
EXPECT_EQ(1u, bytes_read);
EXPECT_EQ(kPipeValue, buf[0]);
CHECK_EQ(ZX_OK, zx_handle_close(handles[1]));
int exit_code;
ASSERT_TRUE(process.WaitForExitWithTimeout(TestTimeouts::action_timeout(),
&exit_code));
EXPECT_EQ(0, exit_code);
}
#endif // defined(OS_FUCHSIA)
// There's no such thing as a parent process id on Fuchsia.
#if !defined(OS_FUCHSIA)
TEST_F(ProcessUtilTest, GetParentProcessId) {
ProcessId ppid = GetParentProcessId(GetCurrentProcessHandle());
EXPECT_EQ(ppid, static_cast<ProcessId>(getppid()));
}
#endif // !defined(OS_FUCHSIA)
#if !defined(OS_ANDROID) && !defined(OS_FUCHSIA) && !defined(OS_MACOSX)
class WriteToPipeDelegate : public LaunchOptions::PreExecDelegate {
public:
explicit WriteToPipeDelegate(int fd) : fd_(fd) {}
~WriteToPipeDelegate() override = default;
void RunAsyncSafe() override {
RAW_CHECK(HANDLE_EINTR(write(fd_, &kPipeValue, 1)) == 1);
RAW_CHECK(IGNORE_EINTR(close(fd_)) == 0);
}
private:
int fd_;
DISALLOW_COPY_AND_ASSIGN(WriteToPipeDelegate);
};
TEST_F(ProcessUtilTest, PreExecHook) {
int pipe_fds[2];
ASSERT_EQ(0, pipe(pipe_fds));
ScopedFD read_fd(pipe_fds[0]);
ScopedFD write_fd(pipe_fds[1]);
WriteToPipeDelegate write_to_pipe_delegate(write_fd.get());
LaunchOptions options;
options.fds_to_remap.emplace_back(write_fd.get(), write_fd.get());
options.pre_exec_delegate = &write_to_pipe_delegate;
Process process(SpawnChildWithOptions("SimpleChildProcess", options));
ASSERT_TRUE(process.IsValid());
write_fd.reset();
char c;
ASSERT_EQ(1, HANDLE_EINTR(read(read_fd.get(), &c, 1)));
EXPECT_EQ(c, kPipeValue);
int exit_code = 42;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_EQ(0, exit_code);
}
#endif // !defined(OS_ANDROID) && !defined(OS_FUCHSIA)
#endif // defined(OS_POSIX) || defined(OS_FUCHSIA)
namespace {
std::string TestLaunchProcess(const CommandLine& cmdline,
const EnvironmentMap& env_changes,
const bool clear_environment,
const int clone_flags) {
LaunchOptions options;
options.wait = true;
options.environment = env_changes;
options.clear_environment = clear_environment;
#if defined(OS_WIN)
HANDLE read_handle, write_handle;
PCHECK(CreatePipe(&read_handle, &write_handle, nullptr, 0));
File read_pipe(read_handle);
File write_pipe(write_handle);
options.stdin_handle = INVALID_HANDLE_VALUE;
options.stdout_handle = write_handle;
options.stderr_handle = GetStdHandle(STD_ERROR_HANDLE);
options.handles_to_inherit.push_back(write_handle);
#else
int fds[2];
PCHECK(pipe(fds) == 0);
File read_pipe(fds[0]);
File write_pipe(fds[1]);
options.fds_to_remap.emplace_back(fds[1], STDOUT_FILENO);
#endif // defined(OS_WIN)
#if defined(OS_LINUX)
options.clone_flags = clone_flags;
#else
CHECK_EQ(0, clone_flags);
#endif // defined(OS_LINUX)
EXPECT_TRUE(LaunchProcess(cmdline, options).IsValid());
write_pipe.Close();
char buf[512];
int n = read_pipe.ReadAtCurrentPos(buf, sizeof(buf));
#if defined(OS_WIN)
// Closed pipes fail with ERROR_BROKEN_PIPE on Windows, rather than
// successfully reporting EOF.
if (n < 0 && GetLastError() == ERROR_BROKEN_PIPE) {
n = 0;
}
#endif // OS_WIN
PCHECK(n >= 0);
return std::string(buf, n);
}
const char kLargeString[] =
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789"
"0123456789012345678901234567890123456789012345678901234567890123456789";
} // namespace
TEST_F(ProcessUtilTest, LaunchProcess) {
const int no_clone_flags = 0;
const bool no_clear_environ = false;
const FilePath::CharType kBaseTest[] = FILE_PATH_LITERAL("BASE_TEST");
const CommandLine kPrintEnvCommand(CommandLine::StringVector(
{test_helper_path_.value(), FILE_PATH_LITERAL("-e"), kBaseTest}));
std::unique_ptr<Environment> env = Environment::Create();
EnvironmentMap env_changes;
env_changes[kBaseTest] = FILE_PATH_LITERAL("bar");
EXPECT_EQ("bar", TestLaunchProcess(kPrintEnvCommand, env_changes,
no_clear_environ, no_clone_flags));
env_changes.clear();
EXPECT_TRUE(env->SetVar("BASE_TEST", "testing"));
EXPECT_EQ("testing", TestLaunchProcess(kPrintEnvCommand, env_changes,
no_clear_environ, no_clone_flags));
env_changes[kBaseTest] = FilePath::StringType();
EXPECT_EQ("", TestLaunchProcess(kPrintEnvCommand, env_changes,
no_clear_environ, no_clone_flags));
env_changes[kBaseTest] = FILE_PATH_LITERAL("foo");
EXPECT_EQ("foo", TestLaunchProcess(kPrintEnvCommand, env_changes,
no_clear_environ, no_clone_flags));
env_changes.clear();
EXPECT_TRUE(env->SetVar("BASE_TEST", kLargeString));
EXPECT_EQ(std::string(kLargeString),
TestLaunchProcess(kPrintEnvCommand, env_changes, no_clear_environ,
no_clone_flags));
env_changes[kBaseTest] = FILE_PATH_LITERAL("wibble");
EXPECT_EQ("wibble", TestLaunchProcess(kPrintEnvCommand, env_changes,
no_clear_environ, no_clone_flags));
#if defined(OS_LINUX)
// Test a non-trival value for clone_flags.
EXPECT_EQ("wibble", TestLaunchProcess(kPrintEnvCommand, env_changes,
no_clear_environ, CLONE_FS));
#endif // defined(OS_LINUX)
EXPECT_EQ("wibble",
TestLaunchProcess(kPrintEnvCommand, env_changes,
true /* clear_environ */, no_clone_flags));
env_changes.clear();
EXPECT_EQ("", TestLaunchProcess(kPrintEnvCommand, env_changes,
true /* clear_environ */, no_clone_flags));
}
#if defined(OS_LINUX)
MULTIPROCESS_TEST_MAIN(CheckPidProcess) {
const pid_t kInitPid = 1;
const pid_t pid = syscall(__NR_getpid);
CHECK(pid == kInitPid);
CHECK(getpid() == pid);
return kSuccess;
}
#if defined(CLONE_NEWUSER) && defined(CLONE_NEWPID)
TEST_F(ProcessUtilTest, CloneFlags) {
if (!PathExists(FilePath("/proc/self/ns/user")) ||
!PathExists(FilePath("/proc/self/ns/pid"))) {
// User or PID namespaces are not supported.
return;
}
LaunchOptions options;
options.clone_flags = CLONE_NEWUSER | CLONE_NEWPID;
Process process(SpawnChildWithOptions("CheckPidProcess", options));
ASSERT_TRUE(process.IsValid());
int exit_code = 42;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_EQ(kSuccess, exit_code);
}
#endif // defined(CLONE_NEWUSER) && defined(CLONE_NEWPID)
TEST(ForkWithFlagsTest, UpdatesPidCache) {
// Warm up the libc pid cache, if there is one.
ASSERT_EQ(syscall(__NR_getpid), getpid());
pid_t ctid = 0;
const pid_t pid = ForkWithFlags(SIGCHLD | CLONE_CHILD_SETTID, nullptr, &ctid);
if (pid == 0) {
// In child. Check both the raw getpid syscall and the libc getpid wrapper
// (which may rely on a pid cache).
RAW_CHECK(syscall(__NR_getpid) == ctid);
RAW_CHECK(getpid() == ctid);
_exit(kSuccess);
}
ASSERT_NE(-1, pid);
int status = 42;
ASSERT_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0)));
ASSERT_TRUE(WIFEXITED(status));
EXPECT_EQ(kSuccess, WEXITSTATUS(status));
}
TEST_F(ProcessUtilTest, InvalidCurrentDirectory) {
LaunchOptions options;
options.current_directory = FilePath("/dev/null");
Process process(SpawnChildWithOptions("SimpleChildProcess", options));
ASSERT_TRUE(process.IsValid());
int exit_code = kSuccess;
EXPECT_TRUE(process.WaitForExit(&exit_code));
EXPECT_NE(kSuccess, exit_code);
}
#endif // defined(OS_LINUX)
} // namespace base