blob: 1eac5f85d19fd7268dc7b9c2d33a9288ab115f9b [file] [log] [blame]
// Copyright 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/output/gl_renderer.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <limits>
#include <memory>
#include <numeric>
#include <set>
#include <string>
#include <vector>
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "cc/base/container_util.h"
#include "cc/base/math_util.h"
#include "cc/debug/debug_colors.h"
#include "cc/output/compositor_frame.h"
#include "cc/output/compositor_frame_metadata.h"
#include "cc/output/context_provider.h"
#include "cc/output/copy_output_request.h"
#include "cc/output/dynamic_geometry_binding.h"
#include "cc/output/layer_quad.h"
#include "cc/output/output_surface.h"
#include "cc/output/output_surface_frame.h"
#include "cc/output/render_surface_filters.h"
#include "cc/output/renderer_settings.h"
#include "cc/output/static_geometry_binding.h"
#include "cc/output/texture_mailbox_deleter.h"
#include "cc/quads/draw_polygon.h"
#include "cc/quads/picture_draw_quad.h"
#include "cc/quads/render_pass.h"
#include "cc/quads/stream_video_draw_quad.h"
#include "cc/quads/texture_draw_quad.h"
#include "cc/raster/scoped_gpu_raster.h"
#include "cc/resources/resource_pool.h"
#include "cc/resources/scoped_resource.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/command_buffer/common/gpu_memory_allocation.h"
#include "media/base/media_switches.h"
#include "skia/ext/texture_handle.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "third_party/skia/include/core/SkColorFilter.h"
#include "third_party/skia/include/core/SkImage.h"
#include "third_party/skia/include/core/SkSurface.h"
#include "third_party/skia/include/gpu/GrContext.h"
#include "third_party/skia/include/gpu/gl/GrGLInterface.h"
#include "third_party/skia/include/gpu/gl/GrGLTypes.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/color_transform.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/skia_util.h"
using gpu::gles2::GLES2Interface;
namespace cc {
namespace {
Float4 UVTransform(const TextureDrawQuad* quad) {
gfx::PointF uv0 = quad->uv_top_left;
gfx::PointF uv1 = quad->uv_bottom_right;
Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
if (quad->y_flipped) {
xform.data[1] = 1.0f - xform.data[1];
xform.data[3] = -xform.data[3];
}
return xform;
}
Float4 PremultipliedColor(SkColor color, float opacity) {
const float factor = 1.0f / 255.0f;
const float alpha = opacity * SkColorGetA(color) * factor;
Float4 result = {
{SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha,
SkColorGetB(color) * factor * alpha, alpha}};
return result;
}
SamplerType SamplerTypeFromTextureTarget(GLenum target) {
switch (target) {
case GL_TEXTURE_2D:
return SAMPLER_TYPE_2D;
case GL_TEXTURE_RECTANGLE_ARB:
return SAMPLER_TYPE_2D_RECT;
case GL_TEXTURE_EXTERNAL_OES:
return SAMPLER_TYPE_EXTERNAL_OES;
default:
NOTREACHED();
return SAMPLER_TYPE_2D;
}
}
BlendMode BlendModeFromSkXfermode(SkBlendMode mode) {
switch (mode) {
case SkBlendMode::kSrcOver:
return BLEND_MODE_NORMAL;
case SkBlendMode::kDstIn:
return BLEND_MODE_DESTINATION_IN;
case SkBlendMode::kScreen:
return BLEND_MODE_SCREEN;
case SkBlendMode::kOverlay:
return BLEND_MODE_OVERLAY;
case SkBlendMode::kDarken:
return BLEND_MODE_DARKEN;
case SkBlendMode::kLighten:
return BLEND_MODE_LIGHTEN;
case SkBlendMode::kColorDodge:
return BLEND_MODE_COLOR_DODGE;
case SkBlendMode::kColorBurn:
return BLEND_MODE_COLOR_BURN;
case SkBlendMode::kHardLight:
return BLEND_MODE_HARD_LIGHT;
case SkBlendMode::kSoftLight:
return BLEND_MODE_SOFT_LIGHT;
case SkBlendMode::kDifference:
return BLEND_MODE_DIFFERENCE;
case SkBlendMode::kExclusion:
return BLEND_MODE_EXCLUSION;
case SkBlendMode::kMultiply:
return BLEND_MODE_MULTIPLY;
case SkBlendMode::kHue:
return BLEND_MODE_HUE;
case SkBlendMode::kSaturation:
return BLEND_MODE_SATURATION;
case SkBlendMode::kColor:
return BLEND_MODE_COLOR;
case SkBlendMode::kLuminosity:
return BLEND_MODE_LUMINOSITY;
default:
NOTREACHED();
return BLEND_MODE_NONE;
}
}
// Smallest unit that impact anti-aliasing output. We use this to
// determine when anti-aliasing is unnecessary.
const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
// Block or crash if the number of pending sync queries reach this high as
// something is seriously wrong on the service side if this happens.
const size_t kMaxPendingSyncQueries = 16;
} // anonymous namespace
// Parameters needed to draw a RenderPassDrawQuad.
struct DrawRenderPassDrawQuadParams {
DrawRenderPassDrawQuadParams() {}
~DrawRenderPassDrawQuadParams() {}
// Required Inputs.
const RenderPassDrawQuad* quad = nullptr;
const Resource* contents_texture = nullptr;
const gfx::QuadF* clip_region = nullptr;
bool flip_texture = false;
gfx::Transform window_matrix;
gfx::Transform projection_matrix;
gfx::Transform quad_to_target_transform;
const FilterOperations* filters = nullptr;
const FilterOperations* background_filters = nullptr;
// Whether the texture to be sampled from needs to be flipped.
bool source_needs_flip = false;
float edge[24];
SkScalar color_matrix[20];
// Blending refers to modifications to the backdrop.
bool use_shaders_for_blending = false;
bool use_aa = false;
// Some filters affect pixels outside the original contents bounds. This
// requires translation of the source when texturing, as well as a change in
// the bounds of the destination.
gfx::Point src_offset;
gfx::RectF dst_rect;
// A Skia image that should be sampled from instead of the original
// contents.
sk_sp<SkImage> filter_image;
// The original contents, bound for sampling.
std::unique_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock;
// A mask to be applied when drawing the RPDQ.
std::unique_ptr<ResourceProvider::ScopedSamplerGL> mask_resource_lock;
// Original background texture.
std::unique_ptr<ScopedResource> background_texture;
std::unique_ptr<ResourceProvider::ScopedSamplerGL>
shader_background_sampler_lock;
// Backdrop bounding box.
gfx::Rect background_rect;
// Filtered background texture.
sk_sp<SkImage> background_image;
GLuint background_image_id = 0;
// Whether the original background texture is needed for the mask.
bool mask_for_background = false;
// Whether a color matrix needs to be applied by the shaders when drawing
// the RPDQ.
bool use_color_matrix = false;
gfx::QuadF surface_quad;
gfx::Transform contents_device_transform;
};
static GLint GetActiveTextureUnit(GLES2Interface* gl) {
GLint active_unit = 0;
gl->GetIntegerv(GL_ACTIVE_TEXTURE, &active_unit);
return active_unit;
}
class GLRenderer::ScopedUseGrContext {
public:
static std::unique_ptr<ScopedUseGrContext> Create(GLRenderer* renderer) {
// GrContext for filters is created lazily, and may fail if the context
// is lost.
// TODO(vmiura,bsalomon): crbug.com/487850 Ensure that
// ContextProvider::GrContext() does not return NULL.
if (renderer->output_surface_->context_provider()->GrContext())
return base::WrapUnique(new ScopedUseGrContext(renderer));
return nullptr;
}
~ScopedUseGrContext() {
// Pass context control back to GLrenderer.
scoped_gpu_raster_ = nullptr;
renderer_->RestoreGLState();
}
GrContext* context() const {
return renderer_->output_surface_->context_provider()->GrContext();
}
private:
explicit ScopedUseGrContext(GLRenderer* renderer)
: scoped_gpu_raster_(
new ScopedGpuRaster(renderer->output_surface_->context_provider())),
renderer_(renderer) {
// scoped_gpu_raster_ passes context control to Skia.
}
std::unique_ptr<ScopedGpuRaster> scoped_gpu_raster_;
GLRenderer* renderer_;
DISALLOW_COPY_AND_ASSIGN(ScopedUseGrContext);
};
struct GLRenderer::PendingAsyncReadPixels {
PendingAsyncReadPixels() : buffer(0) {}
std::unique_ptr<CopyOutputRequest> copy_request;
unsigned buffer;
private:
DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels);
};
class GLRenderer::SyncQuery {
public:
explicit SyncQuery(gpu::gles2::GLES2Interface* gl)
: gl_(gl), query_id_(0u), is_pending_(false), weak_ptr_factory_(this) {
gl_->GenQueriesEXT(1, &query_id_);
}
virtual ~SyncQuery() { gl_->DeleteQueriesEXT(1, &query_id_); }
scoped_refptr<ResourceProvider::Fence> Begin() {
DCHECK(!IsPending());
// Invalidate weak pointer held by old fence.
weak_ptr_factory_.InvalidateWeakPtrs();
// Note: In case the set of drawing commands issued before End() do not
// depend on the query, defer BeginQueryEXT call until Set() is called and
// query is required.
return make_scoped_refptr<ResourceProvider::Fence>(
new Fence(weak_ptr_factory_.GetWeakPtr()));
}
void Set() {
if (is_pending_)
return;
// Note: BeginQueryEXT on GL_COMMANDS_COMPLETED_CHROMIUM is effectively a
// noop relative to GL, so it doesn't matter where it happens but we still
// make sure to issue this command when Set() is called (prior to issuing
// any drawing commands that depend on query), in case some future extension
// can take advantage of this.
gl_->BeginQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM, query_id_);
is_pending_ = true;
}
void End() {
if (!is_pending_)
return;
gl_->EndQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM);
}
bool IsPending() {
if (!is_pending_)
return false;
unsigned result_available = 1;
gl_->GetQueryObjectuivEXT(
query_id_, GL_QUERY_RESULT_AVAILABLE_EXT, &result_available);
is_pending_ = !result_available;
return is_pending_;
}
void Wait() {
if (!is_pending_)
return;
unsigned result = 0;
gl_->GetQueryObjectuivEXT(query_id_, GL_QUERY_RESULT_EXT, &result);
is_pending_ = false;
}
private:
class Fence : public ResourceProvider::Fence {
public:
explicit Fence(base::WeakPtr<GLRenderer::SyncQuery> query)
: query_(query) {}
// Overridden from ResourceProvider::Fence:
void Set() override {
DCHECK(query_);
query_->Set();
}
bool HasPassed() override { return !query_ || !query_->IsPending(); }
void Wait() override {
if (query_)
query_->Wait();
}
private:
~Fence() override {}
base::WeakPtr<SyncQuery> query_;
DISALLOW_COPY_AND_ASSIGN(Fence);
};
gpu::gles2::GLES2Interface* gl_;
unsigned query_id_;
bool is_pending_;
base::WeakPtrFactory<SyncQuery> weak_ptr_factory_;
DISALLOW_COPY_AND_ASSIGN(SyncQuery);
};
GLRenderer::GLRenderer(const RendererSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider,
TextureMailboxDeleter* texture_mailbox_deleter,
int highp_threshold_min)
: DirectRenderer(settings, output_surface, resource_provider),
shared_geometry_quad_(QuadVertexRect()),
gl_(output_surface->context_provider()->ContextGL()),
context_support_(output_surface->context_provider()->ContextSupport()),
texture_mailbox_deleter_(texture_mailbox_deleter),
highp_threshold_min_(highp_threshold_min),
gl_composited_texture_quad_border_(
settings->gl_composited_texture_quad_border),
bound_geometry_(NO_BINDING),
color_lut_cache_(gl_,
output_surface_->context_provider()
->ContextCapabilities()
.texture_half_float_linear),
weak_ptr_factory_(this) {
DCHECK(gl_);
DCHECK(context_support_);
const auto& context_caps =
output_surface_->context_provider()->ContextCapabilities();
DCHECK(!context_caps.iosurface || context_caps.texture_rectangle);
use_discard_framebuffer_ = context_caps.discard_framebuffer;
use_sync_query_ = context_caps.sync_query;
use_blend_equation_advanced_ = context_caps.blend_equation_advanced;
use_blend_equation_advanced_coherent_ =
context_caps.blend_equation_advanced_coherent;
use_occlusion_query_ = context_caps.occlusion_query;
use_swap_with_bounds_ = context_caps.swap_buffers_with_bounds;
InitializeSharedObjects();
}
GLRenderer::~GLRenderer() {
CleanupSharedObjects();
if (context_visibility_) {
auto* context_provider = output_surface_->context_provider();
auto* cache_controller = context_provider->CacheController();
cache_controller->ClientBecameNotVisible(std::move(context_visibility_));
}
}
bool GLRenderer::CanPartialSwap() {
if (use_swap_with_bounds_)
return false;
auto* context_provider = output_surface_->context_provider();
return context_provider->ContextCapabilities().post_sub_buffer;
}
ResourceFormat GLRenderer::BackbufferFormat() const {
// TODO(ccameron): If we are targeting high bit depth or HDR, we should use
// RGBA_F16 here.
return resource_provider_->best_texture_format();
}
void GLRenderer::DidChangeVisibility() {
if (visible_) {
output_surface_->EnsureBackbuffer();
} else {
TRACE_EVENT0("cc", "GLRenderer::DidChangeVisibility dropping resources");
ReleaseRenderPassTextures();
output_surface_->DiscardBackbuffer();
}
PrepareGeometry(NO_BINDING);
auto* context_provider = output_surface_->context_provider();
auto* cache_controller = context_provider->CacheController();
if (visible_) {
DCHECK(!context_visibility_);
context_visibility_ = cache_controller->ClientBecameVisible();
} else {
DCHECK(context_visibility_);
cache_controller->ClientBecameNotVisible(std::move(context_visibility_));
}
}
void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); }
void GLRenderer::DiscardPixels() {
if (!use_discard_framebuffer_)
return;
bool using_default_framebuffer =
!current_framebuffer_lock_ &&
output_surface_->capabilities().uses_default_gl_framebuffer;
GLenum attachments[] = {static_cast<GLenum>(
using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
gl_->DiscardFramebufferEXT(
GL_FRAMEBUFFER, arraysize(attachments), attachments);
}
void GLRenderer::PrepareSurfaceForPass(
SurfaceInitializationMode initialization_mode,
const gfx::Rect& render_pass_scissor) {
SetViewport();
switch (initialization_mode) {
case SURFACE_INITIALIZATION_MODE_PRESERVE:
EnsureScissorTestDisabled();
return;
case SURFACE_INITIALIZATION_MODE_FULL_SURFACE_CLEAR:
EnsureScissorTestDisabled();
DiscardPixels();
ClearFramebuffer();
break;
case SURFACE_INITIALIZATION_MODE_SCISSORED_CLEAR:
SetScissorTestRect(render_pass_scissor);
ClearFramebuffer();
break;
}
}
void GLRenderer::ClearFramebuffer() {
// On DEBUG builds, opaque render passes are cleared to blue to easily see
// regions that were not drawn on the screen.
if (current_frame()->current_render_pass->has_transparent_background)
gl_->ClearColor(0, 0, 0, 0);
else
gl_->ClearColor(0, 0, 1, 1);
gl_->ClearStencil(0);
bool always_clear = overdraw_feedback_;
#ifndef NDEBUG
always_clear = true;
#endif
if (always_clear ||
current_frame()->current_render_pass->has_transparent_background) {
GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
if (always_clear)
clear_bits |= GL_STENCIL_BUFFER_BIT;
gl_->Clear(clear_bits);
}
}
void GLRenderer::BeginDrawingFrame() {
TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame");
scoped_refptr<ResourceProvider::Fence> read_lock_fence;
if (use_sync_query_) {
// Block until oldest sync query has passed if the number of pending queries
// ever reach kMaxPendingSyncQueries.
if (pending_sync_queries_.size() >= kMaxPendingSyncQueries) {
LOG(ERROR) << "Reached limit of pending sync queries.";
pending_sync_queries_.front()->Wait();
DCHECK(!pending_sync_queries_.front()->IsPending());
}
while (!pending_sync_queries_.empty()) {
if (pending_sync_queries_.front()->IsPending())
break;
available_sync_queries_.push_back(PopFront(&pending_sync_queries_));
}
current_sync_query_ = available_sync_queries_.empty()
? base::MakeUnique<SyncQuery>(gl_)
: PopFront(&available_sync_queries_);
read_lock_fence = current_sync_query_->Begin();
} else {
read_lock_fence =
make_scoped_refptr(new ResourceProvider::SynchronousFence(gl_));
}
resource_provider_->SetReadLockFence(read_lock_fence.get());
// Insert WaitSyncTokenCHROMIUM on quad resources prior to drawing the frame,
// so that drawing can proceed without GL context switching interruptions.
ResourceProvider* resource_provider = resource_provider_;
for (const auto& pass : *current_frame()->render_passes_in_draw_order) {
for (auto* quad : pass->quad_list) {
for (ResourceId resource_id : quad->resources)
resource_provider->WaitSyncTokenIfNeeded(resource_id);
}
}
// TODO(enne): Do we need to reinitialize all of this state per frame?
ReinitializeGLState();
}
void GLRenderer::DoDrawQuad(const DrawQuad* quad,
const gfx::QuadF* clip_region) {
DCHECK(quad->rect.Contains(quad->visible_rect));
if (quad->material != DrawQuad::TEXTURE_CONTENT) {
FlushTextureQuadCache(SHARED_BINDING);
}
switch (quad->material) {
case DrawQuad::INVALID:
NOTREACHED();
break;
case DrawQuad::DEBUG_BORDER:
DrawDebugBorderQuad(DebugBorderDrawQuad::MaterialCast(quad));
break;
case DrawQuad::PICTURE_CONTENT:
// PictureDrawQuad should only be used for resourceless software draws.
NOTREACHED();
break;
case DrawQuad::RENDER_PASS:
DrawRenderPassQuad(RenderPassDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::SOLID_COLOR:
DrawSolidColorQuad(SolidColorDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::STREAM_VIDEO_CONTENT:
DrawStreamVideoQuad(StreamVideoDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::SURFACE_CONTENT:
// Surface content should be fully resolved to other quad types before
// reaching a direct renderer.
NOTREACHED();
break;
case DrawQuad::TEXTURE_CONTENT:
EnqueueTextureQuad(TextureDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::TILED_CONTENT:
DrawTileQuad(TileDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::YUV_VIDEO_CONTENT:
DrawYUVVideoQuad(YUVVideoDrawQuad::MaterialCast(quad), clip_region);
break;
}
}
// This function does not handle 3D sorting right now, since the debug border
// quads are just drawn as their original quads and not in split pieces. This
// results in some debug border quads drawing over foreground quads.
void GLRenderer::DrawDebugBorderQuad(const DebugBorderDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
SetUseProgram(ProgramKey::DebugBorder(), gfx::ColorSpace::CreateSRGB());
// Use the full quad_rect for debug quads to not move the edges based on
// partial swaps.
gfx::Rect layer_rect = quad->rect;
gfx::Transform render_matrix;
QuadRectTransform(&render_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(layer_rect));
SetShaderMatrix(current_frame()->projection_matrix * render_matrix);
SetShaderColor(quad->color, 1.f);
gl_->LineWidth(quad->width);
// The indices for the line are stored in the same array as the triangle
// indices.
gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0);
}
static sk_sp<SkImage> WrapTexture(
const ResourceProvider::ScopedReadLockGL& lock,
GrContext* context,
bool flip_texture) {
// Wrap a given texture in a Ganesh platform texture.
GrBackendTextureDesc backend_texture_description;
GrGLTextureInfo texture_info;
texture_info.fTarget = lock.target();
texture_info.fID = lock.texture_id();
backend_texture_description.fWidth = lock.size().width();
backend_texture_description.fHeight = lock.size().height();
backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
backend_texture_description.fTextureHandle =
skia::GrGLTextureInfoToGrBackendObject(texture_info);
backend_texture_description.fOrigin =
flip_texture ? kBottomLeft_GrSurfaceOrigin : kTopLeft_GrSurfaceOrigin;
return SkImage::MakeFromTexture(context, backend_texture_description);
}
static sk_sp<SkImage> ApplyImageFilter(
std::unique_ptr<GLRenderer::ScopedUseGrContext> use_gr_context,
ResourceProvider* resource_provider,
const gfx::RectF& src_rect,
const gfx::RectF& dst_rect,
const gfx::Vector2dF& scale,
sk_sp<SkImageFilter> filter,
const Resource* source_texture_resource,
SkIPoint* offset,
SkIRect* subset,
bool flip_texture,
const gfx::PointF& origin) {
if (!filter || !use_gr_context)
return nullptr;
ResourceProvider::ScopedReadLockGL lock(resource_provider,
source_texture_resource->id());
sk_sp<SkImage> src_image =
WrapTexture(lock, use_gr_context->context(), flip_texture);
if (!src_image) {
TRACE_EVENT_INSTANT0("cc",
"ApplyImageFilter wrap background texture failed",
TRACE_EVENT_SCOPE_THREAD);
return nullptr;
}
SkMatrix local_matrix;
local_matrix.setTranslate(origin.x(), origin.y());
local_matrix.postScale(scale.x(), scale.y());
local_matrix.postTranslate(-src_rect.x(), -src_rect.y());
SkIRect clip_bounds = gfx::RectFToSkRect(dst_rect).roundOut();
clip_bounds.offset(-src_rect.x(), -src_rect.y());
filter = filter->makeWithLocalMatrix(local_matrix);
SkIRect in_subset = SkIRect::MakeWH(src_rect.width(), src_rect.height());
sk_sp<SkImage> image = src_image->makeWithFilter(filter.get(), in_subset,
clip_bounds, subset, offset);
if (!image || !image->isTextureBacked()) {
return nullptr;
}
// Force a flush of the Skia pipeline before we switch back to the compositor
// context.
image->getTextureHandle(true);
CHECK(image->isTextureBacked());
return image;
}
bool GLRenderer::CanApplyBlendModeUsingBlendFunc(SkBlendMode blend_mode) {
return use_blend_equation_advanced_ || blend_mode == SkBlendMode::kSrcOver ||
blend_mode == SkBlendMode::kDstIn ||
blend_mode == SkBlendMode::kScreen;
}
void GLRenderer::ApplyBlendModeUsingBlendFunc(SkBlendMode blend_mode) {
// Any modes set here must be reset in RestoreBlendFuncToDefault
if (blend_mode == SkBlendMode::kSrcOver) {
// Left no-op intentionally.
} else if (blend_mode == SkBlendMode::kDstIn) {
gl_->BlendFunc(GL_ZERO, GL_SRC_ALPHA);
} else if (blend_mode == SkBlendMode::kScreen) {
gl_->BlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ONE);
} else {
DCHECK(use_blend_equation_advanced_);
GLenum equation = GL_FUNC_ADD;
switch (blend_mode) {
case SkBlendMode::kScreen:
equation = GL_SCREEN_KHR;
break;
case SkBlendMode::kOverlay:
equation = GL_OVERLAY_KHR;
break;
case SkBlendMode::kDarken:
equation = GL_DARKEN_KHR;
break;
case SkBlendMode::kLighten:
equation = GL_LIGHTEN_KHR;
break;
case SkBlendMode::kColorDodge:
equation = GL_COLORDODGE_KHR;
break;
case SkBlendMode::kColorBurn:
equation = GL_COLORBURN_KHR;
break;
case SkBlendMode::kHardLight:
equation = GL_HARDLIGHT_KHR;
break;
case SkBlendMode::kSoftLight:
equation = GL_SOFTLIGHT_KHR;
break;
case SkBlendMode::kDifference:
equation = GL_DIFFERENCE_KHR;
break;
case SkBlendMode::kExclusion:
equation = GL_EXCLUSION_KHR;
break;
case SkBlendMode::kMultiply:
equation = GL_MULTIPLY_KHR;
break;
case SkBlendMode::kHue:
equation = GL_HSL_HUE_KHR;
break;
case SkBlendMode::kSaturation:
equation = GL_HSL_SATURATION_KHR;
break;
case SkBlendMode::kColor:
equation = GL_HSL_COLOR_KHR;
break;
case SkBlendMode::kLuminosity:
equation = GL_HSL_LUMINOSITY_KHR;
break;
default:
NOTREACHED() << "Unexpected blend mode: SkBlendMode::k"
<< SkBlendMode_Name(blend_mode);
return;
}
gl_->BlendEquation(equation);
}
}
void GLRenderer::RestoreBlendFuncToDefault(SkBlendMode blend_mode) {
switch (blend_mode) {
case SkBlendMode::kSrcOver:
break;
case SkBlendMode::kDstIn:
case SkBlendMode::kScreen:
gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
break;
default:
DCHECK(use_blend_equation_advanced_);
gl_->BlendEquation(GL_FUNC_ADD);
}
}
bool GLRenderer::ShouldApplyBackgroundFilters(
const RenderPassDrawQuad* quad,
const FilterOperations* background_filters) {
if (!background_filters)
return false;
DCHECK(!background_filters->IsEmpty());
// TODO(hendrikw): Look into allowing background filters to see pixels from
// other render targets. See crbug.com/314867.
return true;
}
// This takes a gfx::Rect and a clip region quad in the same space,
// and returns a quad with the same proportions in the space -0.5->0.5.
bool GetScaledRegion(const gfx::Rect& rect,
const gfx::QuadF* clip,
gfx::QuadF* scaled_region) {
if (!clip)
return false;
gfx::PointF p1(((clip->p1().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p1().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p2(((clip->p2().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p2().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p3(((clip->p3().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p3().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p4(((clip->p4().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p4().y() - rect.y()) / rect.height()) - 0.5f);
*scaled_region = gfx::QuadF(p1, p2, p3, p4);
return true;
}
// This takes a gfx::Rect and a clip region quad in the same space,
// and returns the proportional uv's in the space 0->1.
bool GetScaledUVs(const gfx::Rect& rect, const gfx::QuadF* clip, float uvs[8]) {
if (!clip)
return false;
uvs[0] = ((clip->p1().x() - rect.x()) / rect.width());
uvs[1] = ((clip->p1().y() - rect.y()) / rect.height());
uvs[2] = ((clip->p2().x() - rect.x()) / rect.width());
uvs[3] = ((clip->p2().y() - rect.y()) / rect.height());
uvs[4] = ((clip->p3().x() - rect.x()) / rect.width());
uvs[5] = ((clip->p3().y() - rect.y()) / rect.height());
uvs[6] = ((clip->p4().x() - rect.x()) / rect.width());
uvs[7] = ((clip->p4().y() - rect.y()) / rect.height());
return true;
}
gfx::Rect GLRenderer::GetBackdropBoundingBoxForRenderPassQuad(
const RenderPassDrawQuad* quad,
const gfx::Transform& contents_device_transform,
const FilterOperations* filters,
const FilterOperations* background_filters,
const gfx::QuadF* clip_region,
bool use_aa,
gfx::Rect* unclipped_rect) {
gfx::QuadF scaled_region;
if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) {
scaled_region = SharedGeometryQuad().BoundingBox();
}
gfx::Rect backdrop_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect(
contents_device_transform, scaled_region.BoundingBox()));
if (ShouldApplyBackgroundFilters(quad, background_filters)) {
SkMatrix matrix;
matrix.setScale(quad->filters_scale.x(), quad->filters_scale.y());
if (FlippedFramebuffer()) {
// TODO(jbroman): This probably isn't the right way to account for this.
// Probably some combination of current_frame()->projection_matrix,
// current_frame()->window_matrix and contents_device_transform?
matrix.postScale(1, -1);
}
backdrop_rect = background_filters->MapRectReverse(backdrop_rect, matrix);
}
if (!backdrop_rect.IsEmpty() && use_aa) {
const int kOutsetForAntialiasing = 1;
backdrop_rect.Inset(-kOutsetForAntialiasing, -kOutsetForAntialiasing);
}
if (filters) {
DCHECK(!filters->IsEmpty());
// If we have filters, grab an extra one-pixel border around the
// background, so texture edge clamping gives us a transparent border
// in case the filter expands the result.
backdrop_rect.Inset(-1, -1, -1, -1);
}
*unclipped_rect = backdrop_rect;
backdrop_rect.Intersect(MoveFromDrawToWindowSpace(
current_frame()->current_render_pass->output_rect));
return backdrop_rect;
}
std::unique_ptr<ScopedResource> GLRenderer::GetBackdropTexture(
const gfx::Rect& bounding_rect) {
auto device_background_texture =
base::MakeUnique<ScopedResource>(resource_provider_);
// CopyTexImage2D fails when called on a texture having immutable storage.
device_background_texture->Allocate(
bounding_rect.size(), ResourceProvider::TEXTURE_HINT_DEFAULT,
BackbufferFormat(), current_frame()->current_render_pass->color_space);
{
ResourceProvider::ScopedWriteLockGL lock(
resource_provider_, device_background_texture->id(), false);
GetFramebufferTexture(lock.texture_id(), bounding_rect);
}
return device_background_texture;
}
sk_sp<SkImage> GLRenderer::ApplyBackgroundFilters(
const RenderPassDrawQuad* quad,
const FilterOperations& background_filters,
ScopedResource* background_texture,
const gfx::RectF& rect,
const gfx::RectF& unclipped_rect) {
DCHECK(ShouldApplyBackgroundFilters(quad, &background_filters));
auto use_gr_context = ScopedUseGrContext::Create(this);
gfx::Vector2dF clipping_offset =
(rect.top_right() - unclipped_rect.top_right()) +
(rect.bottom_left() - unclipped_rect.bottom_left());
sk_sp<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
background_filters, gfx::SizeF(background_texture->size()),
clipping_offset);
// TODO(senorblanco): background filters should be moved to the
// makeWithFilter fast-path, and go back to calling ApplyImageFilter().
// See http://crbug.com/613233.
if (!filter || !use_gr_context)
return nullptr;
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
background_texture->id());
bool flip_texture = true;
sk_sp<SkImage> src_image =
WrapTexture(lock, use_gr_context->context(), flip_texture);
if (!src_image) {
TRACE_EVENT_INSTANT0(
"cc", "ApplyBackgroundFilters wrap background texture failed",
TRACE_EVENT_SCOPE_THREAD);
return nullptr;
}
// Create surface to draw into.
SkImageInfo dst_info =
SkImageInfo::MakeN32Premul(rect.width(), rect.height());
sk_sp<SkSurface> surface = SkSurface::MakeRenderTarget(
use_gr_context->context(), SkBudgeted::kYes, dst_info);
if (!surface) {
TRACE_EVENT_INSTANT0("cc",
"ApplyBackgroundFilters surface allocation failed",
TRACE_EVENT_SCOPE_THREAD);
return nullptr;
}
SkMatrix local_matrix;
local_matrix.setScale(quad->filters_scale.x(), quad->filters_scale.y());
SkPaint paint;
paint.setImageFilter(filter->makeWithLocalMatrix(local_matrix));
surface->getCanvas()->translate(-rect.x(), -rect.y());
surface->getCanvas()->drawImage(src_image, rect.x(), rect.y(), &paint);
// Flush the drawing before source texture read lock goes out of scope.
// Skia API does not guarantee that when the SkImage goes out of scope,
// its externally referenced resources would force the rendering to be
// flushed.
surface->getCanvas()->flush();
sk_sp<SkImage> image = surface->makeImageSnapshot();
if (!image || !image->isTextureBacked()) {
return nullptr;
}
return image;
}
// Map device space quad to local space. Device_transform has no 3d
// component since it was flattened, so we don't need to project. We should
// have already checked that the transform was uninvertible before this call.
gfx::QuadF MapQuadToLocalSpace(const gfx::Transform& device_transform,
const gfx::QuadF& device_quad) {
gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization);
DCHECK(device_transform.IsInvertible());
bool did_invert = device_transform.GetInverse(&inverse_device_transform);
DCHECK(did_invert);
bool clipped = false;
gfx::QuadF local_quad =
MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped);
// We should not DCHECK(!clipped) here, because anti-aliasing inflation may
// cause device_quad to become clipped. To our knowledge this scenario does
// not need to be handled differently than the unclipped case.
return local_quad;
}
const TileDrawQuad* GLRenderer::CanPassBeDrawnDirectly(const RenderPass* pass) {
// Can only collapse a single tile quad.
if (pass->quad_list.size() != 1)
return nullptr;
// If we need copy requests, then render pass has to exist.
if (!pass->copy_requests.empty())
return nullptr;
const DrawQuad* quad = *pass->quad_list.BackToFrontBegin();
// Hack: this could be supported by concatenating transforms, but
// in practice if there is one quad, it is at the origin of the render pass
// and has the same size as the pass.
if (!quad->shared_quad_state->quad_to_target_transform.IsIdentity() ||
quad->rect != pass->output_rect)
return nullptr;
// The quad is expected to be the entire layer so that AA edges are correct.
if (gfx::Rect(quad->shared_quad_state->quad_layer_bounds) != quad->rect)
return nullptr;
if (quad->material != DrawQuad::TILED_CONTENT)
return nullptr;
const TileDrawQuad* tile_quad = TileDrawQuad::MaterialCast(quad);
// Hack: this could be supported by passing in a subrectangle to draw
// render pass, although in practice if there is only one quad there
// will be no border texels on the input.
if (tile_quad->tex_coord_rect != gfx::RectF(tile_quad->rect))
return nullptr;
// Tile quad features not supported in render pass shaders.
if (tile_quad->swizzle_contents || tile_quad->nearest_neighbor)
return nullptr;
// BUG=skia:3868, Skia currently doesn't support texture rectangle inputs.
// See also the DCHECKs about GL_TEXTURE_2D in DrawRenderPassQuad.
GLenum target =
resource_provider_->GetResourceTextureTarget(tile_quad->resource_id());
if (target != GL_TEXTURE_2D)
return nullptr;
#if defined(OS_MACOSX)
// On Macs, this path can sometimes lead to all black output.
// TODO(enne): investigate this and remove this hack.
return nullptr;
#endif
return tile_quad;
}
void GLRenderer::DrawRenderPassQuad(const RenderPassDrawQuad* quad,
const gfx::QuadF* clip_region) {
auto bypass = render_pass_bypass_quads_.find(quad->render_pass_id);
DrawRenderPassDrawQuadParams params;
params.quad = quad;
params.clip_region = clip_region;
params.window_matrix = current_frame()->window_matrix;
params.projection_matrix = current_frame()->projection_matrix;
if (bypass != render_pass_bypass_quads_.end()) {
TileDrawQuad* tile_quad = &bypass->second;
// RGBA_8888 here is arbitrary and unused.
Resource tile_resource(tile_quad->resource_id(), tile_quad->texture_size,
ResourceFormat::RGBA_8888,
current_frame()->current_render_pass->color_space);
// The projection matrix used by GLRenderer has a flip. As tile texture
// inputs are oriented opposite to framebuffer outputs, don't flip via
// texture coords and let the projection matrix naturallyd o it.
params.flip_texture = false;
params.contents_texture = &tile_resource;
DrawRenderPassQuadInternal(&params);
} else {
ScopedResource* contents_texture =
render_pass_textures_[quad->render_pass_id].get();
DCHECK(contents_texture);
DCHECK(contents_texture->id());
// See above comments about texture flipping. When the input is a
// render pass, it needs to an extra flip to be oriented correctly.
params.flip_texture = true;
params.contents_texture = contents_texture;
DrawRenderPassQuadInternal(&params);
}
}
void GLRenderer::DrawRenderPassQuadInternal(
DrawRenderPassDrawQuadParams* params) {
params->quad_to_target_transform =
params->quad->shared_quad_state->quad_to_target_transform;
if (!InitializeRPDQParameters(params))
return;
UpdateRPDQShadersForBlending(params);
if (!UpdateRPDQWithSkiaFilters(params))
return;
UseRenderPass(current_frame()->current_render_pass);
SetViewport();
UpdateRPDQTexturesForSampling(params);
UpdateRPDQBlendMode(params);
ChooseRPDQProgram(params);
UpdateRPDQUniforms(params);
DrawRPDQ(*params);
}
bool GLRenderer::InitializeRPDQParameters(
DrawRenderPassDrawQuadParams* params) {
const RenderPassDrawQuad* quad = params->quad;
SkMatrix local_matrix;
local_matrix.setTranslate(quad->filters_origin.x(), quad->filters_origin.y());
local_matrix.postScale(quad->filters_scale.x(), quad->filters_scale.y());
params->filters = FiltersForPass(quad->render_pass_id);
params->background_filters = BackgroundFiltersForPass(quad->render_pass_id);
gfx::Rect dst_rect = params->filters
? params->filters->MapRect(quad->rect, local_matrix)
: quad->rect;
params->dst_rect.SetRect(static_cast<float>(dst_rect.x()),
static_cast<float>(dst_rect.y()),
static_cast<float>(dst_rect.width()),
static_cast<float>(dst_rect.height()));
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, params->quad_to_target_transform,
params->dst_rect);
params->contents_device_transform =
params->window_matrix * params->projection_matrix * quad_rect_matrix;
params->contents_device_transform.FlattenTo2d();
// Can only draw surface if device matrix is invertible.
if (!params->contents_device_transform.IsInvertible())
return false;
params->surface_quad = SharedGeometryQuad();
gfx::QuadF device_layer_quad;
if (settings_->allow_antialiasing) {
bool clipped = false;
device_layer_quad = MathUtil::MapQuad(params->contents_device_transform,
params->surface_quad, &clipped);
params->use_aa = ShouldAntialiasQuad(device_layer_quad, clipped,
settings_->force_antialiasing);
}
const gfx::QuadF* aa_quad = params->use_aa ? &device_layer_quad : nullptr;
SetupRenderPassQuadForClippingAndAntialiasing(
params->contents_device_transform, quad, aa_quad, params->clip_region,
&params->surface_quad, params->edge);
return true;
}
void GLRenderer::UpdateRPDQShadersForBlending(
DrawRenderPassDrawQuadParams* params) {
const RenderPassDrawQuad* quad = params->quad;
SkBlendMode blend_mode = quad->shared_quad_state->blend_mode;
params->use_shaders_for_blending =
!CanApplyBlendModeUsingBlendFunc(blend_mode) ||
ShouldApplyBackgroundFilters(quad, params->background_filters) ||
settings_->force_blending_with_shaders;
if (params->use_shaders_for_blending) {
// Compute a bounding box around the pixels that will be visible through
// the quad.
gfx::Rect unclipped_rect;
params->background_rect = GetBackdropBoundingBoxForRenderPassQuad(
quad, params->contents_device_transform, params->filters,
params->background_filters, params->clip_region, params->use_aa,
&unclipped_rect);
if (!params->background_rect.IsEmpty()) {
// The pixels from the filtered background should completely replace the
// current pixel values.
if (blend_enabled())
SetBlendEnabled(false);
// Read the pixels in the bounding box into a buffer R.
// This function allocates a texture, which should contribute to the
// amount of memory used by render surfaces:
// LayerTreeHost::CalculateMemoryForRenderSurfaces.
params->background_texture = GetBackdropTexture(params->background_rect);
if (ShouldApplyBackgroundFilters(quad, params->background_filters) &&
params->background_texture) {
// Apply the background filters to R, so that it is applied in the
// pixels' coordinate space.
params->background_image = ApplyBackgroundFilters(
quad, *params->background_filters, params->background_texture.get(),
gfx::RectF(params->background_rect), gfx::RectF(unclipped_rect));
if (params->background_image) {
params->background_image_id =
skia::GrBackendObjectToGrGLTextureInfo(
params->background_image->getTextureHandle(true))
->fID;
DCHECK(params->background_image_id);
}
}
}
if (!params->background_texture) {
// Something went wrong with reading the backdrop.
DCHECK(!params->background_image_id);
params->use_shaders_for_blending = false;
} else if (params->background_image_id) {
// Reset original background texture if there is not any mask
if (!quad->mask_resource_id())
params->background_texture.reset();
} else if (CanApplyBlendModeUsingBlendFunc(blend_mode) &&
ShouldApplyBackgroundFilters(quad, params->background_filters)) {
// Something went wrong with applying background filters to the backdrop.
params->use_shaders_for_blending = false;
params->background_texture.reset();
}
}
// Need original background texture for mask?
params->mask_for_background =
params->background_texture && // Have original background texture
params->background_image_id && // Have filtered background texture
quad->mask_resource_id(); // Have mask texture
DCHECK_EQ(params->background_texture || params->background_image_id,
params->use_shaders_for_blending);
}
bool GLRenderer::UpdateRPDQWithSkiaFilters(
DrawRenderPassDrawQuadParams* params) {
const RenderPassDrawQuad* quad = params->quad;
// Apply filters to the contents texture.
if (params->filters) {
DCHECK(!params->filters->IsEmpty());
sk_sp<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
*params->filters, gfx::SizeF(params->contents_texture->size()));
if (filter) {
SkColorFilter* colorfilter_rawptr = NULL;
filter->asColorFilter(&colorfilter_rawptr);
sk_sp<SkColorFilter> cf(colorfilter_rawptr);
if (cf && cf->asColorMatrix(params->color_matrix)) {
// We have a color matrix at the root of the filter DAG; apply it
// locally in the compositor and process the rest of the DAG (if any)
// in Skia.
params->use_color_matrix = true;
filter = sk_ref_sp(filter->getInput(0));
}
if (filter) {
gfx::Rect clip_rect = quad->shared_quad_state->clip_rect;
if (clip_rect.IsEmpty()) {
clip_rect = current_draw_rect_;
}
gfx::Transform transform = params->quad_to_target_transform;
gfx::QuadF clip_quad = gfx::QuadF(gfx::RectF(clip_rect));
gfx::QuadF local_clip = MapQuadToLocalSpace(transform, clip_quad);
params->dst_rect.Intersect(local_clip.BoundingBox());
// If we've been fully clipped out (by crop rect or clipping), there's
// nothing to draw.
if (params->dst_rect.IsEmpty()) {
return false;
}
SkIPoint offset;
SkIRect subset;
gfx::RectF src_rect(quad->rect);
params->filter_image = ApplyImageFilter(
ScopedUseGrContext::Create(this), resource_provider_, src_rect,
params->dst_rect, quad->filters_scale, std::move(filter),
params->contents_texture, &offset, &subset, params->flip_texture,
quad->filters_origin);
if (!params->filter_image)
return false;
params->dst_rect =
gfx::RectF(src_rect.x() + offset.fX, src_rect.y() + offset.fY,
subset.width(), subset.height());
params->src_offset.SetPoint(subset.x(), subset.y());
}
}
}
return true;
}
void GLRenderer::UpdateRPDQTexturesForSampling(
DrawRenderPassDrawQuadParams* params) {
if (params->quad->mask_resource_id()) {
params->mask_resource_lock.reset(new ResourceProvider::ScopedSamplerGL(
resource_provider_, params->quad->mask_resource_id(), GL_TEXTURE1,
GL_LINEAR));
}
if (params->filter_image) {
GrSurfaceOrigin origin;
GLuint filter_image_id =
skia::GrBackendObjectToGrGLTextureInfo(
params->filter_image->getTextureHandle(true, &origin))
->fID;
DCHECK(filter_image_id);
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_2D, filter_image_id);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
params->source_needs_flip = kBottomLeft_GrSurfaceOrigin == origin;
} else {
params->contents_resource_lock =
base::MakeUnique<ResourceProvider::ScopedSamplerGL>(
resource_provider_, params->contents_texture->id(), GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
params->contents_resource_lock->target());
params->source_needs_flip = params->flip_texture;
}
}
void GLRenderer::UpdateRPDQBlendMode(DrawRenderPassDrawQuadParams* params) {
SkBlendMode blend_mode = params->quad->shared_quad_state->blend_mode;
SetBlendEnabled(!params->use_shaders_for_blending &&
(params->quad->ShouldDrawWithBlending() ||
!IsDefaultBlendMode(blend_mode)));
if (!params->use_shaders_for_blending) {
if (!use_blend_equation_advanced_coherent_ && use_blend_equation_advanced_)
gl_->BlendBarrierKHR();
ApplyBlendModeUsingBlendFunc(blend_mode);
}
}
void GLRenderer::ChooseRPDQProgram(DrawRenderPassDrawQuadParams* params) {
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
params->quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
BlendMode shader_blend_mode =
params->use_shaders_for_blending
? BlendModeFromSkXfermode(params->quad->shared_quad_state->blend_mode)
: BLEND_MODE_NONE;
SamplerType sampler_type = SAMPLER_TYPE_2D;
MaskMode mask_mode = NO_MASK;
bool mask_for_background = params->mask_for_background;
if (params->mask_resource_lock) {
mask_mode = HAS_MASK;
sampler_type =
SamplerTypeFromTextureTarget(params->mask_resource_lock->target());
}
SetUseProgram(ProgramKey::RenderPass(
tex_coord_precision, sampler_type, shader_blend_mode,
params->use_aa ? USE_AA : NO_AA, mask_mode,
mask_for_background, params->use_color_matrix),
current_frame()->current_render_pass->color_space);
}
void GLRenderer::UpdateRPDQUniforms(DrawRenderPassDrawQuadParams* params) {
gfx::RectF tex_rect(params->src_offset.x(), params->src_offset.y(),
params->dst_rect.width(), params->dst_rect.height());
gfx::Size texture_size;
if (params->filter_image) {
texture_size.set_width(params->filter_image->width());
texture_size.set_height(params->filter_image->height());
} else {
texture_size = params->contents_texture->size();
}
tex_rect.Scale(1.0f / texture_size.width(), 1.0f / texture_size.height());
DCHECK(current_program_->vertex_tex_transform_location() != -1 ||
IsContextLost());
if (params->source_needs_flip) {
// Flip the content vertically in the shader, as the RenderPass input
// texture is already oriented the same way as the framebuffer, but the
// projection transform does a flip.
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
tex_rect.x(), 1.0f - tex_rect.y(), tex_rect.width(),
-tex_rect.height());
} else {
// Tile textures are oriented opposite the framebuffer, so can use
// the projection transform to do the flip.
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
tex_rect.x(), tex_rect.y(), tex_rect.width(),
tex_rect.height());
}
GLint last_texture_unit = 0;
if (current_program_->mask_sampler_location() != -1) {
DCHECK(params->mask_resource_lock);
DCHECK_NE(current_program_->mask_tex_coord_scale_location(), 1);
DCHECK_NE(current_program_->mask_tex_coord_offset_location(), 1);
gl_->Uniform1i(current_program_->mask_sampler_location(), 1);
gfx::RectF mask_uv_rect = params->quad->mask_uv_rect;
if (SamplerTypeFromTextureTarget(params->mask_resource_lock->target()) !=
SAMPLER_TYPE_2D) {
mask_uv_rect.Scale(params->quad->mask_texture_size.width(),
params->quad->mask_texture_size.height());
}
if (params->source_needs_flip) {
// Mask textures are oriented vertically flipped relative to the
// framebuffer and the RenderPass contents texture, so we flip the tex
// coords from the RenderPass texture to find the mask texture coords.
gl_->Uniform2f(
current_program_->mask_tex_coord_offset_location(), mask_uv_rect.x(),
mask_uv_rect.height() / tex_rect.height() + mask_uv_rect.y());
gl_->Uniform2f(current_program_->mask_tex_coord_scale_location(),
mask_uv_rect.width() / tex_rect.width(),
-mask_uv_rect.height() / tex_rect.height());
} else {
// Tile textures are oriented the same way as mask textures.
gl_->Uniform2f(current_program_->mask_tex_coord_offset_location(),
mask_uv_rect.x(), mask_uv_rect.y());
gl_->Uniform2f(current_program_->mask_tex_coord_scale_location(),
mask_uv_rect.width() / tex_rect.width(),
mask_uv_rect.height() / tex_rect.height());
}
last_texture_unit = 1;
}
if (current_program_->edge_location() != -1)
gl_->Uniform3fv(current_program_->edge_location(), 8, params->edge);
if (current_program_->color_matrix_location() != -1) {
float matrix[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j)
matrix[i * 4 + j] = SkScalarToFloat(params->color_matrix[j * 5 + i]);
}
gl_->UniformMatrix4fv(current_program_->color_matrix_location(), 1, false,
matrix);
}
static const float kScale = 1.0f / 255.0f;
if (current_program_->color_offset_location() != -1) {
float offset[4];
for (int i = 0; i < 4; ++i)
offset[i] = SkScalarToFloat(params->color_matrix[i * 5 + 4]) * kScale;
gl_->Uniform4fv(current_program_->color_offset_location(), 1, offset);
}
if (current_program_->backdrop_location() != -1) {
DCHECK(params->background_texture || params->background_image_id);
DCHECK_NE(current_program_->backdrop_location(), 0);
DCHECK_NE(current_program_->backdrop_rect_location(), 0);
gl_->Uniform1i(current_program_->backdrop_location(), ++last_texture_unit);
gl_->Uniform4f(current_program_->backdrop_rect_location(),
params->background_rect.x(), params->background_rect.y(),
params->background_rect.width(),
params->background_rect.height());
if (params->background_image_id) {
gl_->ActiveTexture(GL_TEXTURE0 + last_texture_unit);
gl_->BindTexture(GL_TEXTURE_2D, params->background_image_id);
gl_->ActiveTexture(GL_TEXTURE0);
if (params->mask_for_background)
gl_->Uniform1i(current_program_->original_backdrop_location(),
++last_texture_unit);
}
if (params->background_texture) {
params->shader_background_sampler_lock =
base::MakeUnique<ResourceProvider::ScopedSamplerGL>(
resource_provider_, params->background_texture->id(),
GL_TEXTURE0 + last_texture_unit, GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
params->shader_background_sampler_lock->target());
}
}
SetShaderOpacity(params->quad);
SetShaderQuadF(params->surface_quad);
}
void GLRenderer::DrawRPDQ(const DrawRenderPassDrawQuadParams& params) {
DrawQuadGeometry(params.projection_matrix, params.quad_to_target_transform,
params.dst_rect);
// Flush the compositor context before the filter bitmap goes out of
// scope, so the draw gets processed before the filter texture gets deleted.
if (params.filter_image)
gl_->Flush();
if (!params.use_shaders_for_blending)
RestoreBlendFuncToDefault(params.quad->shared_quad_state->blend_mode);
}
namespace {
// These functions determine if a quad, clipped by a clip_region contains
// the entire {top|bottom|left|right} edge.
bool is_top(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsTopEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p1().y()) < kAntiAliasingEpsilon &&
std::abs(clip_region->p2().y()) < kAntiAliasingEpsilon;
}
bool is_bottom(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsBottomEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p3().y() -
quad->shared_quad_state->quad_layer_bounds.height()) <
kAntiAliasingEpsilon &&
std::abs(clip_region->p4().y() -
quad->shared_quad_state->quad_layer_bounds.height()) <
kAntiAliasingEpsilon;
}
bool is_left(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsLeftEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p1().x()) < kAntiAliasingEpsilon &&
std::abs(clip_region->p4().x()) < kAntiAliasingEpsilon;
}
bool is_right(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsRightEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p2().x() -
quad->shared_quad_state->quad_layer_bounds.width()) <
kAntiAliasingEpsilon &&
std::abs(clip_region->p3().x() -
quad->shared_quad_state->quad_layer_bounds.width()) <
kAntiAliasingEpsilon;
}
} // anonymous namespace
static gfx::QuadF GetDeviceQuadWithAntialiasingOnExteriorEdges(
const LayerQuad& device_layer_edges,
const gfx::Transform& device_transform,
const gfx::QuadF& tile_quad,
const gfx::QuadF* clip_region,
const DrawQuad* quad) {
auto tile_rect = gfx::RectF(quad->visible_rect);
gfx::PointF bottom_right = tile_quad.p3();
gfx::PointF bottom_left = tile_quad.p4();
gfx::PointF top_left = tile_quad.p1();
gfx::PointF top_right = tile_quad.p2();
bool clipped = false;
// Map points to device space. We ignore |clipped|, since the result of
// |MapPoint()| still produces a valid point to draw the quad with. When
// clipped, the point will be outside of the viewport. See crbug.com/416367.
bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped);
bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped);
top_left = MathUtil::MapPoint(device_transform, top_left, &clipped);
top_right = MathUtil::MapPoint(device_transform, top_right, &clipped);
LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
LayerQuad::Edge left_edge(bottom_left, top_left);
LayerQuad::Edge top_edge(top_left, top_right);
LayerQuad::Edge right_edge(top_right, bottom_right);
// Only apply anti-aliasing to edges not clipped by culling or scissoring.
// If an edge is degenerate we do not want to replace it with a "proper" edge
// as that will cause the quad to possibly expand is strange ways.
if (!top_edge.degenerate() && is_top(clip_region, quad) &&
tile_rect.y() == quad->rect.y()) {
top_edge = device_layer_edges.top();
}
if (!left_edge.degenerate() && is_left(clip_region, quad) &&
tile_rect.x() == quad->rect.x()) {
left_edge = device_layer_edges.left();
}
if (!right_edge.degenerate() && is_right(clip_region, quad) &&
tile_rect.right() == quad->rect.right()) {
right_edge = device_layer_edges.right();
}
if (!bottom_edge.degenerate() && is_bottom(clip_region, quad) &&
tile_rect.bottom() == quad->rect.bottom()) {
bottom_edge = device_layer_edges.bottom();
}
float sign = tile_quad.IsCounterClockwise() ? -1 : 1;
bottom_edge.scale(sign);
left_edge.scale(sign);
top_edge.scale(sign);
right_edge.scale(sign);
// Create device space quad.
return LayerQuad(left_edge, top_edge, right_edge, bottom_edge).ToQuadF();
}
float GetTotalQuadError(const gfx::QuadF* clipped_quad,
const gfx::QuadF* ideal_rect) {
return (clipped_quad->p1() - ideal_rect->p1()).LengthSquared() +
(clipped_quad->p2() - ideal_rect->p2()).LengthSquared() +
(clipped_quad->p3() - ideal_rect->p3()).LengthSquared() +
(clipped_quad->p4() - ideal_rect->p4()).LengthSquared();
}
// Attempt to rotate the clipped quad until it lines up the most
// correctly. This is necessary because we check the edges of this
// quad against the expected left/right/top/bottom for anti-aliasing.
void AlignQuadToBoundingBox(gfx::QuadF* clipped_quad) {
auto bounding_quad = gfx::QuadF(clipped_quad->BoundingBox());
gfx::QuadF best_rotation = *clipped_quad;
float least_error_amount = GetTotalQuadError(clipped_quad, &bounding_quad);
for (size_t i = 1; i < 4; ++i) {
clipped_quad->Realign(1);
float new_error = GetTotalQuadError(clipped_quad, &bounding_quad);
if (new_error < least_error_amount) {
least_error_amount = new_error;
best_rotation = *clipped_quad;
}
}
*clipped_quad = best_rotation;
}
void InflateAntiAliasingDistances(const gfx::QuadF& quad,
LayerQuad* device_layer_edges,
float edge[24]) {
DCHECK(!quad.BoundingBox().IsEmpty());
LayerQuad device_layer_bounds(gfx::QuadF(quad.BoundingBox()));
device_layer_edges->InflateAntiAliasingDistance();
device_layer_edges->ToFloatArray(edge);
device_layer_bounds.InflateAntiAliasingDistance();
device_layer_bounds.ToFloatArray(&edge[12]);
}
// static
bool GLRenderer::ShouldAntialiasQuad(const gfx::QuadF& device_layer_quad,
bool clipped,
bool force_aa) {
// AAing clipped quads is not supported by the code yet.
if (clipped)
return false;
if (device_layer_quad.BoundingBox().IsEmpty())
return false;
if (force_aa)
return true;
bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
bool is_nearest_rect_within_epsilon =
is_axis_aligned_in_target &&
gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
kAntiAliasingEpsilon);
return !is_nearest_rect_within_epsilon;
}
// static
void GLRenderer::SetupQuadForClippingAndAntialiasing(
const gfx::Transform& device_transform,
const DrawQuad* quad,
const gfx::QuadF* aa_quad,
const gfx::QuadF* clip_region,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::QuadF rotated_clip;
const gfx::QuadF* local_clip_region = clip_region;
if (local_clip_region) {
rotated_clip = *clip_region;
AlignQuadToBoundingBox(&rotated_clip);
local_clip_region = &rotated_clip;
}
if (!aa_quad) {
if (local_clip_region)
*local_quad = *local_clip_region;
return;
}
LayerQuad device_layer_edges(*aa_quad);
InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge);
// If we have a clip region then we are split, and therefore
// by necessity, at least one of our edges is not an external
// one.
bool is_full_rect = quad->visible_rect == quad->rect;
bool region_contains_all_outside_edges =
is_full_rect &&
(is_top(local_clip_region, quad) && is_left(local_clip_region, quad) &&
is_bottom(local_clip_region, quad) && is_right(local_clip_region, quad));
bool use_aa_on_all_four_edges =
!local_clip_region && region_contains_all_outside_edges;
gfx::QuadF device_quad;
if (use_aa_on_all_four_edges) {
device_quad = device_layer_edges.ToQuadF();
} else {
gfx::QuadF tile_quad(local_clip_region
? *local_clip_region
: gfx::QuadF(gfx::RectF(quad->visible_rect)));
device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges(
device_layer_edges, device_transform, tile_quad, local_clip_region,
quad);
}
*local_quad = MapQuadToLocalSpace(device_transform, device_quad);
}
// static
void GLRenderer::SetupRenderPassQuadForClippingAndAntialiasing(
const gfx::Transform& device_transform,
const RenderPassDrawQuad* quad,
const gfx::QuadF* aa_quad,
const gfx::QuadF* clip_region,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::QuadF rotated_clip;
const gfx::QuadF* local_clip_region = clip_region;
if (local_clip_region) {
rotated_clip = *clip_region;
AlignQuadToBoundingBox(&rotated_clip);
local_clip_region = &rotated_clip;
}
if (!aa_quad) {
GetScaledRegion(quad->rect, local_clip_region, local_quad);
return;
}
LayerQuad device_layer_edges(*aa_quad);
InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge);
gfx::QuadF device_quad;
// Apply anti-aliasing only to the edges that are not being clipped
if (local_clip_region) {
gfx::QuadF tile_quad(gfx::RectF(quad->visible_rect));
GetScaledRegion(quad->rect, local_clip_region, &tile_quad);
device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges(
device_layer_edges, device_transform, tile_quad, local_clip_region,
quad);
} else {
device_quad = device_layer_edges.ToQuadF();
}
*local_quad = MapQuadToLocalSpace(device_transform, device_quad);
}
void GLRenderer::DrawSolidColorQuad(const SolidColorDrawQuad* quad,
const gfx::QuadF* clip_region) {
gfx::Rect tile_rect = quad->visible_rect;
SkColor color = quad->color;
float opacity = quad->shared_quad_state->opacity;
float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
// Early out if alpha is small enough that quad doesn't contribute to output.
if (alpha < std::numeric_limits<float>::epsilon() &&
quad->ShouldDrawWithBlending())
return;
gfx::Transform device_transform =
current_frame()->window_matrix * current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform;
device_transform.FlattenTo2d();
if (!device_transform.IsInvertible())
return;
auto local_quad = gfx::QuadF(gfx::RectF(tile_rect));
gfx::QuadF device_layer_quad;
bool use_aa = false;
bool allow_aa = settings_->allow_antialiasing &&
!quad->force_anti_aliasing_off && quad->IsEdge();
if (allow_aa) {
bool clipped = false;
bool force_aa = false;
device_layer_quad = MathUtil::MapQuad(
device_transform,
gfx::QuadF(
gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)),
&clipped);
use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa);
}
float edge[24];
const gfx::QuadF* aa_quad = use_aa ? &device_layer_quad : nullptr;
SetupQuadForClippingAndAntialiasing(device_transform, quad, aa_quad,
clip_region, &local_quad, edge);
// TODO(ccameron): Solid color draw quads need to specify their implied
// color space. Assume SRGB (which is wrong) for now.
gfx::ColorSpace quad_color_space = gfx::ColorSpace::CreateSRGB();
SetUseProgram(ProgramKey::SolidColor(use_aa ? USE_AA : NO_AA),
quad_color_space);
SetShaderColor(color, opacity);
if (use_aa) {
gl_->Uniform3fv(current_program_->edge_location(), 8, edge);
}
// Enable blending when the quad properties require it or if we decided
// to use antialiasing.
SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
// Antialising requires a normalized quad, but this could lead to floating
// point precision errors, so only normalize when antialising is on.
if (use_aa) {
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderQuadF(local_quad);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original
// quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
gfx::SizeF(tile_rect.size()));
DrawQuadGeometry(current_frame()->projection_matrix,
quad->shared_quad_state->quad_to_target_transform,
centered_rect);
} else {
PrepareGeometry(SHARED_BINDING);
SetShaderQuadF(local_quad);
SetShaderMatrix(current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
}
}
void GLRenderer::DrawTileQuad(const TileDrawQuad* quad,
const gfx::QuadF* clip_region) {
DrawContentQuad(quad, quad->resource_id(), clip_region);
}
void GLRenderer::DrawContentQuad(const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::QuadF* clip_region) {
gfx::Transform device_transform =
current_frame()->window_matrix * current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform;
device_transform.FlattenTo2d();
gfx::QuadF device_layer_quad;
bool use_aa = false;
bool allow_aa = settings_->allow_antialiasing && quad->IsEdge();
if (allow_aa) {
bool clipped = false;
bool force_aa = false;
device_layer_quad = MathUtil::MapQuad(
device_transform,
gfx::QuadF(
gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)),
&clipped);
use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa);
}
// TODO(timav): simplify coordinate transformations in DrawContentQuadAA
// similar to the way DrawContentQuadNoAA works and then consider
// combining DrawContentQuadAA and DrawContentQuadNoAA into one method.
if (use_aa)
DrawContentQuadAA(quad, resource_id, device_transform, device_layer_quad,
clip_region);
else
DrawContentQuadNoAA(quad, resource_id, clip_region);
}
void GLRenderer::DrawContentQuadAA(const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::Transform& device_transform,
const gfx::QuadF& aa_quad,
const gfx::QuadF* clip_region) {
if (!device_transform.IsInvertible())
return;
gfx::Rect tile_rect = quad->visible_rect;
gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
quad->tex_coord_rect, gfx::RectF(quad->rect), gfx::RectF(tile_rect));
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
gfx::RectF clamp_geom_rect(tile_rect);
gfx::RectF clamp_tex_rect(tex_coord_rect);
// Clamp texture coordinates to avoid sampling outside the layer
// by deflating the tile region half a texel or half a texel
// minus epsilon for one pixel layers. The resulting clamp region
// is mapped to the unit square by the vertex shader and mapped
// back to normalized texture coordinates by the fragment shader
// after being clamped to 0-1 range.
float tex_clamp_x =
std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
float tex_clamp_y =
std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
float geom_clamp_x =
std::min(tex_clamp_x * tex_to_geom_scale_x,
0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
float geom_clamp_y =
std::min(tex_clamp_y * tex_to_geom_scale_y,
0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
// Map clamping rectangle to unit square.
float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
float vertex_tex_translate_y =
-clamp_geom_rect.y() / clamp_geom_rect.height();
float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
auto local_quad = gfx::QuadF(gfx::RectF(tile_rect));
float edge[24];
SetupQuadForClippingAndAntialiasing(device_transform, quad, &aa_quad,
clip_region, &local_quad, edge);
ResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id,
quad->nearest_neighbor ? GL_NEAREST : GL_LINEAR);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
float fragment_tex_translate_x = clamp_tex_rect.x();
float fragment_tex_translate_y = clamp_tex_rect.y();
float fragment_tex_scale_x = clamp_tex_rect.width();
float fragment_tex_scale_y = clamp_tex_rect.height();
// Map to normalized texture coordinates.
if (sampler != SAMPLER_TYPE_2D_RECT) {
gfx::Size texture_size = quad->texture_size;
DCHECK(!texture_size.IsEmpty());
fragment_tex_translate_x /= texture_size.width();
fragment_tex_translate_y /= texture_size.height();
fragment_tex_scale_x /= texture_size.width();
fragment_tex_scale_y /= texture_size.height();
}
SetUseProgram(
ProgramKey::Tile(tex_coord_precision, sampler, USE_AA,
quad->swizzle_contents ? DO_SWIZZLE : NO_SWIZZLE, false),
quad_resource_lock.color_space());
gl_->Uniform3fv(current_program_->edge_location(), 8, edge);
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
vertex_tex_translate_x, vertex_tex_translate_y,
vertex_tex_scale_x, vertex_tex_scale_y);
gl_->Uniform4f(current_program_->fragment_tex_transform_location(),
fragment_tex_translate_x, fragment_tex_translate_y,
fragment_tex_scale_x, fragment_tex_scale_y);
// Blending is required for antialiasing.
SetBlendEnabled(true);
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderOpacity(quad);
SetShaderQuadF(local_quad);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
gfx::SizeF(tile_rect.size()));
DrawQuadGeometry(current_frame()->projection_matrix,
quad->shared_quad_state->quad_to_target_transform,
centered_rect);
}
void GLRenderer::DrawContentQuadNoAA(const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::QuadF* clip_region) {
gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
quad->tex_coord_rect, gfx::RectF(quad->rect),
gfx::RectF(quad->visible_rect));
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
GLenum filter = (scaled ||
!quad->shared_quad_state->quad_to_target_transform
.IsIdentityOrIntegerTranslation()) &&
!quad->nearest_neighbor
? GL_LINEAR
: GL_NEAREST;
ResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id, filter);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
float vertex_tex_translate_x = tex_coord_rect.x();
float vertex_tex_translate_y = tex_coord_rect.y();
float vertex_tex_scale_x = tex_coord_rect.width();
float vertex_tex_scale_y = tex_coord_rect.height();
// Map to normalized texture coordinates.
if (sampler != SAMPLER_TYPE_2D_RECT) {
gfx::Size texture_size = quad->texture_size;
DCHECK(!texture_size.IsEmpty());
vertex_tex_translate_x /= texture_size.width();
vertex_tex_translate_y /= texture_size.height();
vertex_tex_scale_x /= texture_size.width();
vertex_tex_scale_y /= texture_size.height();
}
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
SetUseProgram(
ProgramKey::Tile(tex_coord_precision, sampler, NO_AA,
quad->swizzle_contents ? DO_SWIZZLE : NO_SWIZZLE,
!quad->ShouldDrawWithBlending()),
quad_resource_lock.color_space());
gl_->Uniform4f(current_program_->vertex_tex_transform_location(),
vertex_tex_translate_x, vertex_tex_translate_y,
vertex_tex_scale_x, vertex_tex_scale_y);
SetBlendEnabled(quad->ShouldDrawWithBlending());
SetShaderOpacity(quad);
// Pass quad coordinates to the uniform in the same order as GeometryBinding
// does, then vertices will match the texture mapping in the vertex buffer.
// The method SetShaderQuadF() changes the order of vertices and so it's
// not used here.
auto tile_quad = gfx::QuadF(gfx::RectF(quad->visible_rect));
float width = quad->visible_rect.width();
float height = quad->visible_rect.height();
auto top_left = gfx::PointF(quad->visible_rect.origin());
if (clip_region) {
tile_quad = *clip_region;
float gl_uv[8] = {
(tile_quad.p4().x() - top_left.x()) / width,
(tile_quad.p4().y() - top_left.y()) / height,
(tile_quad.p1().x() - top_left.x()) / width,
(tile_quad.p1().y() - top_left.y()) / height,
(tile_quad.p2().x() - top_left.x()) / width,
(tile_quad.p2().y() - top_left.y()) / height,
(tile_quad.p3().x() - top_left.x()) / width,
(tile_quad.p3().y() - top_left.y()) / height,
};
PrepareGeometry(CLIPPED_BINDING);
clipped_geometry_->InitializeCustomQuadWithUVs(
gfx::QuadF(gfx::RectF(quad->visible_rect)), gl_uv);
} else {
PrepareGeometry(SHARED_BINDING);
}
float gl_quad[8] = {
tile_quad.p4().x(), tile_quad.p4().y(), tile_quad.p1().x(),
tile_quad.p1().y(), tile_quad.p2().x(), tile_quad.p2().y(),
tile_quad.p3().x(), tile_quad.p3().y(),
};
gl_->Uniform2fv(current_program_->quad_location(), 4, gl_quad);
SetShaderMatrix(current_frame()->projection_matrix *
quad->shared_quad_state->quad_to_target_transform);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
}
void GLRenderer::DrawYUVVideoQuad(const YUVVideoDrawQuad* quad,
const gfx::QuadF* clip_region) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
YUVAlphaTextureMode alpha_texture_mode = quad->a_plane_resource_id()
? YUV_HAS_ALPHA_TEXTURE
: YUV_NO_ALPHA_TEXTURE;
UVTextureMode uv_texture_mode =
quad->v_plane_resource_id() == quad->u_plane_resource_id()
? UV_TEXTURE_MODE_UV
: UV_TEXTURE_MODE_U_V;
// TODO(ccameron): There are currently three sources of the color space: the
// resource, quad->color_space, and quad->video_color_space. Remove two of
// them.
gfx::ColorSpace src_color_space = quad->video_color_space;
gfx::ColorSpace dst_color_space =
current_frame()->current_render_pass->color_space;
if (!base::FeatureList::IsEnabled(media::kVideoColorManagement)) {
if (!settings_->enable_color_correct_rendering)
dst_color_space = gfx::ColorSpace();
switch (quad->color_space) {
case YUVVideoDrawQuad::REC_601:
src_color_space = gfx::ColorSpace::CreateREC601();
break;
case YUVVideoDrawQuad::REC_709:
src_color_space = gfx::ColorSpace::CreateREC709();
break;
case YUVVideoDrawQuad::JPEG:
src_color_space = gfx::ColorSpace::CreateJpeg();
break;
}
}
// Invalid or unspecified color spaces should be treated as REC709.
if (!src_color_space.IsValid())
src_color_space = gfx::ColorSpace::CreateREC709();
ResourceProvider::ScopedSamplerGL y_plane_lock(
resource_provider_, quad->y_plane_resource_id(), GL_TEXTURE1, GL_LINEAR);
ResourceProvider::ScopedSamplerGL u_plane_lock(
resource_provider_, quad->u_plane_resource_id(), GL_TEXTURE2, GL_LINEAR);
DCHECK_EQ(y_plane_lock.target(), u_plane_lock.target());
// TODO(jbauman): Use base::Optional when available.
std::unique_ptr<ResourceProvider::ScopedSamplerGL> v_plane_lock;
if (uv_texture_mode == UV_TEXTURE_MODE_U_V) {
v_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
resource_provider_, quad->v_plane_resource_id(), GL_TEXTURE3,
GL_LINEAR));
DCHECK_EQ(y_plane_lock.target(), v_plane_lock->target());
}
std::unique_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock;
if (alpha_texture_mode == YUV_HAS_ALPHA_TEXTURE) {
a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
resource_provider_, quad->a_plane_resource_id(), GL_TEXTURE4,
GL_LINEAR));
DCHECK_EQ(y_plane_lock.target(), a_plane_lock->target());
}
// All planes must have the same sampler type.
SamplerType sampler = SamplerTypeFromTextureTarget(y_plane_lock.target());
SetUseProgram(ProgramKey::YUVVideo(tex_coord_precision, sampler,
alpha_texture_mode, uv_texture_mode),
src_color_space, dst_color_space);
gfx::SizeF ya_tex_scale(1.0f, 1.0f);
gfx::SizeF uv_tex_scale(1.0f, 1.0f);
if (sampler != SAMPLER_TYPE_2D_RECT) {
DCHECK(!quad->ya_tex_size.IsEmpty());
DCHECK(!quad->uv_tex_size.IsEmpty());
ya_tex_scale = gfx::SizeF(1.0f / quad->ya_tex_size.width(),
1.0f / quad->ya_tex_size.height());
uv_tex_scale = gfx::SizeF(1.0f / quad->uv_tex_size.width(),
1.0f / quad->uv_tex_size.height());
}
float ya_vertex_tex_translate_x =
quad->ya_tex_coord_rect.x() * ya_tex_scale.width();
float ya_vertex_tex_translate_y =
quad->ya_tex_coord_rect.y() * ya_tex_scale.height();
float ya_vertex_tex_scale_x =
quad->ya_tex_coord_rect.width() * ya_tex_scale.width();
float ya_vertex_tex_scale_y =
quad->ya_tex_coord_rect.height() * ya_tex_scale.height();
float uv_vertex_tex_translate_x =
quad->uv_tex_coord_rect.x() * uv_tex_scale.width();
float uv_vertex_tex_translate_y =
quad->uv_tex_coord_rect.y() * uv_tex_scale.height();
float uv_vertex_tex_scale_x =
quad->uv_tex_coord_rect.width() * uv_tex_scale.width();
float uv_vertex_tex_scale_y =
quad->uv_tex_coord_rect.height() * uv_tex_scale.height();
gl_->Uniform2f(current_program_->ya_tex_scale_location(),
ya_vertex_tex_scale_x, ya_vertex_tex_scale_y);
gl_->Uniform2f(current_program_->ya_tex_offset_location(),
ya_vertex_tex_translate_x, ya_vertex_tex_translate_y);
gl_->Uniform2f(current_program_->uv_tex_scale_location(),
uv_vertex_tex_scale_x, uv_vertex_tex_scale_y);
gl_->Uniform2f(current_program_->uv_tex_offset_location(),
uv_vertex_tex_translate_x, uv_vertex_tex_translate_y);
gfx::RectF ya_clamp_rect(ya_vertex_tex_translate_x, ya_vertex_tex_translate_y,
ya_vertex_tex_scale_x, ya_vertex_tex_scale_y);
ya_clamp_rect.Inset(0.5f * ya_tex_scale.width(),
0.5f * ya_tex_scale.height());
gfx::RectF uv_clamp_rect(uv_vertex_tex_translate_x, uv_vertex_tex_translate_y,
uv_vertex_tex_scale_x, uv_vertex_tex_scale_y);
uv_clamp_rect.Inset(0.5f * uv_tex_scale.width(),
0.5f * uv_tex_scale.height());
gl_->Uniform4f(current_program_->ya_clamp_rect_location(), ya_clamp_rect.x(),
ya_clamp_rect.y(), ya_clamp_rect.right(),
ya_clamp_rect.bottom());
gl_->Uniform4f(current_program_->uv_clamp_rect_location(), uv_clamp_rect.x(),
uv_clamp_rect.y(), uv_clamp_rect.right(),
uv_clamp_rect.bottom());
gl_->Uniform1i(current_program_->y_texture_location(), 1);
if (uv_texture_mode == UV_TEXTURE_MODE_UV) {
gl_->Uniform1i(current_program_->uv_texture_location(), 2);
} else {
gl_->Uniform1i(current_program_->u_texture_location(), 2);
gl_->Uniform1i(current_program_->v_texture_location(), 3);
}
if (alpha_texture_mode == YUV_HAS_ALPHA_TEXTURE)
gl_->Uniform1i(current_program_->a_texture_location(), 4);
gl_->Uniform1f(current_program_->resource_multiplier_location(),
quad->resource_multiplier);
gl_->Uniform1f(current_program_->resource_offset_location(),
quad->resource_offset);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
auto tile_rect = gfx::RectF(quad->rect);
SetShaderOpacity(quad);
if (!clip_region) {
DrawQuadGeometry(current_frame()->projection_matrix,
quad->shared_quad_state->quad_to_target_transform,
tile_rect);
} else {
float uvs[8] = {0};
GetScaledUVs(quad->visible_rect, clip_region, uvs);
gfx::QuadF region_quad = *clip_region;
region_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
region_quad -= gfx::Vector2dF(0.5f, 0.5f);
DrawQuadGeometryClippedByQuadF(
quad->shared_quad_state->quad_to_target_transform, tile_rect,
region_quad, uvs);
}
}
void GLRenderer::DrawStreamVideoQuad(const StreamVideoDrawQuad* quad,
const gfx::QuadF* clip_region) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
DCHECK(output_surface_->context_provider()
->ContextCapabilities()
.egl_image_external);
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id());
SetUseProgram(ProgramKey::VideoStream(tex_coord_precision),
lock.color_space());
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id());
static float gl_matrix[16];
ToGLMatrix(&gl_matrix[0], quad->matrix);
gl_->UniformMatrix4fvStreamTextureMatrixCHROMIUM(
current_program_->tex_matrix_location(), false, gl_matrix);
SetShaderOpacity(quad);
if (!clip_region) {
DrawQuadGeometry(current_frame()->projection_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect));
} else {
gfx::QuadF region_quad(*clip_region);
region_quad.Scale(1.0f / quad->rect.width(), 1.0f / quad->rect.height());
region_quad -= gfx::Vector2dF(0.5f, 0.5f);
float uvs[8] = {0};
GetScaledUVs(quad->visible_rect, clip_region, uvs);
DrawQuadGeometryClippedByQuadF(
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect), region_quad, uvs);
}
}
void GLRenderer::FlushTextureQuadCache(BoundGeometry flush_binding) {
// Check to see if we have anything to draw.
if (draw_cache_.is_empty)
return;
PrepareGeometry(flush_binding);
// Set the correct blending mode.
SetBlendEnabled(draw_cache_.needs_blending);
// Assume the current active textures is 0.
ResourceProvider::ScopedSamplerGL locked_quad(
resource_provider_,
draw_cache_.resource_id,
draw_cache_.nearest_neighbor ? GL_NEAREST : GL_LINEAR);
// Bind the program to the GL state.
SetUseProgram(draw_cache_.program_key, locked_quad.color_space());
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(locked_quad.target(), locked_quad.texture_id());
static_assert(sizeof(Float4) == 4 * sizeof(float),
"Float4 struct should be densely packed");
static_assert(sizeof(Float16) == 16 * sizeof(float),
"Float16 struct should be densely packed");
// Upload the tranforms for both points and uvs.
gl_->UniformMatrix4fv(
current_program_->matrix_location(),
static_cast<int>(draw_cache_.matrix_data.size()), false,
reinterpret_cast<float*>(&draw_cache_.matrix_data.front()));
gl_->Uniform4fv(current_program_->vertex_tex_transform_location(),
static_cast<int>(draw_cache_.uv_xform_data.size()),
reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front()));
if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
Float4 background_color =
PremultipliedColor(draw_cache_.background_color, 1.f);
gl_->Uniform4fv(current_program_->background_color_location(), 1,
background_color.data);
}
gl_->Uniform1fv(
current_program_->vertex_opacity_location(),
static_cast<int>(draw_cache_.vertex_opacity_data.size()),
static_cast<float*>(&draw_cache_.vertex_opacity_data.front()));
DCHECK_LE(draw_cache_.matrix_data.size(),
static_cast<size_t>(std::numeric_limits<int>::max()) / 6u);
// Draw the quads!
gl_->DrawElements(GL_TRIANGLES,
6 * static_cast<int>(draw_cache_.matrix_data.size()),
GL_UNSIGNED_SHORT, 0);
// Draw the border if requested.
if (gl_composited_texture_quad_border_) {
// When we draw the composited borders we have one flush per quad.
DCHECK_EQ(1u, draw_cache_.matrix_data.size());
SetBlendEnabled(false);
SetUseProgram(ProgramKey::DebugBorder(), gfx::ColorSpace::CreateSRGB());
gl_->UniformMatrix4fv(
current_program_->matrix_location(), 1, false,
reinterpret_cast<float*>(&draw_cache_.matrix_data.front()));
// Pick a random color based on the scale on X and Y.
int colorIndex = static_cast<int>(draw_cache_.matrix_data.front().data[0] *
draw_cache_.matrix_data.front().data[5]);
SkColor color = DebugColors::GLCompositedTextureQuadBorderColor(colorIndex);
SetShaderColor(color, 1.f);
gl_->LineWidth(DebugColors::GLCompositedTextureQuadBoderWidth());
// The indices for the line are stored in the same array as the triangle
// indices.
gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0);
}
// Clear the cache.
draw_cache_.is_empty = true;
draw_cache_.resource_id = -1;
draw_cache_.uv_xform_data.resize(0);
draw_cache_.vertex_opacity_data.resize(0);
draw_cache_.matrix_data.resize(0);
// If we had a clipped binding, prepare the shared binding for the
// next inserts.
if (flush_binding == CLIPPED_BINDING) {
PrepareGeometry(SHARED_BINDING);
}
}
void GLRenderer::EnqueueTextureQuad(const TextureDrawQuad* quad,
const gfx::QuadF* clip_region) {
// If we have a clip_region then we have to render the next quad
// with dynamic geometry, therefore we must flush all pending
// texture quads.
if (clip_region) {
// We send in false here because we want to flush what's currently in the
// queue using the shared_geometry and not clipped_geometry
FlushTextureQuadCache(SHARED_BINDING);
}
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id());
const SamplerType sampler = SamplerTypeFromTextureTarget(lock.target());
ProgramKey program_key = ProgramKey::Texture(
tex_coord_precision, sampler,
quad->premultiplied_alpha ? PREMULTIPLIED_ALPHA : NON_PREMULTIPLIED_ALPHA,
quad->background_color != SK_ColorTRANSPARENT);
int resource_id = quad->resource_id();
size_t max_quads = StaticGeometryBinding::NUM_QUADS;
if (draw_cache_.is_empty || draw_cache_.program_key != program_key ||
draw_cache_.resource_id != resource_id ||
draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
draw_cache_.nearest_neighbor != quad->nearest_neighbor ||
draw_cache_.background_color != quad->background_color ||
draw_cache_.matrix_data.size() >= max_quads) {
FlushTextureQuadCache(SHARED_BINDING);
draw_cache_.is_empty = false;
draw_cache_.program_key = program_key;
draw_cache_.resource_id = resource_id;
draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
draw_cache_.nearest_neighbor = quad->nearest_neighbor;
draw_cache_.background_color = quad->background_color;
}
// Generate the uv-transform
Float4 uv_transform = {{0.0f, 0.0f, 1.0f, 1.0f}};
if (!clip_region)
uv_transform = UVTransform(quad);
if (sampler == SAMPLER_TYPE_2D_RECT) {
// Un-normalize the texture coordiantes for rectangle targets.
gfx::Size texture_size = lock.size();
uv_transform.data[0] *= texture_size.width();
uv_transform.data[2] *= texture_size.width();
uv_transform.data[1] *= texture_size.height();
uv_transform.data[3] *= texture_size.height();
}
draw_cache_.uv_xform_data.push_back(uv_transform);
// Generate the vertex opacity
const float opacity = quad->shared_quad_state->opacity;
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
// Generate the transform matrix
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect));
quad_rect_matrix = current_frame()->projection_matrix * quad_rect_matrix;
Float16 m;
quad_rect_matrix.matrix().asColMajorf(m.data);
draw_cache_.matrix_data.push_back(m);
if (clip_region) {
gfx::QuadF scaled_region;
if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) {
scaled_region = SharedGeometryQuad().BoundingBox();
}
// Both the scaled region and the SharedGeomtryQuad are in the space
// -0.5->0.5. We need to move that to the space 0->1.
float uv[8];
uv[0] = scaled_region.p1().x() + 0.5f;
uv[1] = scaled_region.p1().y() + 0.5f;
uv[2] = scaled_region.p2().x() + 0.5f;
uv[3] = scaled_region.p2().y() + 0.5f;
uv[4] = scaled_region.p3().x() + 0.5f;
uv[5] = scaled_region.p3().y() + 0.5f;
uv[6] = scaled_region.p4().x() + 0.5f;
uv[7] = scaled_region.p4().y() + 0.5f;
PrepareGeometry(CLIPPED_BINDING);
clipped_geometry_->InitializeCustomQuadWithUVs(scaled_region, uv);
FlushTextureQuadCache(CLIPPED_BINDING);
} else if (gl_composited_texture_quad_border_) {
FlushTextureQuadCache(SHARED_BINDING);
}
}
void GLRenderer::FinishDrawingFrame() {
if (use_sync_query_) {
DCHECK(current_sync_query_);
current_sync_query_->End();
pending_sync_queries_.push_back(std::move(current_sync_query_));
}
swap_buffer_rect_.Union(current_frame()->root_damage_rect);
if (overdraw_feedback_)
FlushOverdrawFeedback(swap_buffer_rect_);
current_framebuffer_lock_ = nullptr;
gl_->Disable(GL_BLEND);
blend_shadow_ = false;
ScheduleCALayers();
ScheduleOverlays();
}
void GLRenderer::FinishDrawingQuadList() {
FlushTextureQuadCache(SHARED_BINDING);
}
bool GLRenderer::FlippedFramebuffer() const {
if (force_drawing_frame_framebuffer_unflipped_)
return false;
if (current_frame()->current_render_pass != current_frame()->root_render_pass)
return true;
return FlippedRootFramebuffer();
}
bool GLRenderer::FlippedRootFramebuffer() const {
// GL is normally flipped, so a flipped output results in an unflipping.
return !output_surface_->capabilities().flipped_output_surface;
}
void GLRenderer::EnsureScissorTestEnabled() {
if (is_scissor_enabled_)
return;
FlushTextureQuadCache(SHARED_BINDING);
gl_->Enable(GL_SCISSOR_TEST);
is_scissor_enabled_ = true;
}
void GLRenderer::EnsureScissorTestDisabled() {
if (!is_scissor_enabled_)
return;
FlushTextureQuadCache(SHARED_BINDING);
gl_->Disable(GL_SCISSOR_TEST);
is_scissor_enabled_ = false;
}
void GLRenderer::CopyCurrentRenderPassToBitmap(
std::unique_ptr<CopyOutputRequest> request) {
TRACE_EVENT0("cc", "GLRenderer::CopyCurrentRenderPassToBitmap");
gfx::Rect copy_rect = current_frame()->current_render_pass->output_rect;
if (request->has_area())
copy_rect.Intersect(request->area());
GetFramebufferPixelsAsync(copy_rect, std::move(request));
}
void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
transform.matrix().asColMajorf(gl_matrix);
}
void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad) {
if (!current_program_ || current_program_->quad_location() == -1)
return;
float gl_quad[8];
gl_quad[0] = quad.p1().x();
gl_quad[1] = quad.p1().y();
gl_quad[2] = quad.p2().x();
gl_quad[3] = quad.p2().y();
gl_quad[4] = quad.p3().x();
gl_quad[5] = quad.p3().y();
gl_quad[6] = quad.p4().x();
gl_quad[7] = quad.p4().y();
gl_->Uniform2fv(current_program_->quad_location(), 4, gl_quad);
}
void GLRenderer::SetShaderOpacity(const DrawQuad* quad) {
if (!current_program_ || current_program_->alpha_location() == -1)
return;
gl_->Uniform1f(current_program_->alpha_location(),
quad->shared_quad_state->opacity);
}
void GLRenderer::SetShaderMatrix(const gfx::Transform& transform) {
if (!current_program_ || current_program_->matrix_location() == -1)
return;
float gl_matrix[16];
ToGLMatrix(gl_matrix, transform);
gl_->UniformMatrix4fv(current_program_->matrix_location(), 1, false,
gl_matrix);
}