| // Copyright 2020 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "content/common/android/cpu_time_metrics_internal.h" |
| |
| #include <stdint.h> |
| |
| #include <atomic> |
| #include <memory> |
| #include <utility> |
| |
| #include "base/callback_helpers.h" |
| #include "base/command_line.h" |
| #include "base/containers/flat_map.h" |
| #include "base/cpu.h" |
| #include "base/lazy_instance.h" |
| #include "base/memory/raw_ptr.h" |
| #include "base/metrics/histogram_functions.h" |
| #include "base/metrics/histogram_macros.h" |
| #include "base/metrics/persistent_histogram_allocator.h" |
| #include "base/no_destructor.h" |
| #include "base/notreached.h" |
| #include "base/process/process_metrics.h" |
| #include "base/run_loop.h" |
| #include "base/sequence_checker.h" |
| #include "base/strings/pattern.h" |
| #include "base/strings/string_util.h" |
| #include "base/task/current_thread.h" |
| #include "base/task/post_task.h" |
| #include "base/task/task_observer.h" |
| #include "base/task/thread_pool.h" |
| #include "base/threading/platform_thread.h" |
| #include "base/threading/thread_id_name_manager.h" |
| #include "base/threading/thread_task_runner_handle.h" |
| #include "components/power_scheduler/power_mode.h" |
| #include "components/power_scheduler/power_mode_arbiter.h" |
| #include "content/common/process_visibility_tracker.h" |
| #include "content/public/common/content_switches.h" |
| #include "content/public/common/process_type.h" |
| |
| namespace content { |
| namespace internal { |
| namespace { |
| |
| bool g_ignore_histogram_allocator_for_testing = false; |
| |
| static_assert(static_cast<int>(ProcessTypeForUma::kMaxValue) == |
| PROCESS_TYPE_PPAPI_BROKER, |
| "ProcessTypeForUma and CurrentProcessType() require updating"); |
| |
| ProcessTypeForUma CurrentProcessType() { |
| std::string process_type = |
| base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII( |
| switches::kProcessType); |
| if (process_type.empty()) |
| return ProcessTypeForUma::kBrowser; |
| if (process_type == switches::kRendererProcess) |
| return ProcessTypeForUma::kRenderer; |
| if (process_type == switches::kUtilityProcess) |
| return ProcessTypeForUma::kUtility; |
| if (process_type == switches::kSandboxIPCProcess) |
| return ProcessTypeForUma::kSandboxHelper; |
| if (process_type == switches::kGpuProcess) |
| return ProcessTypeForUma::kGpu; |
| if (process_type == switches::kPpapiPluginProcess) |
| return ProcessTypeForUma::kPpapiPlugin; |
| NOTREACHED() << "Unexpected process type: " << process_type; |
| return ProcessTypeForUma::kUnknown; |
| } |
| |
| const char* GetPerThreadHistogramNameForProcessType(ProcessTypeForUma type) { |
| switch (type) { |
| case ProcessTypeForUma::kBrowser: |
| return "Power.CpuTimeSecondsPerThreadType.Browser"; |
| case ProcessTypeForUma::kRenderer: |
| return "Power.CpuTimeSecondsPerThreadType.Renderer"; |
| case ProcessTypeForUma::kGpu: |
| return "Power.CpuTimeSecondsPerThreadType.GPU"; |
| default: |
| return "Power.CpuTimeSecondsPerThreadType.Other"; |
| } |
| } |
| |
| const char* GetPerPowerModeHistogramNameForProcessType(ProcessTypeForUma type) { |
| switch (type) { |
| case ProcessTypeForUma::kBrowser: |
| return "Power.CpuTimeSecondsPerPowerMode.Browser"; |
| case ProcessTypeForUma::kRenderer: |
| return "Power.CpuTimeSecondsPerPowerMode.Renderer"; |
| case ProcessTypeForUma::kGpu: |
| return "Power.CpuTimeSecondsPerPowerMode.GPU"; |
| default: |
| return "Power.CpuTimeSecondsPerPowerMode.Other"; |
| } |
| } |
| |
| const char* GetPowerModeChangeHistogramNameForProcessType( |
| ProcessTypeForUma type) { |
| switch (type) { |
| case ProcessTypeForUma::kBrowser: |
| return "Power.PowerScheduler.ProcessPowerModeChange.Browser"; |
| case ProcessTypeForUma::kRenderer: |
| return "Power.PowerScheduler.ProcessPowerModeChange.Renderer"; |
| case ProcessTypeForUma::kGpu: |
| return "Power.PowerScheduler.ProcessPowerModeChange.GPU"; |
| default: |
| return "Power.PowerScheduler.ProcessPowerModeChange.Other"; |
| } |
| } |
| |
| const char* GetAvgCpuLoadHistogramNameForProcessType(ProcessTypeForUma type) { |
| switch (type) { |
| case ProcessTypeForUma::kBrowser: |
| return "Power.AvgCpuLoad.Browser"; |
| case ProcessTypeForUma::kRenderer: |
| return "Power.AvgCpuLoad.Renderer"; |
| case ProcessTypeForUma::kGpu: |
| return "Power.AvgCpuLoad.GPU"; |
| default: |
| return "Power.AvgCpuLoad.Other"; |
| } |
| } |
| |
| const char* GetIdleCpuLoadHistogramNameForProcessType(ProcessTypeForUma type) { |
| switch (type) { |
| case ProcessTypeForUma::kBrowser: |
| return "Power.IdleCpuLoad.Browser"; |
| case ProcessTypeForUma::kRenderer: |
| return "Power.IdleCpuLoad.Renderer"; |
| case ProcessTypeForUma::kGpu: |
| return "Power.IdleCpuLoad.GPU"; |
| default: |
| return "Power.IdleCpuLoad.Other"; |
| } |
| } |
| |
| // Return whether the power mode is considered idle for the purpose of the CPU |
| // load reporting. "Idle" in this case means that nothing CPU-intensive is |
| // expected to be happening while in this mode. |
| bool IsIdleMode(power_scheduler::PowerMode power_mode) { |
| return power_mode == power_scheduler::PowerMode::kIdle || |
| power_mode == power_scheduler::PowerMode::kNopAnimation || |
| power_mode == power_scheduler::PowerMode::kBackground; |
| } |
| |
| PowerModeForUma GetPowerModeForUma(power_scheduler::PowerMode power_mode) { |
| switch (power_mode) { |
| case power_scheduler::PowerMode::kIdle: |
| return PowerModeForUma::kIdle; |
| case power_scheduler::PowerMode::kNopAnimation: |
| return PowerModeForUma::kNopAnimation; |
| case power_scheduler::PowerMode::kSmallMainThreadAnimation: |
| return PowerModeForUma::kSmallMainThreadAnimation; |
| case power_scheduler::PowerMode::kSmallAnimation: |
| return PowerModeForUma::kSmallAnimation; |
| case power_scheduler::PowerMode::kMediumMainThreadAnimation: |
| return PowerModeForUma::kMediumMainThreadAnimation; |
| case power_scheduler::PowerMode::kMediumAnimation: |
| return PowerModeForUma::kMediumAnimation; |
| case power_scheduler::PowerMode::kAudible: |
| return PowerModeForUma::kAudible; |
| case power_scheduler::PowerMode::kVideoPlayback: |
| return PowerModeForUma::kVideoPlayback; |
| case power_scheduler::PowerMode::kMainThreadAnimation: |
| return PowerModeForUma::kMainThreadAnimation; |
| case power_scheduler::PowerMode::kScriptExecution: |
| return PowerModeForUma::kScriptExecution; |
| case power_scheduler::PowerMode::kLoading: |
| return PowerModeForUma::kLoading; |
| case power_scheduler::PowerMode::kAnimation: |
| return PowerModeForUma::kAnimation; |
| case power_scheduler::PowerMode::kLoadingAnimation: |
| return PowerModeForUma::kLoadingAnimation; |
| case power_scheduler::PowerMode::kResponse: |
| return PowerModeForUma::kResponse; |
| case power_scheduler::PowerMode::kNonWebActivity: |
| return PowerModeForUma::kNonWebActivity; |
| case power_scheduler::PowerMode::kBackground: |
| return PowerModeForUma::kBackground; |
| case power_scheduler::PowerMode::kCharging: |
| return PowerModeForUma::kCharging; |
| } |
| } |
| |
| std::string GetPerCoreCpuTimeHistogramName(ProcessTypeForUma process_type, |
| base::CPU::CoreType core_type, |
| bool is_approximate) { |
| std::string process_suffix; |
| switch (process_type) { |
| case ProcessTypeForUma::kBrowser: |
| process_suffix = "Browser"; |
| break; |
| case ProcessTypeForUma::kRenderer: |
| process_suffix = "Renderer"; |
| break; |
| case ProcessTypeForUma::kGpu: |
| process_suffix = "GPU"; |
| break; |
| default: |
| process_suffix = "Other"; |
| break; |
| } |
| |
| std::string cpu_suffix; |
| switch (core_type) { |
| case base::CPU::CoreType::kUnknown: |
| cpu_suffix = "Unknown"; |
| break; |
| case base::CPU::CoreType::kOther: |
| cpu_suffix = "Other"; |
| break; |
| case base::CPU::CoreType::kSymmetric: |
| cpu_suffix = "Symmetric"; |
| break; |
| case base::CPU::CoreType::kBigLittle_Little: |
| cpu_suffix = "BigLittle.Little"; |
| break; |
| case base::CPU::CoreType::kBigLittle_Big: |
| cpu_suffix = "BigLittle.Big"; |
| break; |
| case base::CPU::CoreType::kBigLittleBigger_Little: |
| cpu_suffix = "BigLittleBigger.Little"; |
| break; |
| case base::CPU::CoreType::kBigLittleBigger_Big: |
| cpu_suffix = "BigLittleBigger.Big"; |
| break; |
| case base::CPU::CoreType::kBigLittleBigger_Bigger: |
| cpu_suffix = "BigLittleBigger.Bigger"; |
| break; |
| } |
| |
| std::string prefix = std::string("Power.") + |
| (is_approximate ? "Approx" : "") + |
| "CpuTimeSecondsPerCoreTypeAndFrequency"; |
| |
| return base::JoinString({prefix, cpu_suffix, process_suffix}, "."); |
| } |
| |
| // Keep in sync with CpuTimeMetricsThreadType in |
| // //tools/metrics/histograms/enums.xml. |
| enum class CpuTimeMetricsThreadType { |
| kUnattributedThread = 0, |
| kOtherThread, |
| kMainThread, |
| kIOThread, |
| kThreadPoolBackgroundWorkerThread, |
| kThreadPoolForegroundWorkerThread, |
| kThreadPoolServiceThread, |
| kCompositorThread, |
| kCompositorTileWorkerThread, |
| kVizCompositorThread, |
| kRendererUnspecifiedWorkerThread, |
| kRendererDedicatedWorkerThread, |
| kRendererSharedWorkerThread, |
| kRendererAnimationAndPaintWorkletThread, |
| kRendererServiceWorkerThread, |
| kRendererAudioWorkletThread, |
| kRendererFileThread, |
| kRendererDatabaseThread, |
| kRendererOfflineAudioRenderThread, |
| kRendererReverbConvolutionBackgroundThread, |
| kRendererHRTFDatabaseLoaderThread, |
| kRendererAudioEncoderThread, |
| kRendererVideoEncoderThread, |
| kMemoryInfraThread, |
| kSamplingProfilerThread, |
| kNetworkServiceThread, |
| kAudioThread, |
| kInProcessUtilityThread, |
| kInProcessRendererThread, |
| kInProcessGpuThread, |
| kMaxValue = kInProcessGpuThread, |
| }; |
| |
| CpuTimeMetricsThreadType GetThreadTypeFromName(const char* const thread_name) { |
| if (!thread_name) |
| return CpuTimeMetricsThreadType::kOtherThread; |
| |
| if (base::MatchPattern(thread_name, "Cr*Main")) { |
| return CpuTimeMetricsThreadType::kMainThread; |
| } else if (base::MatchPattern(thread_name, "Chrome*IOThread")) { |
| return CpuTimeMetricsThreadType::kIOThread; |
| } else if (base::MatchPattern(thread_name, "ThreadPool*Foreground*")) { |
| return CpuTimeMetricsThreadType::kThreadPoolForegroundWorkerThread; |
| } else if (base::MatchPattern(thread_name, "ThreadPool*Background*")) { |
| return CpuTimeMetricsThreadType::kThreadPoolBackgroundWorkerThread; |
| } else if (base::MatchPattern(thread_name, "ThreadPoolService*")) { |
| return CpuTimeMetricsThreadType::kThreadPoolServiceThread; |
| } else if (base::MatchPattern(thread_name, "Compositor")) { |
| return CpuTimeMetricsThreadType::kCompositorThread; |
| } else if (base::MatchPattern(thread_name, "CompositorTileWorker*")) { |
| return CpuTimeMetricsThreadType::kCompositorTileWorkerThread; |
| } else if (base::MatchPattern(thread_name, "VizCompositor*")) { |
| return CpuTimeMetricsThreadType::kVizCompositorThread; |
| } else if (base::MatchPattern(thread_name, "unspecified worker*")) { |
| return CpuTimeMetricsThreadType::kRendererUnspecifiedWorkerThread; |
| } else if (base::MatchPattern(thread_name, "DedicatedWorker*")) { |
| return CpuTimeMetricsThreadType::kRendererDedicatedWorkerThread; |
| } else if (base::MatchPattern(thread_name, "SharedWorker*")) { |
| return CpuTimeMetricsThreadType::kRendererSharedWorkerThread; |
| } else if (base::MatchPattern(thread_name, "AnimationWorklet*")) { |
| return CpuTimeMetricsThreadType::kRendererAnimationAndPaintWorkletThread; |
| } else if (base::MatchPattern(thread_name, "ServiceWorker*")) { |
| return CpuTimeMetricsThreadType::kRendererServiceWorkerThread; |
| } else if (base::MatchPattern(thread_name, "AudioWorklet*")) { |
| return CpuTimeMetricsThreadType::kRendererAudioWorkletThread; |
| } else if (base::MatchPattern(thread_name, "File thread")) { |
| return CpuTimeMetricsThreadType::kRendererFileThread; |
| } else if (base::MatchPattern(thread_name, "Database thread")) { |
| return CpuTimeMetricsThreadType::kRendererDatabaseThread; |
| } else if (base::MatchPattern(thread_name, "OfflineAudioRender*")) { |
| return CpuTimeMetricsThreadType::kRendererOfflineAudioRenderThread; |
| } else if (base::MatchPattern(thread_name, "Reverb convolution*")) { |
| return CpuTimeMetricsThreadType::kRendererReverbConvolutionBackgroundThread; |
| } else if (base::MatchPattern(thread_name, "HRTF*")) { |
| return CpuTimeMetricsThreadType::kRendererHRTFDatabaseLoaderThread; |
| } else if (base::MatchPattern(thread_name, "Audio encoder*")) { |
| return CpuTimeMetricsThreadType::kRendererAudioEncoderThread; |
| } else if (base::MatchPattern(thread_name, "Video encoder*")) { |
| return CpuTimeMetricsThreadType::kRendererVideoEncoderThread; |
| } else if (base::MatchPattern(thread_name, "MemoryInfra")) { |
| return CpuTimeMetricsThreadType::kMemoryInfraThread; |
| } else if (base::MatchPattern(thread_name, "StackSamplingProfiler")) { |
| return CpuTimeMetricsThreadType::kSamplingProfilerThread; |
| } else if (base::MatchPattern(thread_name, "NetworkService")) { |
| return CpuTimeMetricsThreadType::kNetworkServiceThread; |
| } else if (base::MatchPattern(thread_name, "AudioThread")) { |
| return CpuTimeMetricsThreadType::kAudioThread; |
| } else if (base::MatchPattern(thread_name, "Chrome_InProcUtilityThread")) { |
| return CpuTimeMetricsThreadType::kInProcessUtilityThread; |
| } else if (base::MatchPattern(thread_name, "Chrome_InProcRendererThread")) { |
| return CpuTimeMetricsThreadType::kInProcessRendererThread; |
| } else if (base::MatchPattern(thread_name, "Chrome_InProcGpuThread")) { |
| return CpuTimeMetricsThreadType::kInProcessGpuThread; |
| } |
| |
| // TODO(eseckler): Also break out Android's RenderThread here somehow? |
| |
| return CpuTimeMetricsThreadType::kOtherThread; |
| } |
| |
| class TimeInStateReporter { |
| public: |
| TimeInStateReporter(ProcessTypeForUma process_type, |
| base::CPU::CoreType core_type, |
| bool is_approximate) |
| : histogram_(GetPerCoreCpuTimeHistogramName(process_type, |
| core_type, |
| is_approximate), |
| 1, |
| // ScaledLinearHistogram requires buckets of size 1. Each |
| // bucket here represents a range of frequency values. |
| kNumBuckets, |
| kNumBuckets + 1, |
| base::Time::kMicrosecondsPerSecond, |
| base::HistogramBase::kUmaTargetedHistogramFlag) {} |
| |
| void AddMicroseconds(int frequency_mhz, int cpu_time_us) { |
| int frequency_bucket = frequency_mhz / kBucketSizeMhz; |
| histogram_.AddScaledCount(frequency_bucket, cpu_time_us); |
| } |
| |
| private: |
| static constexpr int32_t kMaxFrequencyMhz = 10 * 1000; // 10 GHz. |
| static constexpr int32_t kBucketSizeMhz = 50; // one bucket for every 50 MHz. |
| static constexpr int32_t kNumBuckets = kMaxFrequencyMhz / kBucketSizeMhz; |
| |
| base::ScaledLinearHistogram histogram_; |
| }; |
| |
| } // namespace |
| |
| // Reports per-thread and per-core CPU time breakdowns. |
| class ProcessCpuTimeMetrics::DetailedCpuTimeMetrics { |
| public: |
| DetailedCpuTimeMetrics(base::ProcessMetrics* process_metrics, |
| ProcessTypeForUma process_type) |
| : process_metrics_(process_metrics), |
| process_type_(process_type), |
| // DetailedCpuTimeMetrics is created on the main thread of the process |
| // but lives on the thread pool sequence afterwards. |
| main_thread_id_(base::PlatformThread::CurrentId()) { |
| DETACH_FROM_SEQUENCE(thread_pool_); |
| } |
| |
| void CollectOnThreadPool() { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(thread_pool_); |
| |
| // This might overflow. We only care that it is different for each cycle. |
| current_cycle_++; |
| |
| // Skip reporting any values into histograms until histogram persistence is |
| // set up. Otherwise, we would create the histograms without persistence and |
| // lose data at process termination (particularly in child processes). |
| if (!base::GlobalHistogramAllocator::Get() && |
| !g_ignore_histogram_allocator_for_testing) { |
| // If this is the first iteration, still initialize baseline values |
| // (e.g. idle time) for the approximate per-cpu breakdown, but don't |
| // record any values into histograms. |
| if (last_time_in_state_walltime_.is_null()) |
| CollectApproxTimeInState(base::TimeDelta()); |
| return; |
| } |
| |
| // GetCumulativeCPUUsage() may return a negative value if sampling failed. |
| base::TimeDelta cumulative_cpu_time = |
| process_metrics_->GetCumulativeCPUUsage(); |
| base::TimeDelta process_cpu_time_delta = |
| cumulative_cpu_time - reported_cpu_time_; |
| if (process_cpu_time_delta.is_positive()) { |
| reported_cpu_time_ = cumulative_cpu_time; |
| } |
| |
| // Approximate breakdown by CPU core type & frequency. The per-pid |
| // time_in_state used by the per-thread breakdown isn't supported by many |
| // kernels. This breakdown approximates Chrome's total per |
| // core-type/frequency usage by splitting the process's CPU time across |
| // cores/frequencies according to global per-core time_in_state values. |
| CollectApproxTimeInState(process_cpu_time_delta); |
| |
| // Also report a breakdown by thread type. |
| base::TimeDelta unattributed_delta = process_cpu_time_delta; |
| if (process_metrics_->GetCumulativeCPUUsagePerThread( |
| cumulative_thread_times_)) { |
| for (const auto& entry : cumulative_thread_times_) { |
| base::PlatformThreadId tid = entry.first; |
| base::TimeDelta cumulative_time = entry.second; |
| |
| auto it_and_inserted = thread_details_.emplace( |
| tid, ThreadDetails{base::TimeDelta(), current_cycle_}); |
| ThreadDetails* thread_details = &it_and_inserted.first->second; |
| |
| if (it_and_inserted.second) { |
| // New thread. |
| thread_details->type = GuessThreadType(tid); |
| } |
| |
| thread_details->last_updated_cycle = current_cycle_; |
| |
| // Skip negative or null values, might be a transient collection error. |
| if (cumulative_time <= base::TimeDelta()) |
| continue; |
| |
| if (cumulative_time < thread_details->reported_cpu_time) { |
| // PlatformThreadId was likely reused, reset the details. |
| thread_details->reported_cpu_time = base::TimeDelta(); |
| thread_details->type = GuessThreadType(tid); |
| } |
| |
| base::TimeDelta thread_delta = |
| cumulative_time - thread_details->reported_cpu_time; |
| unattributed_delta -= thread_delta; |
| |
| ReportThreadCpuTimeDelta(thread_details->type, thread_delta); |
| thread_details->reported_cpu_time = cumulative_time; |
| } |
| |
| // Breakdown by CPU core type & frequency. |
| if (process_metrics_->GetPerThreadCumulativeCPUTimeInState( |
| time_in_state_per_thread_)) { |
| auto thread_it = thread_details_.end(); |
| for (const base::ProcessMetrics::ThreadTimeInState& entry : |
| time_in_state_per_thread_) { |
| DCHECK_GT(time_in_state_reporters_.size(), |
| static_cast<size_t>(entry.core_type)); |
| std::unique_ptr<TimeInStateReporter>& reporter = |
| time_in_state_reporters_[static_cast<size_t>(entry.core_type)]; |
| if (!reporter) { |
| reporter = std::make_unique<TimeInStateReporter>( |
| process_type_, entry.core_type, |
| /*is_approximate=*/false); |
| } |
| |
| if (thread_it == thread_details_.end() || |
| thread_it->first != entry.thread_id) { |
| thread_it = thread_details_.find(entry.thread_id); |
| if (thread_it == thread_details_.end()) { |
| // New thread that we didn't pick up above. We'll report it in the |
| // next cycle instead. |
| continue; |
| } |
| } |
| |
| uint32_t frequency_mhz = entry.core_frequency_khz / 1000; |
| base::TimeDelta& reported_time = |
| thread_it->second.reported_time_in_state[std::make_tuple( |
| entry.core_type, entry.cluster_core_index, frequency_mhz)]; |
| base::TimeDelta time_delta = |
| entry.cumulative_cpu_time - reported_time; |
| reported_time = entry.cumulative_cpu_time; |
| |
| reporter->AddMicroseconds(frequency_mhz, time_delta.InMicroseconds()); |
| } |
| } |
| |
| // Erase tracking for threads that have disappeared, as their |
| // PlatformThreadId may be reused later. |
| for (auto it = thread_details_.begin(); it != thread_details_.end();) { |
| if (it->second.last_updated_cycle == current_cycle_) { |
| it++; |
| } else { |
| it = thread_details_.erase(it); |
| } |
| } |
| } |
| |
| // Report the difference of the process's total CPU time and all thread's |
| // CPU time as unattributed time (e.g. time consumed by threads that died). |
| if (unattributed_delta.is_positive()) { |
| ReportThreadCpuTimeDelta(CpuTimeMetricsThreadType::kUnattributedThread, |
| unattributed_delta); |
| } |
| } |
| |
| private: |
| using ClusterFrequency = std::tuple<base::CPU::CoreType, |
| uint32_t /*cluster_core_index*/, |
| uint32_t /*frequency_mhz*/>; |
| |
| struct ThreadDetails { |
| base::TimeDelta reported_cpu_time; |
| uint32_t last_updated_cycle = 0; |
| CpuTimeMetricsThreadType type = CpuTimeMetricsThreadType::kOtherThread; |
| base::flat_map<ClusterFrequency, base::TimeDelta /*time_in_state*/> |
| reported_time_in_state; |
| }; |
| |
| void ReportThreadCpuTimeDelta(CpuTimeMetricsThreadType type, |
| base::TimeDelta cpu_time_delta) { |
| // Histogram name cannot change after being used once. That's ok since this |
| // only depends on the process type, which also doesn't change. |
| static const char* histogram_name = |
| GetPerThreadHistogramNameForProcessType(process_type_); |
| UMA_HISTOGRAM_SCALED_ENUMERATION(histogram_name, type, |
| cpu_time_delta.InMicroseconds(), |
| base::Time::kMicrosecondsPerSecond); |
| } |
| |
| CpuTimeMetricsThreadType GuessThreadType(base::PlatformThreadId tid) { |
| // Match the main thread by TID, so that this also works for WebView, where |
| // the main thread can have an arbitrary name. |
| if (tid == main_thread_id_) |
| return CpuTimeMetricsThreadType::kMainThread; |
| const char* name = base::ThreadIdNameManager::GetInstance()->GetName(tid); |
| return GetThreadTypeFromName(name); |
| } |
| |
| void CollectApproxTimeInState(base::TimeDelta process_cpu_time_delta) { |
| if (!base::CPU::GetTimeInState(time_in_state_) || time_in_state_.empty() || |
| !base::CPU::GetCumulativeCoreIdleTimes(core_idle_times_)) { |
| return; |
| } |
| |
| if (core_idle_times_.size() > reported_core_idle_times_.size()) |
| reported_core_idle_times_.resize(core_idle_times_.size()); |
| |
| // Compute the wall time delta since the last cycle, so that we can |
| // compute active times per core type below. cpuidle and time_in_state |
| // information tick with CLOCK_MONOTONIC, so we use base::TimeTicks (also |
| // CLOCK_MONOTONIC) as a reference here. |
| base::TimeTicks now = base::TimeTicks::Now(); |
| base::TimeDelta wall_time_delta = now - last_time_in_state_walltime_; |
| last_time_in_state_walltime_ = now; |
| |
| // Convert core_idle_times_ to delta values. |
| for (uint32_t core_index = 0; core_index < core_idle_times_.size(); |
| ++core_index) { |
| base::TimeDelta absolute_idle_time = core_idle_times_[core_index]; |
| core_idle_times_[core_index] -= reported_core_idle_times_[core_index]; |
| reported_core_idle_times_[core_index] = absolute_idle_time; |
| } |
| |
| // Compute total active time during this cycle. |
| base::TimeDelta total_active_time; |
| for (base::TimeDelta core_idle_time : core_idle_times_) { |
| base::TimeDelta active_time = wall_time_delta - core_idle_time; |
| if (active_time.is_positive()) |
| total_active_time += active_time; |
| } |
| |
| // Because time_in_state_ includes idle time and reports values for a |
| // single core of each cluster, we work out how much CPU time to attribute |
| // to each cluster and frequency through the following approximation: |
| // (1) For each cluster, we compute how much of the execution happened on |
| // cores of the cluster vs. cores on other clusters |
| // (current_cluster_proportion). |
| // (2) We assume that the time spent in idle will be mostly in the lower |
| // frequency band of the cluster. For that reason, we subtract the |
| // average idle time of a cluster's core from the cluster's first |
| // entries (lowest frequencies) in time_in_state. |
| // (3) For the remaining frequencies, we calculate the proportion of |
| // active time the cluster spent in each frequency |
| // (frequency_proportion). |
| // (4) Finally, we split the process's CPU time across clusters and |
| // frequencies based on current_cluster_proportion and |
| // frequency_proportion. |
| |
| uint32_t last_core_index = -1; |
| uint32_t next_core_index = -1; |
| // Idle time of the current cluster that hasn't been attributed to a |
| // specific frequency state yet, for (2). |
| base::TimeDelta current_cluster_unattributed_idle_wall_time; |
| // Average wall time the current cluster's cores were active for, for (3). |
| base::TimeDelta current_cluster_active_wall_time; |
| // Proportion of the current cluster's core's cumulative active time of |
| // the total active time across all cores, for (1). |
| double current_cluster_proportion = 0; |
| |
| for (size_t state_index = 0; state_index < time_in_state_.size(); |
| ++state_index) { |
| const base::CPU::TimeInStateEntry& entry = time_in_state_[state_index]; |
| DCHECK_GT(approximate_time_in_state_reporters_.size(), |
| static_cast<size_t>(entry.core_type)); |
| std::unique_ptr<TimeInStateReporter>& reporter = |
| approximate_time_in_state_reporters_[static_cast<size_t>( |
| entry.core_type)]; |
| if (!reporter) { |
| reporter = std::make_unique<TimeInStateReporter>( |
| process_type_, entry.core_type, /*is_approximate=*/true); |
| } |
| |
| // Compute delta since last cycle per entry. |
| uint32_t frequency_mhz = entry.core_frequency_khz / 1000; |
| base::TimeDelta& reported_time = reported_time_in_state_[std::make_tuple( |
| entry.core_type, entry.cluster_core_index, frequency_mhz)]; |
| base::TimeDelta time_delta = entry.cumulative_time - reported_time; |
| reported_time = entry.cumulative_time; |
| |
| // In the first cycle (wall_time_delta == now), we can't really trust |
| // active_time_per_core (because we don't know the absolute time |
| // domain of cpuidle values), so skip reporting. |
| bool first_cycle = wall_time_delta == (now - base::TimeTicks()); |
| |
| if (first_cycle || time_delta <= base::TimeDelta() || |
| process_cpu_time_delta <= base::TimeDelta()) { |
| continue; |
| } |
| |
| if (last_core_index != entry.cluster_core_index) { |
| // This is the first entry for a new cluster. Find the next |
| // cluster's first core and compute the cluster's active/idle wall |
| // time (3) and proportion of total execution time (1). |
| next_core_index = FindNextClusterCoreIndex(state_index); |
| |
| base::TimeDelta cluster_active_time; |
| base::TimeDelta cluster_idle_time; |
| for (size_t core_index = entry.cluster_core_index; |
| core_index < next_core_index; ++core_index) { |
| cluster_idle_time += core_idle_times_[core_index]; |
| cluster_active_time += wall_time_delta - core_idle_times_[core_index]; |
| } |
| |
| size_t num_cores = next_core_index - entry.cluster_core_index; |
| current_cluster_active_wall_time = cluster_active_time / num_cores; |
| current_cluster_unattributed_idle_wall_time = |
| cluster_idle_time / num_cores; |
| |
| // (1) Proportion of execution on this cluster's cores vs others. |
| current_cluster_proportion = 0; |
| if (total_active_time.is_positive()) |
| current_cluster_proportion = cluster_active_time / total_active_time; |
| |
| last_core_index = entry.cluster_core_index; |
| } |
| |
| // (2) Assign the cluster's idle wall time to the first entries, i.e. |
| // lowest frequencies. |
| if (time_delta < current_cluster_unattributed_idle_wall_time) { |
| // Attribute this frequency state entirely to idle time, skip it. |
| current_cluster_unattributed_idle_wall_time -= time_delta; |
| continue; |
| } else if (current_cluster_unattributed_idle_wall_time > |
| base::TimeDelta()) { |
| time_delta -= current_cluster_unattributed_idle_wall_time; |
| current_cluster_unattributed_idle_wall_time = base::TimeDelta(); |
| } |
| |
| // (3) Proportion of active wall time that this cluster spent in the |
| // frequency state. |
| double frequency_proportion = 0; |
| if (current_cluster_active_wall_time.is_positive()) |
| frequency_proportion = time_delta / current_cluster_active_wall_time; |
| |
| // (4) Scale the process's cpu time by the cluster/frequency pair's |
| // relative proportion of execution time. Note that we calculate |
| // double values for the proportions above first to avoid integer |
| // overflow in the presence of large time_delta values. |
| uint64_t delta_us = process_cpu_time_delta.InMicroseconds() * |
| frequency_proportion * current_cluster_proportion; |
| |
| reporter->AddMicroseconds(frequency_mhz, delta_us); |
| } |
| } |
| |
| // Returns the core index of the first core of the next cluster after the |
| // cluster of the given entry in |time_in_state_|. Returns max core_index + 1 |
| // if no further clusters exist. |
| size_t FindNextClusterCoreIndex(size_t state_index) { |
| for (size_t next_state_index = state_index; |
| next_state_index < time_in_state_.size(); ++next_state_index) { |
| const auto& next_entry = time_in_state_[next_state_index]; |
| if (next_entry.cluster_core_index != |
| time_in_state_[state_index].cluster_core_index) { |
| return next_entry.cluster_core_index; |
| } |
| } |
| // No further clusters, return max core index + 1. |
| return core_idle_times_.size(); |
| } |
| |
| // Accessed on |task_runner_|. |
| SEQUENCE_CHECKER(thread_pool_); |
| raw_ptr<base::ProcessMetrics> process_metrics_; |
| ProcessTypeForUma process_type_; |
| uint32_t current_cycle_ = 0; |
| base::PlatformThreadId main_thread_id_; |
| base::TimeDelta reported_cpu_time_; |
| base::flat_map<base::PlatformThreadId, ThreadDetails> thread_details_; |
| std::array<std::unique_ptr<TimeInStateReporter>, |
| static_cast<size_t>(base::CPU::CoreType::kMaxValue) + 1u> |
| time_in_state_reporters_ = {}; |
| std::array<std::unique_ptr<TimeInStateReporter>, |
| static_cast<size_t>(base::CPU::CoreType::kMaxValue) + 1u> |
| approximate_time_in_state_reporters_ = {}; |
| base::flat_map<ClusterFrequency, base::TimeDelta /*time_in_state*/> |
| reported_time_in_state_; |
| base::CPU::CoreIdleTimes reported_core_idle_times_; |
| base::TimeTicks last_time_in_state_walltime_; |
| // Stored as instance variables to avoid allocation churn. |
| base::ProcessMetrics::CPUUsagePerThread cumulative_thread_times_; |
| base::ProcessMetrics::TimeInStatePerThread time_in_state_per_thread_; |
| base::CPU::TimeInState time_in_state_; |
| base::CPU::CoreIdleTimes core_idle_times_; |
| }; |
| |
| // static |
| ProcessCpuTimeMetrics* ProcessCpuTimeMetrics::GetInstance() { |
| static base::NoDestructor<ProcessCpuTimeMetrics> instance( |
| power_scheduler::PowerModeArbiter::GetInstance()); |
| return instance.get(); |
| } |
| |
| ProcessCpuTimeMetrics::ProcessCpuTimeMetrics( |
| power_scheduler::PowerModeArbiter* arbiter) |
| : task_runner_(base::ThreadPool::CreateSequencedTaskRunner( |
| {base::TaskPriority::BEST_EFFORT, |
| // TODO(eseckler): Consider hooking into process shutdown on |
| // desktop to reduce metric data loss. |
| base::TaskShutdownBehavior::SKIP_ON_SHUTDOWN})), |
| arbiter_(arbiter), |
| process_metrics_(base::ProcessMetrics::CreateCurrentProcessMetrics()), |
| process_type_(CurrentProcessType()), |
| detailed_metrics_( |
| std::make_unique<DetailedCpuTimeMetrics>(process_metrics_.get(), |
| process_type_)) { |
| DETACH_FROM_SEQUENCE(thread_pool_); |
| |
| // Browser and GPU processes have a longer lifetime (don't disappear between |
| // navigations), and typically execute a large number of small main-thread |
| // tasks. For these processes, choose a higher reporting interval. |
| if (process_type_ == ProcessTypeForUma::kBrowser || |
| process_type_ == ProcessTypeForUma::kGpu) { |
| reporting_interval_ = kReportAfterEveryNTasksPersistentProcess; |
| } else { |
| reporting_interval_ = kReportAfterEveryNTasksOtherProcess; |
| } |
| |
| ProcessVisibilityTracker::GetInstance()->AddObserver(this); |
| |
| task_runner_->PostTask( |
| FROM_HERE, base::BindOnce(&ProcessCpuTimeMetrics::InitializeOnThreadPool, |
| base::Unretained(this))); |
| |
| base::CurrentThread::Get()->AddTaskObserver(this); |
| } |
| |
| ProcessCpuTimeMetrics::~ProcessCpuTimeMetrics() { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(main_thread_); |
| |
| // Note that this object can only be destroyed in unit tests. We clean up |
| // the members and observer registrations but assume that the test takes |
| // care of any threading issues. |
| base::CurrentThread::Get()->RemoveTaskObserver(this); |
| ProcessVisibilityTracker::GetInstance()->RemoveObserver(this); |
| arbiter_->RemoveObserver(this); |
| } |
| |
| void ProcessCpuTimeMetrics::InitializeOnThreadPool() { |
| arbiter_->AddObserver(this); |
| PerformFullCollectionOnThreadPool(); |
| } |
| |
| // base::TaskObserver implementation: |
| void ProcessCpuTimeMetrics::WillProcessTask( |
| const base::PendingTask& pending_task, |
| bool was_blocked_or_low_priority) {} |
| |
| void ProcessCpuTimeMetrics::DidProcessTask( |
| const base::PendingTask& pending_task) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(main_thread_); |
| // Periodically perform a full collection that includes |detailed_metrics_| in |
| // addition to high-level metrics. |
| task_counter_++; |
| if (task_counter_ == reporting_interval_) { |
| task_runner_->PostTask( |
| FROM_HERE, |
| base::BindOnce( |
| &ProcessCpuTimeMetrics::PerformFullCollectionOnThreadPool, |
| base::Unretained(this))); |
| task_counter_ = 0; |
| } |
| } |
| |
| // ProcessVisibilityTracker::ProcessVisibilityObserver implementation: |
| void ProcessCpuTimeMetrics::OnVisibilityChanged(bool visible) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(main_thread_); |
| task_runner_->PostTask( |
| FROM_HERE, |
| base::BindOnce(&ProcessCpuTimeMetrics::OnVisibilityChangedOnThreadPool, |
| base::Unretained(this), visible)); |
| } |
| |
| void ProcessCpuTimeMetrics::OnVisibilityChangedOnThreadPool(bool visible) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(thread_pool_); |
| // Collect high-level metrics that include a visibility breakdown and |
| // attribute them to the old value of |is_visible_| before updating it. |
| CollectHighLevelMetricsOnThreadPool(); |
| is_visible_ = visible; |
| } |
| |
| // power_scheduler::PowerModeArbiter::Observer implementation: |
| void ProcessCpuTimeMetrics::OnPowerModeChanged( |
| power_scheduler::PowerMode old_mode, |
| power_scheduler::PowerMode new_mode) { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(thread_pool_); |
| |
| UMA_HISTOGRAM_ENUMERATION( |
| GetPowerModeChangeHistogramNameForProcessType(process_type_), |
| GetPowerModeForUma(new_mode)); |
| |
| // Collect high-level metrics that include a PowerMode breakdown and |
| // attribute them to the old value of |power_mode_| before updating it. |
| if (!power_mode_.has_value()) |
| power_mode_ = old_mode; |
| CollectHighLevelMetricsOnThreadPool(); |
| power_mode_ = new_mode; |
| } |
| |
| void ProcessCpuTimeMetrics::PerformFullCollectionOnThreadPool() { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(thread_pool_); |
| CollectHighLevelMetricsOnThreadPool(); |
| detailed_metrics_->CollectOnThreadPool(); |
| } |
| |
| void ProcessCpuTimeMetrics::CollectHighLevelMetricsOnThreadPool() { |
| // Skip reporting any values into histograms until histogram persistence is |
| // set up. Otherwise, we would create the histograms without persistence and |
| // lose data at process termination (particularly in child processes). |
| if (!base::GlobalHistogramAllocator::Get() && |
| !g_ignore_histogram_allocator_for_testing) { |
| return; |
| } |
| |
| // GetCumulativeCPUUsage() may return a negative value if sampling failed. |
| base::TimeDelta cumulative_cpu_time = |
| process_metrics_->GetCumulativeCPUUsage(); |
| base::TimeDelta process_cpu_time_delta = |
| cumulative_cpu_time - reported_cpu_time_; |
| if (process_cpu_time_delta.is_positive()) { |
| UMA_HISTOGRAM_SCALED_ENUMERATION("Power.CpuTimeSecondsPerProcessType", |
| process_type_, |
| process_cpu_time_delta.InMicroseconds(), |
| base::Time::kMicrosecondsPerSecond); |
| if (is_visible_.has_value()) { |
| if (*is_visible_) { |
| UMA_HISTOGRAM_SCALED_ENUMERATION( |
| "Power.CpuTimeSecondsPerProcessType.Foreground", process_type_, |
| process_cpu_time_delta.InMicroseconds(), |
| base::Time::kMicrosecondsPerSecond); |
| } else { |
| UMA_HISTOGRAM_SCALED_ENUMERATION( |
| "Power.CpuTimeSecondsPerProcessType.Background", process_type_, |
| process_cpu_time_delta.InMicroseconds(), |
| base::Time::kMicrosecondsPerSecond); |
| } |
| } else { |
| UMA_HISTOGRAM_SCALED_ENUMERATION( |
| "Power.CpuTimeSecondsPerProcessType.Unattributed", process_type_, |
| process_cpu_time_delta.InMicroseconds(), |
| base::Time::kMicrosecondsPerSecond); |
| } |
| if (power_mode_.has_value()) { |
| // Histogram name cannot change after being used once. That's ok since |
| // this only depends on the process type, which also doesn't change. |
| static const char* histogram_name = |
| GetPerPowerModeHistogramNameForProcessType(process_type_); |
| UMA_HISTOGRAM_SCALED_ENUMERATION(histogram_name, |
| GetPowerModeForUma(*power_mode_), |
| process_cpu_time_delta.InMicroseconds(), |
| base::Time::kMicrosecondsPerSecond); |
| } |
| |
| reported_cpu_time_ = cumulative_cpu_time; |
| |
| ReportAverageCpuLoad(cumulative_cpu_time); |
| } |
| } |
| |
| void ProcessCpuTimeMetrics::ReportAverageCpuLoad( |
| base::TimeDelta cumulative_cpu_time) { |
| base::TimeTicks now = base::TimeTicks::Now(); |
| if (cpu_load_report_time_ == base::TimeTicks()) { |
| cpu_load_report_time_ = now; |
| cpu_time_on_last_load_report_ = cumulative_cpu_time; |
| } |
| |
| base::TimeDelta time_since_report = now - cpu_load_report_time_; |
| if (time_since_report >= kAvgCpuLoadReportInterval) { |
| base::TimeDelta cpu_time_since_report = |
| cumulative_cpu_time - cpu_time_on_last_load_report_; |
| int load = 100LL * cpu_time_since_report.InMilliseconds() / |
| time_since_report.InMilliseconds(); |
| static const char* histogram_name = |
| GetAvgCpuLoadHistogramNameForProcessType(process_type_); |
| // CPU load can be greater than 100% because of multiple cores. |
| // That's why we use UmaHistogramCounts, not UmaHistogramPercentage. |
| base::UmaHistogramCounts1000(histogram_name, load); |
| |
| cpu_load_report_time_ = now; |
| cpu_time_on_last_load_report_ = cumulative_cpu_time; |
| } |
| |
| // When the power mode changes, this function is called first, and the |
| // power_mode_ variable is modified after that. So at this point power_mode_ |
| // reflects the mode that has been active before now (and might be active |
| // still). |
| // timestamp_for_idle_cpu_ is used to determine the duration of the idle |
| // power mode. It is updated when the "old" mode is not idle, so when the |
| // mode is idle, it contains the timestamp of the idle mode start. |
| // It's also updated after the cpu load over last 5 idle seconds has been |
| // reported, and a new 5-sec period is started. |
| if (power_mode_.has_value() && IsIdleMode(*power_mode_) && |
| timestamp_for_idle_cpu_ != base::TimeTicks()) { |
| base::TimeDelta time_in_idle = now - timestamp_for_idle_cpu_; |
| if (time_in_idle >= kIdleCpuLoadReportInterval) { |
| base::TimeDelta cpu_time_in_idle = |
| cumulative_cpu_time - cpu_time_for_idle_cpu_; |
| int idle_load = 100LL * cpu_time_in_idle.InMilliseconds() / |
| time_in_idle.InMilliseconds(); |
| static const char* histogram_name = |
| GetIdleCpuLoadHistogramNameForProcessType(process_type_); |
| base::UmaHistogramCounts1000(histogram_name, idle_load); |
| |
| timestamp_for_idle_cpu_ = now; |
| cpu_time_for_idle_cpu_ = cumulative_cpu_time; |
| } |
| } else { |
| // When this function is called next time, we'll know whether the new power |
| // mode is idle or not. If it's idle, we'll use timestamp_for_idle_cpu_ |
| // to determine idle mode duration. If it's not, we'll just update |
| // timestamp_for_idle_cpu_ once again. |
| timestamp_for_idle_cpu_ = now; |
| cpu_time_for_idle_cpu_ = cumulative_cpu_time; |
| } |
| } |
| |
| void ProcessCpuTimeMetrics::PerformFullCollectionForTesting() { |
| DCHECK_CALLED_ON_VALID_SEQUENCE(main_thread_); |
| task_runner_->PostTask( |
| FROM_HERE, |
| base::BindOnce(&ProcessCpuTimeMetrics::PerformFullCollectionOnThreadPool, |
| base::Unretained(this))); |
| } |
| |
| void ProcessCpuTimeMetrics::WaitForCollectionForTesting() const { |
| base::RunLoop run_loop; |
| // Post the QuitClosure to execute after any pending collection. |
| task_runner_->PostTask(FROM_HERE, run_loop.QuitClosure()); |
| run_loop.Run(); |
| } |
| |
| // static |
| std::unique_ptr<ProcessCpuTimeMetrics> ProcessCpuTimeMetrics::CreateForTesting( |
| power_scheduler::PowerModeArbiter* arbiter) { |
| std::unique_ptr<ProcessCpuTimeMetrics> ptr; |
| // Can't use std::make_unique due to private constructor. |
| ptr.reset(new ProcessCpuTimeMetrics(arbiter)); |
| return ptr; |
| } |
| |
| // static |
| void ProcessCpuTimeMetrics::SetIgnoreHistogramAllocatorForTesting(bool ignore) { |
| g_ignore_histogram_allocator_for_testing = ignore; |
| } |
| |
| } // namespace internal |
| } // namespace content |