blob: 2b669d04a7ee1fc8c22ab240b01a5c366ddf676e [file] [log] [blame]
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/zucchini/arm_utils.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cctype>
#include <initializer_list>
#include <map>
#include <sstream>
#include <string>
#include <vector>
#include "base/logging.h"
#include "components/zucchini/address_translator.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace zucchini {
namespace {
// "Clean slate" |code|s for branch instruction encodings with |disp| = 0, and
// if applicable, |cond| = 0.
uint32_t kCleanSlateB_A1 = 0x0A000000; // A24.
uint32_t kCleanSlateBL_A1 = 0x0B000000; // A24.
uint32_t kCleanSlateBLX_A2 = 0xFA000000; // A24.
uint16_t kCleanSlateB_T1 = 0xD000; // T8.
uint16_t kCleanSlateB_T2 = 0xE000; // T11.
uint32_t kCleanSlateB_T3 = 0xF0008000; // T20.
// For T24 encodings, |disp| = 0 means J1 = J2 = 1, so include 0x00002800.
uint32_t kCleanSlateB_T4 = 0xF0009000 | 0x00002800; // T24.
uint32_t kCleanSlateBL_T1 = 0xF000D000 | 0x00002800; // T24.
uint32_t kCleanSlateBLX_T2 = 0xF000C000 | 0x00002800; // T24.
// For AArch64.
uint32_t kCleanSlate64TBZw = 0x36000000; // Immd14.
uint32_t kCleanSlate64TBZz = 0xB6000000; // Immd14.
uint32_t kCleanSlate64TBNZw = 0x37000000; // Immd14.
uint32_t kCleanSlate64TBNZz = 0xB7000000; // Immd14.
uint32_t kCleanSlate64Bcond = 0x54000000; // Immd19.
uint32_t kCleanSlate64CBZw = 0x34000000; // Immd19.
uint32_t kCleanSlate64CBZz = 0xB4000000; // Immd19.
uint32_t kCleanSlate64CBNZw = 0x35000000; // Immd19.
uint32_t kCleanSlate64CBNZz = 0xB5000000; // Immd19.
uint32_t kCleanSlate64B = 0x14000000; // Immd26.
uint32_t kCleanSlate64BL = 0x94000000; // Immd26.
// Special case: Cond = 0xE => AL.
uint32_t kCleanSlateBAL_A1 = kCleanSlateB_A1 | (0xE << 28); //
// Test helper: Extracts |components| from |value| (may be |code| or |disp|)
// based on |pattern|. Also performs consistency checks. On success, writes to
// |*components| and returns true. Otherwise returns false.
// Example (all numbers are in binary):
// |pattern| = "11110Scc cciiiiii 10(J1)0(J2)jjj jjjj...."
// |value| = 11110111 00111000 10 1 0 0 111 11000101
// Result: Noting that all 0's and 1's are consistent, returns true with:
// |*components| = {S: 1, c: 1100, i: 111000, J1: 1, J2: 0, j: 1111100}
// Rules for |pattern|:
// * Spaces are ignored.
// * '.' means "don't care".
// * '0' and '1' are expected literals; mismatch leads to failure.
// * A variable name is specified as:
// * A single letter.
// * "(var)", where "var" is a name that begins with a letter.
// * If a variable's first letter is uppercase, then it's a singleton bit.
// * If repeated, consistency check is applied (must be identical).
// * If a variable's first letter is lowercase, then it spans multiple bits.
// * These need not be contiguous, but order is preserved (big-endian).
static bool SplitBits(const std::string& pattern,
uint32_t value,
std::map<std::string, uint32_t>* components) {
CHECK(components);
// Split |pattern| into |token_list|.
std::vector<std::string> token_list;
size_t bracket_start = std::string::npos;
for (size_t i = 0; i < pattern.size(); ++i) {
char ch = pattern[i];
if (bracket_start == std::string::npos) {
if (ch == '(')
bracket_start = i + 1;
else if (ch != ' ') // Ignore space.
token_list.push_back(std::string(1, ch));
} else if (ch == ')') {
token_list.push_back(pattern.substr(bracket_start, i - bracket_start));
bracket_start = std::string::npos;
}
}
CHECK_EQ(std::string::npos, bracket_start); // No dangling "(".
// Process each token.
size_t num_tokens = token_list.size();
std::map<std::string, uint32_t> temp_components;
CHECK(num_tokens == 32 || (num_tokens == 16 && value <= 0xFFFF));
for (size_t i = 0; i < num_tokens; ++i) {
const std::string& token = token_list[i];
CHECK(!token.empty());
uint32_t bit = (value >> (num_tokens - 1 - i)) & 1;
if (token == "0" || token == "1") {
if (token[0] != static_cast<char>('0' + bit))
return false; // Fail: Mismatch.
} else if (isupper(token[0])) {
if (temp_components.count(token)) {
if (temp_components[token] != bit)
return false; // Fail: Singleton bit not uniform.
} else {
temp_components[token] = bit;
}
} else if (islower(token[0])) {
temp_components[token] = (temp_components[token] << 1) | bit;
} else if (token != ".") {
return false; // Fail: Unrecognized token.
}
}
components->swap(temp_components);
return true;
}
// ARM32 or AArch64 instruction specification for tests. May be 16-bit or 32-bit
// (determined by INT_T).
template <typename INT_T>
struct ArmRelInstruction {
ArmRelInstruction(const std::string& code_pattern_in, INT_T code)
: code_pattern(code_pattern_in), clean_slate_code(code) {}
// Code pattern for SplitBits().
std::string code_pattern;
// "Clean slate" |code| encodes |disp| = 0.
INT_T clean_slate_code;
};
// Tester for ARM Encode / Decode functions for |disp| <-> |code|.
template <typename TRAITS>
class ArmTranslatorEncodeDecodeTest {
public:
using CODE_T = typename TRAITS::code_t;
ArmTranslatorEncodeDecodeTest() {}
// For each instruction (with |clean_slate_code| in |instr_list|) and for each
// |disp| in |good_disp_list|, forms |code| with |encode_fun()| and checks for
// success. Extracts |disp_out| with |decode_fun()| and checks that it's the
// original |disp|. For each (|disp|, |code|) pair, extracts components using
// SplitBits(), and checks that components from |toks_list| are identical. For
// each |disp| in |bad_disp_list|, checks that |decode_fun_()| fails.
void Run(const std::string& disp_pattern,
const std::vector<std::string>& toks_list,
const std::vector<ArmRelInstruction<CODE_T>>& instr_list,
const std::vector<arm_disp_t>& good_disp_list,
const std::vector<arm_disp_t>& bad_disp_list) {
ArmAlign (*decode_fun)(CODE_T, arm_disp_t*) = TRAITS::Decode;
bool (*encode_fun)(arm_disp_t, CODE_T*) = TRAITS::Encode;
for (const ArmRelInstruction<CODE_T> instr : instr_list) {
// Parse clean slate code bytes, and ensure it's well-formed.
std::map<std::string, uint32_t> clean_slate_code_components;
EXPECT_TRUE(SplitBits(instr.code_pattern, instr.clean_slate_code,
&clean_slate_code_components));
for (arm_disp_t disp : good_disp_list) {
CODE_T code = instr.clean_slate_code;
// Encode |disp| to |code|.
EXPECT_TRUE((*encode_fun)(disp, &code)) << disp;
arm_disp_t disp_out = 0;
// Extract components (performs consistency checks) and compare.
std::map<std::string, uint32_t> disp_components;
EXPECT_TRUE(SplitBits(disp_pattern, static_cast<uint32_t>(disp),
&disp_components));
std::map<std::string, uint32_t> code_components;
EXPECT_TRUE(SplitBits(instr.code_pattern, code, &code_components));
for (const std::string& tok : toks_list) {
EXPECT_EQ(1U, disp_components.count(tok)) << tok;
EXPECT_EQ(1U, code_components.count(tok)) << tok;
EXPECT_EQ(disp_components[tok], code_components[tok]) << tok;
}
// Decode |code| to |disp_out|, check fidelity.
EXPECT_NE(kArmAlignFail, (*decode_fun)(code, &disp_out));
EXPECT_EQ(disp, disp_out);
// Sanity check: Re-encode |disp| into |code|, ensure no change.
CODE_T code_copy = code;
EXPECT_TRUE((*encode_fun)(disp, &code));
EXPECT_EQ(code_copy, code);
// Encode 0, ensure we get clean slate |code| back.
EXPECT_TRUE((*encode_fun)(0, &code));
EXPECT_EQ(instr.clean_slate_code, code);
}
for (arm_disp_t disp : bad_disp_list) {
CODE_T code = instr.clean_slate_code;
EXPECT_FALSE((*encode_fun)(disp, &code)) << disp;
// Value does not get modified after failure.
EXPECT_EQ(instr.clean_slate_code, code);
}
}
}
};
// Tester for ARM Write / Read functions for |target_rva| <-> |code|.
template <typename TRAITS>
class ArmTranslatorWriteReadTest {
public:
using CODE_T = typename TRAITS::code_t;
ArmTranslatorWriteReadTest() {}
// Expects successful Write() to |clean_slate_code| for each |target_rva_list|
// RVA, using each |instr_rva_list| RVA, and that the resulting |code| leads
// to successful Read(), which recovers |instr_rva|.
void Accept(CODE_T clean_slate_code,
const std::vector<rva_t>& instr_rva_list,
const std::vector<rva_t>& target_rva_list) {
bool (*read_fun)(rva_t, CODE_T, rva_t*) = TRAITS::Read;
bool (*write_fun)(rva_t, rva_t, CODE_T*) = TRAITS::Write;
for (rva_t instr_rva : instr_rva_list) {
for (rva_t target_rva : target_rva_list) {
CODE_T code = clean_slate_code;
// Write |target_rva| to |code|.
EXPECT_TRUE((*write_fun)(instr_rva, target_rva, &code)) << target_rva;
rva_t target_rva_out = kInvalidRva;
// Read |code| to |target_rva_out|, check fidelity.
EXPECT_TRUE((*read_fun)(instr_rva, code, &target_rva_out));
EXPECT_EQ(target_rva, target_rva_out);
// Sanity check: Rewrite |target_rva| into |code|, ensure no change.
CODE_T code_copy = code;
EXPECT_TRUE((*write_fun)(instr_rva, target_rva, &code));
EXPECT_EQ(code_copy, code);
}
}
}
// Expects failed Write() to |clean_slate_code| for each |target_rva_list|
// RVA, using each |instr_rva_list| RVA.
void Reject(CODE_T clean_slate_code,
const std::vector<rva_t>& instr_rva_list,
const std::vector<rva_t>& target_rva_list) {
bool (*write_fun)(rva_t, rva_t, CODE_T*) = TRAITS::Write;
for (rva_t instr_rva : instr_rva_list) {
for (rva_t target_rva : target_rva_list) {
CODE_T code = clean_slate_code;
EXPECT_FALSE((*write_fun)(instr_rva, target_rva, &code)) << target_rva;
// Output variable is unmodified after failure.
EXPECT_EQ(clean_slate_code, code);
}
}
}
};
} // namespace
// Test for test helper.
TEST(ArmUtilsTest, SplitBits) {
// If |expected| == "BAD" then we expect failure.
auto run_test = [](const std::string& expected, const std::string& pattern,
uint32_t value) {
std::map<std::string, uint32_t> components;
if (expected == "BAD") {
EXPECT_FALSE(SplitBits(pattern, value, &components));
EXPECT_TRUE(components.empty());
} else {
EXPECT_TRUE(SplitBits(pattern, value, &components));
std::ostringstream oss;
// Not using AsHex<>, since number of digits is not fixed.
oss << std::uppercase << std::hex;
std::string sep = "";
for (auto it : components) {
oss << sep << it.first << "=" << it.second;
sep = ",";
}
EXPECT_EQ(expected, oss.str());
}
};
run_test("a=ABCD0123", "aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa", 0xABCD0123);
run_test("a=ABCD,b=123", "aaaaaaaa aaaaaaaa bbbbbbbb bbbbbbbb", 0xABCD0123);
run_test("a=23,b=1,c=CD,d=AB", "dddddddd cccccccc bbbbbbbb aaaaaaaa",
0xABCD0123);
run_test("", "........ ........ ........ ........", 0xABCD0123);
run_test("t=AC02", " tttt.... tt tt.... tttt....tttt.... ", 0xABCD0123);
run_test("a=8,b=C,c=E,d1=F", "aaaabbbb cccc(d1)(d1)(d1)(d1)", 0x8CEF);
run_test("a=F,b=7,c=3,d1=1", "abc(d1)abc(d1) abc(d1)abc(d1)", 0x8CEF);
run_test("A1=0,X=1", "(A1)XX(A1) X(A1)(A1)(A1) (X)(A1)(X)X(X)(X)X(A1)",
0x68BE);
run_test("BAD", "(A1)XX(A1) X(A1)(A1)(A1) (X)(A1)(X)X(X)(X)X(A1)", 0x68BF);
run_test("BAD", "(A1)XX(A1) X(A1)(A1)(A1) (X)(A1)(X)X(X)(X)X(A1)", 0x683E);
run_test("A=1,B=0,a=C", "AAAAaaaa BBBB01..", 0xFC06);
run_test("A=1,B=0,a=4", "AAAAaaaa BBBB01..", 0xF406);
run_test("A=0,B=1,a=C", "AAAAaaaa BBBB01..", 0x0CF5);
run_test("BAD", "AAAAaaaa BBBB01..", 0xEC06); // Non-uniform A.
run_test("BAD", "AAAAaaaa BBBB01..", 0xFC16); // Non-uniform B.
run_test("BAD", "AAAAaaaa BBBB01..", 0xFC02); // Constant mismatch.
}
TEST(Arm32Rel32Translator, Fetch) {
std::vector<uint8_t> bytes = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE};
ConstBufferView region(&bytes[0], bytes.size());
Arm32Rel32Translator translator;
EXPECT_EQ(0x76543210U, translator.FetchArmCode32(region, 0U));
EXPECT_EQ(0xFEDCBA98U, translator.FetchArmCode32(region, 4U));
EXPECT_EQ(0x3210U, translator.FetchThumb2Code16(region, 0U));
EXPECT_EQ(0xFEDCU, translator.FetchThumb2Code16(region, 6U));
EXPECT_EQ(0x32107654U, translator.FetchThumb2Code32(region, 0U));
EXPECT_EQ(0xBA98FEDCU, translator.FetchThumb2Code32(region, 4U));
}
TEST(Arm32Rel32Translator, Store) {
std::vector<uint8_t> expected = {
0xFF, 0xFF, 0xFF, 0xFF, // Padding.
0x10, 0x32, 0x54, 0x76, // ARM 32-bit.
0xFF, 0xFF, // Padding.
0x42, 0x86, // THUMB2 16-bit.
0xFF, 0xFF, // Padding.
0xDC, 0xFE, 0x98, 0xBA, // THUMB2 32-bit.
0xFF, 0xFF, 0xFF, 0xFF // Padding.
};
std::vector<uint8_t> bytes(4 * 2 + 2 * 3 + 4 * 2, 0xFF);
MutableBufferView region(&bytes[0], bytes.size());
CHECK_EQ(expected.size(), bytes.size());
Arm32Rel32Translator translator;
translator.StoreArmCode32(region, 4U, 0x76543210U);
translator.StoreThumb2Code16(region, 10U, 0x8642U);
translator.StoreThumb2Code32(region, 14U, 0xFEDCBA98U);
EXPECT_EQ(expected, bytes);
}
// Detailed test of Encode/Decode: Check valid and invalid |disp| for various
// clean slate |code| cases. Also check |disp| and |code| binary components,
// which in Arm32Rel32Translator comments.
TEST(Arm32Rel32Translator, EncodeDecode) {
// A24 tests.
ArmTranslatorEncodeDecodeTest<Arm32Rel32Translator::AddrTraits_A24> test_A24;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint32_t> B_A1_cond("cccc1010 Siiiiiii iiiiiiii iiiiiiii",
kCleanSlateB_A1 | (cond << 28));
ArmRelInstruction<uint32_t> BL_A1_cond(
"cccc1011 Siiiiiii iiiiiiii iiiiiiii", kCleanSlateBL_A1 | (cond << 28));
test_A24.Run("SSSSSSSi iiiiiiii iiiiiiii iiiiii00", {"S", "i"},
{B_A1_cond, BL_A1_cond},
{0x01FFFFFC, -0x02000000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x02000000, -0x02000004});
}
// BLX encoding A2, which has 2-byte alignment.
ArmRelInstruction<uint32_t> BLX_A2("1111101H Siiiiiii iiiiiiii iiiiiiii",
kCleanSlateBLX_A2);
test_A24.Run("SSSSSSSi iiiiiiii iiiiiiii iiiiiiH0", {"S", "i", "H"}, {BLX_A2},
{0x01FFFFFC, 0x01FFFFFE, -0x02000000, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x02000000, -0x02000002});
// T8 tests.
ArmTranslatorEncodeDecodeTest<Arm32Rel32Translator::AddrTraits_T8> test_T8;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint16_t> B_T1_cond("1101cccc Siiiiiii",
kCleanSlateB_T1 | (cond << 8));
test_T8.Run("SSSSSSSS SSSSSSSS SSSSSSSS iiiiiii0", {"S", "i"}, {B_T1_cond},
{0x00FE, -0x0100, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x0100, -0x0102});
}
ArmRelInstruction<uint16_t> B_T1_invalid("11011111 ........",
kCleanSlateB_T1 | (0x0F << 8));
test_T8.Run("........ ........ ........ ........", std::vector<std::string>(),
{B_T1_invalid}, std::vector<arm_disp_t>(),
{0x00FE, -0x0100, 0, 2, 4, 0x40, 0x41, 0x0100, -0x0102});
// T11 tests.
ArmTranslatorEncodeDecodeTest<Arm32Rel32Translator::AddrTraits_T11> test_T11;
ArmRelInstruction<uint16_t> B_T2("11100Sii iiiiiiii", kCleanSlateB_T2);
test_T11.Run("SSSSSSSS SSSSSSSS SSSSSiii iiiiiii0", {"S", "i"}, {B_T2},
{0x07FE, -0x0800, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x0800, -0x0802});
// T20 tests.
ArmTranslatorEncodeDecodeTest<Arm32Rel32Translator::AddrTraits_T20> test_T20;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint32_t> B_T3_cond(
"11110Scc cciiiiii 10(J1)0(J2)jjj jjjjjjjj",
kCleanSlateB_T3 | (cond << 22));
test_T20.Run("SSSSSSSS SSSS(J2)(J1)ii iiiijjjj jjjjjjj0",
{"S", "J2", "J1", "i", "j"}, {B_T3_cond},
{0x000FFFFE, -0x00100000, 0, 2, -2, 4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x00100000, -0x00100002});
}
ArmRelInstruction<uint32_t> B_T3_invalid(
"11110.11 11...... 10.0.... ........", kCleanSlateB_T3 | (0x0F << 22));
test_T20.Run("........ ........ ........ ........",
std::vector<std::string>(), {B_T3_invalid},
std::vector<arm_disp_t>(),
{0x000FFFFE, -0x00100000, 0, 2, 4, 0x40, 0x42, 1, 0x41, 0x43,
0x00100000, -0x00100002});
// T24 tests.
ArmTranslatorEncodeDecodeTest<Arm32Rel32Translator::AddrTraits_T24> test_T24;
// "Clean slate" means J1 = J2 = 1, so we include 0x00002800.
ArmRelInstruction<uint32_t> B_T4("11110Sii iiiiiiii 10(J1)1(J2)jjj jjjjjjjj",
kCleanSlateB_T4);
ArmRelInstruction<uint32_t> BL_T1("11110Sii iiiiiiii 11(J1)1(J2)jjj jjjjjjjj",
kCleanSlateBL_T1);
test_T24.Run("SSSSSSSS (I1)(I2)iiiiii iiiijjjj jjjjjjj0",
{"S", "i", "j"}, // Skip "J1", "J2", "I1", "I2" checks.
{B_T4, BL_T1},
{0x00FFFFFE, -0x01000000, 0, 2, -2, 4, -4, 0x40, 0x42},
{1, -1, 0x41, 0x43, 0x01000000, -0x01000002});
// For BLX encoding T2, |disp| must be multiple of 4.
ArmRelInstruction<uint32_t> BLX_T2(
"11110Sii iiiiiiii 11(J1)0(J2)jjj jjjjjjj0", kCleanSlateBLX_T2);
test_T24.Run(
"SSSSSSSS (I1)(I2)iiiiii iiiijjjj jjjjjj00",
{"S", "i", "j"}, // Skip "J1", "J2", "I1", "I2" checks.
{BLX_T2}, {0x00FFFFFC, -0x01000000, 0, 4, -4, 0x40},
{1, -1, 2, -2, 0x41, 0x42, 0x43, 0x00FFFFFE, 0x01000000, -0x01000002});
}
TEST(Arm32Rel32Translator, WriteRead) {
std::vector<rva_t> aligned4;
std::vector<rva_t> misaligned4;
std::vector<rva_t> aligned2;
std::vector<rva_t> misaligned2;
for (rva_t rva = 0x1FFC; rva <= 0x2010; ++rva) {
((rva % 4 == 0) ? aligned4 : misaligned4).push_back(rva);
((rva % 2 == 0) ? aligned2 : misaligned2).push_back(rva);
}
CHECK_EQ(6U, aligned4.size());
CHECK_EQ(15U, misaligned4.size());
CHECK_EQ(11U, aligned2.size());
CHECK_EQ(10U, misaligned2.size());
// Helpers to convert an instruction's RVA to PC.
auto pcArm = [](rva_t instr_rva) -> rva_t { return instr_rva + 8; };
auto pcThumb2 = [](rva_t instr_rva) -> rva_t { return instr_rva + 4; };
// A24 tests.
ArmTranslatorWriteReadTest<Arm32Rel32Translator::AddrTraits_A24> test_A24;
for (uint32_t clean_slate_code : {kCleanSlateB_A1, kCleanSlateBL_A1}) {
test_A24.Accept(clean_slate_code, aligned4, aligned4);
test_A24.Reject(clean_slate_code, aligned4, misaligned4);
test_A24.Reject(clean_slate_code, misaligned4, aligned4);
test_A24.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (24 + 2)-bit range, 4-byte aligned: [-0x02000000, 0x01FFFFFC].
test_A24.Accept(clean_slate_code, {0x15000000},
{pcArm(0x13000000), pcArm(0x16FFFFFC)});
test_A24.Reject(clean_slate_code, {0x15000000},
{pcArm(0x13000000 - 4), pcArm(0x16FFFFFC + 4)});
}
// BLX complication: ARM -> THUMB2.
test_A24.Accept(kCleanSlateBLX_A2, aligned4, aligned2);
test_A24.Reject(kCleanSlateBLX_A2, aligned4, misaligned2);
test_A24.Reject(kCleanSlateBLX_A2, misaligned4, aligned2);
test_A24.Reject(kCleanSlateBLX_A2, misaligned4, misaligned2);
test_A24.Accept(kCleanSlateBLX_A2, {0x15000000},
{pcArm(0x13000000), pcArm(0x16FFFFFE)});
test_A24.Reject(kCleanSlateBLX_A2, {0x15000000},
{pcArm(0x13000000 - 4), pcArm(0x13000000 - 2),
pcArm(0x16FFFFFE + 2), pcArm(0x16FFFFFE + 4)});
// T8 tests.
ArmTranslatorWriteReadTest<Arm32Rel32Translator::AddrTraits_T8> test_T8;
test_T8.Accept(kCleanSlateB_T1, aligned2, aligned2);
test_T8.Reject(kCleanSlateB_T1, aligned2, misaligned2);
test_T8.Reject(kCleanSlateB_T1, misaligned2, aligned2);
test_T8.Reject(kCleanSlateB_T1, misaligned2, misaligned2);
// Signed (8 + 1)-bit range, 2-byte aligned: [-0x0100, 0x00FE].
test_T8.Accept(kCleanSlateB_T1, {0x10000500},
{pcThumb2(0x10000400), pcThumb2(0x100005FE)});
test_T8.Reject(kCleanSlateB_T1, {0x10000500},
{pcThumb2(0x10000400 - 2), pcThumb2(0x100005FE + 2)});
// T11 tests.
ArmTranslatorWriteReadTest<Arm32Rel32Translator::AddrTraits_T11> test_T11;
test_T11.Accept(kCleanSlateB_T2, aligned2, aligned2);
test_T11.Reject(kCleanSlateB_T2, aligned2, misaligned2);
test_T11.Reject(kCleanSlateB_T2, misaligned2, aligned2);
test_T11.Reject(kCleanSlateB_T2, misaligned2, misaligned2);
// Signed (11 + 1)-bit range, 2-byte aligned: [-0x0800, 0x07FE].
test_T11.Accept(kCleanSlateB_T2, {0x10003000},
{pcThumb2(0x10002800), pcThumb2(0x100037FE)});
test_T11.Reject(kCleanSlateB_T2, {0x10003000},
{pcThumb2(0x10002800 - 2), pcThumb2(0x100037FE + 2)});
// T20 tests.
ArmTranslatorWriteReadTest<Arm32Rel32Translator::AddrTraits_T20> test_T20;
test_T20.Accept(kCleanSlateB_T3, aligned2, aligned2);
test_T20.Reject(kCleanSlateB_T3, aligned2, misaligned2);
test_T20.Reject(kCleanSlateB_T3, misaligned2, aligned2);
test_T20.Reject(kCleanSlateB_T3, misaligned2, misaligned2);
// Signed (20 + 1)-bit range, 2-byte aligned: [-0x00100000, 0x000FFFFE].
test_T20.Accept(kCleanSlateB_T3, {0x10300000},
{pcThumb2(0x10200000), pcThumb2(0x103FFFFE)});
test_T20.Reject(kCleanSlateB_T3, {0x10300000},
{pcThumb2(0x10200000 - 2), pcThumb2(0x103FFFFE + 2)});
// T24 tests.
ArmTranslatorWriteReadTest<Arm32Rel32Translator::AddrTraits_T24> test_T24;
for (uint32_t clean_slate_code : {kCleanSlateB_T4, kCleanSlateBL_T1}) {
test_T24.Accept(clean_slate_code, aligned2, aligned2);
test_T24.Reject(clean_slate_code, aligned2, misaligned2);
test_T24.Reject(clean_slate_code, misaligned2, aligned2);
test_T24.Reject(clean_slate_code, misaligned2, misaligned2);
// Signed (24 + 1)-bit range, 2-byte aligned: [-0x01000000, 0x00FFFFFE].
test_T24.Accept(clean_slate_code, {0x16000000},
{pcThumb2(0x15000000), pcThumb2(0x16FFFFFE)});
test_T24.Reject(clean_slate_code, {0x16000000},
{pcThumb2(0x15000000 - 2), pcThumb2(0x16FFFFFE + 2)});
}
// BLX complication: THUMB2 -> ARM.
test_T24.Accept(kCleanSlateBLX_T2, aligned2, aligned4);
test_T24.Reject(kCleanSlateBLX_T2, aligned2, misaligned4);
test_T24.Reject(kCleanSlateBLX_T2, misaligned2, aligned4);
test_T24.Reject(kCleanSlateBLX_T2, misaligned2, misaligned4);
test_T24.Accept(kCleanSlateBLX_T2, {0x16000000},
{pcThumb2(0x15000000), pcThumb2(0x16FFFFFC)});
test_T24.Reject(kCleanSlateBLX_T2, {0x16000000},
{pcThumb2(0x15000000 - 4), pcThumb2(0x15000000 - 2),
pcThumb2(0x16FFFFFC + 2), pcThumb2(0x16FFFFFC + 4)});
}
// Typical usage in |target_rva| extraction.
TEST(Arm32Rel32Translator, Main) {
// ARM mode (32-bit).
// 00103050: 00 01 02 EA B 00183458 ; B encoding A1 (cond = AL).
{
rva_t instr_rva = 0x00103050U;
Arm32Rel32Translator translator;
std::vector<uint8_t> bytes = {0x00, 0x01, 0x02, 0xEA};
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchArmCode32(region, 0U);
EXPECT_EQ(0xEA020100U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_EQ(kArmAlign4, translator.DecodeA24(code, &disp));
EXPECT_EQ(+0x00080400, disp);
uint32_t code_from_disp = kCleanSlateBAL_A1;
EXPECT_TRUE(translator.EncodeA24(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadA24(instr_rva, code, &target_rva));
// 0x00103050 + 8 + 0x00080400.
EXPECT_EQ(0x00183458U, target_rva);
uint32_t code_from_rva = kCleanSlateBAL_A1;
EXPECT_TRUE(translator.WriteA24(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
// THUMB2 mode (16-bit).
// 001030A2: F3 E7 B 0010308C ; B encoding T2.
{
rva_t instr_rva = 0x001030A2U;
Arm32Rel32Translator translator;
std::vector<uint8_t> bytes = {0xF3, 0xE7};
MutableBufferView region(&bytes[0], bytes.size());
uint16_t code = translator.FetchThumb2Code16(region, 0U);
// Sii iiiiiiii = 111 11110011 = -1101 = -0x0D.
EXPECT_EQ(0xE7F3U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_EQ(kArmAlign2, translator.DecodeT11(code, &disp));
EXPECT_EQ(-0x0000001A, disp); // -0x0D * 2 = -0x1A.
uint16_t code_from_disp = kCleanSlateB_T2;
EXPECT_TRUE(translator.EncodeT11(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadT11(instr_rva, code, &target_rva));
// 0x001030A2 + 4 - 0x0000001A.
EXPECT_EQ(0x0010308CU, target_rva);
uint16_t code_from_rva = kCleanSlateB_T2;
EXPECT_TRUE(translator.WriteT11(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
// THUMB2 mode (32-bit).
// 001030A2: 00 F0 01 FA BL 001034A8 ; BL encoding T1.
{
rva_t instr_rva = 0x001030A2U;
Arm32Rel32Translator translator;
std::vector<uint8_t> bytes = {0x00, 0xF0, 0x01, 0xFA};
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchThumb2Code32(region, 0U);
EXPECT_EQ(0xF000FA01U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_EQ(kArmAlign2, translator.DecodeT24(code, &disp));
EXPECT_EQ(+0x00000402, disp);
uint32_t code_from_disp = kCleanSlateBL_T1;
EXPECT_TRUE(translator.EncodeT24(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadT24(instr_rva, code, &target_rva));
// 0x001030A2 + 4 + 0x00000002.
EXPECT_EQ(0x001034A8U, target_rva);
uint32_t code_from_rva = kCleanSlateBL_T1;
EXPECT_TRUE(translator.WriteT24(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
}
TEST(Arm32Rel32Translator, BLXComplication) {
auto run_test = [](rva_t instr_rva,
std::vector<uint8_t> bytes, // Pass by value.
uint32_t expected_code, arm_disp_t expected_disp,
uint32_t clean_slate_code, rva_t expected_target_rva) {
Arm32Rel32Translator translator;
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchThumb2Code32(region, 0U);
EXPECT_EQ(expected_code, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_TRUE(translator.DecodeT24(code, &disp));
EXPECT_EQ(expected_disp, disp);
uint32_t code_from_disp = clean_slate_code;
EXPECT_TRUE(translator.EncodeT24(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadT24(instr_rva, code, &target_rva));
EXPECT_EQ(expected_target_rva, target_rva);
uint32_t code_from_rva = clean_slate_code;
EXPECT_TRUE(translator.WriteT24(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
};
// No complication, 4-byte aligned.
// 001030A0: 01 F0 06 B0 B 005040B0 ; B encoding T4.
run_test(0x001030A0U, // Multiple of 4.
{0x01, 0xF0, 0x06, 0xB0}, 0xF001B006U, 0x0040100C, kCleanSlateB_T4,
// "Canonical" |target_rva|: 0x001030A0 + 4 + 0x0040100C.
0x005040B0U);
// No complication, not 4-byte aligned.
// 001030A2: 01 F0 06 B0 B 005040B2 ; B encoding T4.
run_test(0x001030A2U, // Shift by 2: Not multiple of 4.
{0x01, 0xF0, 0x06, 0xB0}, 0xF001B006U, 0x0040100C, kCleanSlateB_T4,
// Shifted by 2: 0x001030A2 + 4 + 0x0040100C.
0x005040B2U);
// Repeat the above, but use BLX instead of B.
// BLX complication, 4-byte aligned.
// 001030A0: 01 F0 06 E0 BLX 005040B0 ; BLX encoding T2.
run_test(0x001030A0U, // Multiple of 4.
{0x01, 0xF0, 0x06, 0xE0}, 0xF001E006U, 0x0040100C, kCleanSlateBLX_T2,
// Canonical again: align_down_4(0x001030A0 + 4 + 0x0040100C).
0x005040B0U);
// BLX complication, not 4-byte aligned.
// 001030A2: 01 F0 06 E0 BLX 005040B0 ; BLX encoding T2.
run_test(0x001030A2U, // Shift by 2: Not multiple of 4.
{0x01, 0xF0, 0x06, 0xE0}, 0xF001E006U, 0x0040100C, kCleanSlateBLX_T2,
// No shift: align_down_4(0x001030A2 + 4 + 0x0040100C).
0x005040B0U);
}
TEST(AArch64Rel32Translator, FetchStore) {
std::vector<uint8_t> bytes = {0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE};
std::vector<uint8_t> expected = {0xAB, 0x33, 0x22, 0x11,
0x69, 0x5A, 0xFF, 0x00};
MutableBufferView region(&bytes[0], bytes.size());
AArch64Rel32Translator translator;
EXPECT_EQ(0x76543210U, translator.FetchCode32(region, 0U));
EXPECT_EQ(0xFEDCBA98U, translator.FetchCode32(region, 4U));
translator.StoreCode32(region, 0U, 0x112233ABU);
translator.StoreCode32(region, 4U, 0x00FF5A69);
EXPECT_EQ(expected, bytes);
}
TEST(AArch64Rel32Translator, EncodeDecode) {
// Immd14 tests.
ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd14>
test_immd14;
for (int b40 : {0, 1, 7, 31}) {
uint32_t b40_mask = b40 << 19;
for (int Rt : {0, 1, 15, 30}) {
uint32_t mask = b40_mask | Rt;
ArmRelInstruction<uint32_t> TBZw_Rt("00110110 bbbbbSii iiiiiiii iiittttt",
kCleanSlate64TBZw | mask);
ArmRelInstruction<uint32_t> TBZz_Rt("10110110 bbbbbSii iiiiiiii iiittttt",
kCleanSlate64TBZz | mask);
ArmRelInstruction<uint32_t> TBNZw_Rt(
"00110111 bbbbbSii iiiiiiii iiittttt", kCleanSlate64TBNZw | mask);
ArmRelInstruction<uint32_t> TBNZz_Rt(
"10110111 bbbbbSii iiiiiiii iiittttt", kCleanSlate64TBNZz | mask);
test_immd14.Run("SSSSSSSS SSSSSSSS Siiiiiii iiiiii00", {"S", "i"},
{TBZw_Rt, TBZz_Rt, TBNZw_Rt, TBNZz_Rt},
{0x00007FFC, -0x00008000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x00008000, -0x00008004});
}
}
// Immd19 tests.
ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd19>
test_immd19;
for (int cond = 0; cond <= 0x0E; ++cond) {
ArmRelInstruction<uint32_t> B_cond("01010100 Siiiiiii iiiiiiii iii0cccc",
kCleanSlate64Bcond | cond);
test_immd19.Run("SSSSSSSS SSSSiiii iiiiiiii iiiiii00", {"S", "i"}, {B_cond},
{0x000FFFFC, -0x00100000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x00100000, -0x00100004});
}
for (int Rt : {0, 1, 15, 30}) {
ArmRelInstruction<uint32_t> CBZw_Rt("00110100 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBZw | Rt);
ArmRelInstruction<uint32_t> CBZz_Rt("10110100 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBZz | Rt);
ArmRelInstruction<uint32_t> CBNZw_Rt("00110101 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBNZw | Rt);
ArmRelInstruction<uint32_t> CBNZz_Rt("10110101 Siiiiiii iiiiiiii iiittttt",
kCleanSlate64CBNZz | Rt);
test_immd19.Run("SSSSSSSS SSSSiiii iiiiiiii iiiiii00", {"S", "i"},
{CBZw_Rt, CBZz_Rt, CBNZw_Rt, CBNZz_Rt},
{0x000FFFFC, -0x00100000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x00100000, -0x00100004});
}
// Immd26 tests.
ArmTranslatorEncodeDecodeTest<AArch64Rel32Translator::AddrTraits_Immd26>
test_immd26;
ArmRelInstruction<uint32_t> B("000101Si iiiiiiii iiiiiiii iiiiiiii",
kCleanSlate64B);
ArmRelInstruction<uint32_t> BL("100101Si iiiiiiii iiiiiiii iiiiiiii",
kCleanSlate64BL);
test_immd26.Run("SSSSSiii iiiiiiii iiiiiiii iiiiii00", {"S", "i"}, {B, BL},
{0x07FFFFFC, -0x08000000, 0, 4, -4, 0x40, 0x44},
{2, -2, 0x41, 0x42, 0x43, 0x08000000, -0x08000004});
}
TEST(AArch64Rel32Translator, WriteRead) {
std::vector<rva_t> aligned4;
std::vector<rva_t> misaligned4;
for (rva_t rva = 0x1FFC; rva <= 0x2010; ++rva) {
((rva % 4 == 0) ? aligned4 : misaligned4).push_back(rva);
}
CHECK_EQ(6U, aligned4.size());
CHECK_EQ(15U, misaligned4.size());
// Helper to convert an instruction's RVA to PC.
auto pcAArch64 = [](rva_t instr_rva) -> rva_t { return instr_rva; };
// Immd14 tests.
ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd14>
test_immd14;
for (uint32_t clean_slate_code : {kCleanSlate64TBZw, kCleanSlate64TBZz,
kCleanSlate64TBNZw, kCleanSlate64TBNZz}) {
test_immd14.Accept(clean_slate_code, aligned4, aligned4);
test_immd14.Reject(clean_slate_code, aligned4, misaligned4);
test_immd14.Reject(clean_slate_code, misaligned4, aligned4);
test_immd14.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (14 + 2)-bit range, 4-byte aligned: [-0x00008000, 0x00007FFC].
test_immd14.Accept(clean_slate_code, {0x10040000},
{pcAArch64(0x10038000), pcAArch64(0x10047FFC)});
test_immd14.Reject(clean_slate_code, {0x15000000},
{pcAArch64(0x10038000 - 4), pcAArch64(0x10047FFC + 4)});
}
// Immd19 tests.
ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd19>
test_immd19;
for (uint32_t clean_slate_code :
{kCleanSlate64Bcond, kCleanSlate64CBZw, kCleanSlate64CBZz,
kCleanSlate64CBNZw, kCleanSlate64CBNZz}) {
test_immd19.Accept(clean_slate_code, aligned4, aligned4);
test_immd19.Reject(clean_slate_code, aligned4, misaligned4);
test_immd19.Reject(clean_slate_code, misaligned4, aligned4);
test_immd19.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (19 + 2)-bit range, 4-byte aligned: [-0x00100000, 0x000FFFFC].
test_immd19.Accept(clean_slate_code, {0x10300000},
{pcAArch64(0x10200000), pcAArch64(0x103FFFFC)});
test_immd19.Reject(clean_slate_code, {0x10300000},
{pcAArch64(0x10200000 - 4), pcAArch64(0x103FFFFC + 4)});
}
// Immd26 tests.
ArmTranslatorWriteReadTest<AArch64Rel32Translator::AddrTraits_Immd26>
test_immd26;
for (uint32_t clean_slate_code : {kCleanSlate64B, kCleanSlate64BL}) {
test_immd26.Accept(clean_slate_code, aligned4, aligned4);
test_immd26.Reject(clean_slate_code, aligned4, misaligned4);
test_immd26.Reject(clean_slate_code, misaligned4, aligned4);
test_immd26.Reject(clean_slate_code, misaligned4, misaligned4);
// Signed (26 + 2)-bit range, 4-byte aligned: [-0x08000000, 0x07FFFFFC].
test_immd26.Accept(clean_slate_code, {0x30000000},
{pcAArch64(0x28000000), pcAArch64(0x37FFFFFC)});
test_immd26.Reject(clean_slate_code, {0x30000000},
{pcAArch64(0x28000000 - 4), pcAArch64(0x37FFFFFC + 4)});
}
}
// Typical usage in |target_rva| extraction.
TEST(AArch64Rel32Translator, Main) {
// 00103050: 02 01 02 14 B 00183458
rva_t instr_rva = 0x00103050U;
AArch64Rel32Translator translator;
std::vector<uint8_t> bytes = {0x02, 0x01, 0x02, 0x14};
MutableBufferView region(&bytes[0], bytes.size());
uint32_t code = translator.FetchCode32(region, 0U);
EXPECT_EQ(0x14020102U, code);
// |code| <-> |disp|.
arm_disp_t disp = 0;
EXPECT_TRUE(translator.DecodeImmd26(code, &disp));
EXPECT_EQ(+0x00080408, disp);
uint32_t code_from_disp = kCleanSlate64B;
EXPECT_TRUE(translator.EncodeImmd26(disp, &code_from_disp));
EXPECT_EQ(code, code_from_disp);
// |code| <-> |target_rva|.
rva_t target_rva = kInvalidRva;
EXPECT_TRUE(translator.ReadImmd26(instr_rva, code, &target_rva));
// 0x00103050 + 0 + 0x00080408.
EXPECT_EQ(0x00183458U, target_rva);
uint32_t code_from_rva = kCleanSlate64B;
EXPECT_TRUE(translator.WriteImmd26(instr_rva, target_rva, &code_from_rva));
EXPECT_EQ(code, code_from_rva);
}
} // namespace zucchini