blob: 81d2800c9867fc8244d20c99741e9de1903af8b4 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/trees/layer_tree_impl.h"
#include "base/macros.h"
#include "base/memory/ptr_util.h"
#include "cc/layers/heads_up_display_layer_impl.h"
#include "cc/test/fake_layer_tree_host_impl.h"
#include "cc/test/geometry_test_utils.h"
#include "cc/test/layer_test_common.h"
#include "cc/test/layer_tree_settings_for_testing.h"
#include "cc/trees/clip_node.h"
#include "cc/trees/draw_property_utils.h"
#include "cc/trees/layer_tree_host_common.h"
#include "cc/trees/layer_tree_host_impl.h"
#include "cc/trees/mutable_properties.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cc {
namespace {
class LayerTreeImplTestSettings : public LayerTreeSettingsForTesting {
public:
LayerTreeImplTestSettings() {
layer_transforms_should_scale_layer_contents = true;
}
};
class LayerTreeImplTest : public testing::Test {
public:
LayerTreeImplTest() : impl_test_(LayerTreeImplTestSettings()) {}
FakeLayerTreeHostImpl& host_impl() const { return *impl_test_.host_impl(); }
LayerImpl* root_layer() { return impl_test_.root_layer_for_testing(); }
const LayerImplList& RenderSurfaceLayerList() const {
return host_impl().active_tree()->RenderSurfaceLayerList();
}
void ExecuteCalculateDrawProperties(
LayerImpl* root_layer,
bool skip_verify_visible_rect_calculations = false) {
// We are probably not testing what is intended if the root_layer bounds are
// empty.
DCHECK(!root_layer->bounds().IsEmpty());
render_surface_layer_list_impl_.clear();
LayerTreeHostCommon::CalcDrawPropsImplInputsForTesting inputs(
root_layer, root_layer->bounds(), &render_surface_layer_list_impl_);
inputs.can_adjust_raster_scales = true;
if (skip_verify_visible_rect_calculations)
inputs.verify_visible_rect_calculations = false;
LayerTreeHostCommon::CalculateDrawPropertiesForTesting(&inputs);
}
int HitTestSimpleTree(int root_id,
int left_child_id,
int right_child_id,
int root_sorting_context,
int left_child_sorting_context,
int right_child_sorting_context,
float root_depth,
float left_child_depth,
float right_child_depth) {
host_impl().active_tree()->SetRootLayerForTesting(nullptr);
std::unique_ptr<LayerImpl> root =
LayerImpl::Create(host_impl().active_tree(), root_id);
std::unique_ptr<LayerImpl> left_child =
LayerImpl::Create(host_impl().active_tree(), left_child_id);
std::unique_ptr<LayerImpl> right_child =
LayerImpl::Create(host_impl().active_tree(), right_child_id);
gfx::Size bounds(100, 100);
{
gfx::Transform translate_z;
translate_z.Translate3d(0, 0, root_depth);
root->test_properties()->transform = translate_z;
root->test_properties()->sorting_context_id = root_sorting_context;
root->SetBounds(bounds);
root->SetDrawsContent(true);
}
{
gfx::Transform translate_z;
translate_z.Translate3d(0, 0, left_child_depth);
left_child->test_properties()->transform = translate_z;
left_child->test_properties()->sorting_context_id =
left_child_sorting_context;
left_child->SetBounds(bounds);
left_child->SetDrawsContent(true);
left_child->test_properties()->should_flatten_transform = false;
}
{
gfx::Transform translate_z;
translate_z.Translate3d(0, 0, right_child_depth);
right_child->test_properties()->transform = translate_z;
right_child->test_properties()->sorting_context_id =
right_child_sorting_context;
right_child->SetBounds(bounds);
right_child->SetDrawsContent(true);
}
root->test_properties()->AddChild(std::move(left_child));
root->test_properties()->AddChild(std::move(right_child));
host_impl().SetViewportSize(root->bounds());
host_impl().active_tree()->SetRootLayerForTesting(std::move(root));
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
CHECK_EQ(1u, RenderSurfaceLayerList().size());
gfx::PointF test_point = gfx::PointF(1.f, 1.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
CHECK(result_layer);
return result_layer->id();
}
private:
LayerTestCommon::LayerImplTest impl_test_;
std::vector<LayerImpl*> render_surface_layer_list_impl_;
};
TEST_F(LayerTreeImplTest, HitTestingForSingleLayer) {
gfx::Size bounds(100, 100);
LayerImpl* root = root_layer();
root->SetBounds(bounds);
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root_layer()->GetRenderSurface()->layer_list().size());
// Hit testing for a point outside the layer should return a null pointer.
gfx::PointF test_point(101.f, 101.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(-1.f, -1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Hit testing for a point inside should return the root layer.
test_point = gfx::PointF(1.f, 1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
test_point = gfx::PointF(99.f, 99.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
}
TEST_F(LayerTreeImplTest, UpdateViewportAndHitTest) {
// Ensures that the viewport rect is correctly updated by the clip tree.
gfx::Size bounds(100, 100);
LayerImpl* root = root_layer();
root->SetBounds(bounds);
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
EXPECT_EQ(
gfx::RectF(gfx::SizeF(bounds)),
host_impl().active_tree()->property_trees()->clip_tree.ViewportClip());
EXPECT_EQ(gfx::Rect(bounds), root->visible_layer_rect());
gfx::Size new_bounds(50, 50);
host_impl().SetViewportSize(new_bounds);
gfx::PointF test_point(51.f, 51.f);
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_EQ(
gfx::RectF(gfx::SizeF(new_bounds)),
host_impl().active_tree()->property_trees()->clip_tree.ViewportClip());
EXPECT_EQ(gfx::Rect(new_bounds), root->visible_layer_rect());
}
TEST_F(LayerTreeImplTest, HitTestingForSingleLayerAndHud) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
// Create hud and add it as a child of root.
std::unique_ptr<HeadsUpDisplayLayerImpl> hud =
HeadsUpDisplayLayerImpl::Create(host_impl().active_tree(), 11111);
hud->SetBounds(gfx::Size(200, 200));
hud->SetDrawsContent(true);
host_impl().SetViewportSize(hud->bounds());
host_impl().active_tree()->set_hud_layer(hud.get());
root->test_properties()->AddChild(std::move(hud));
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(2u, root_layer()->GetRenderSurface()->layer_list().size());
// Hit testing for a point inside HUD, but outside root should return null
gfx::PointF test_point(101.f, 101.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(-1.f, -1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Hit testing for a point inside should return the root layer, never the HUD
// layer.
test_point = gfx::PointF(1.f, 1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
test_point = gfx::PointF(99.f, 99.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingForUninvertibleTransform) {
gfx::Transform uninvertible_transform;
uninvertible_transform.matrix().set(0, 0, 0.0);
uninvertible_transform.matrix().set(1, 1, 0.0);
uninvertible_transform.matrix().set(2, 2, 0.0);
uninvertible_transform.matrix().set(3, 3, 0.0);
ASSERT_FALSE(uninvertible_transform.IsInvertible());
LayerImpl* root = root_layer();
root->test_properties()->transform = uninvertible_transform;
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
// While computing visible rects by combining clips in screen space, we set
// the entire layer as visible if the screen space transform is singular. This
// is not always true when we combine clips in target space because if the
// intersection of combined_clip in taret space with layer_rect projected to
// target space is empty, we set it to an empty rect.
bool skip_verify_visible_rect_calculations = true;
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree(
skip_verify_visible_rect_calculations);
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root_layer()->GetRenderSurface()->layer_list().size());
ASSERT_FALSE(root_layer()->ScreenSpaceTransform().IsInvertible());
// Hit testing any point should not hit the layer. If the invertible matrix is
// accidentally ignored and treated like an identity, then the hit testing
// will incorrectly hit the layer when it shouldn't.
gfx::PointF test_point(1.f, 1.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(10.f, 10.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(10.f, 30.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(50.f, 50.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(67.f, 48.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(99.f, 99.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(-1.f, -1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
}
TEST_F(LayerTreeImplTest, HitTestingForSinglePositionedLayer) {
// This layer is positioned, and hit testing should correctly know where the
// layer is located.
LayerImpl* root = root_layer();
root->SetPosition(gfx::PointF(50.f, 50.f));
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root_layer()->GetRenderSurface()->layer_list().size());
// Hit testing for a point outside the layer should return a null pointer.
gfx::PointF test_point(49.f, 49.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Even though the layer exists at (101, 101), it should not be visible there
// since the root render surface would clamp it.
test_point = gfx::PointF(101.f, 101.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Hit testing for a point inside should return the root layer.
test_point = gfx::PointF(51.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
test_point = gfx::PointF(99.f, 99.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingForSingleRotatedLayer) {
gfx::Transform rotation45_degrees_about_center;
rotation45_degrees_about_center.Translate(50.0, 50.0);
rotation45_degrees_about_center.RotateAboutZAxis(45.0);
rotation45_degrees_about_center.Translate(-50.0, -50.0);
LayerImpl* root = root_layer();
root->test_properties()->transform = rotation45_degrees_about_center;
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root_layer()->GetRenderSurface()->layer_list().size());
// Hit testing for points outside the layer.
// These corners would have been inside the un-transformed layer, but they
// should not hit the correctly transformed layer.
gfx::PointF test_point(99.f, 99.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(1.f, 1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Hit testing for a point inside should return the root layer.
test_point = gfx::PointF(1.f, 50.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
// Hit testing the corners that would overlap the unclipped layer, but are
// outside the clipped region.
test_point = gfx::PointF(50.f, -1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_FALSE(result_layer);
test_point = gfx::PointF(-1.f, 50.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_FALSE(result_layer);
}
TEST_F(LayerTreeImplTest, HitTestingClipNodeDifferentTransformAndTargetIds) {
// Tests hit testing on a layer whose clip node has different transform and
// target id.
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(500, 500));
gfx::Transform translation;
translation.Translate(100, 100);
std::unique_ptr<LayerImpl> render_surface =
LayerImpl::Create(host_impl().active_tree(), 2);
render_surface->test_properties()->transform = translation;
render_surface->SetBounds(gfx::Size(100, 100));
render_surface->test_properties()->force_render_surface = true;
gfx::Transform scale_matrix;
scale_matrix.Scale(2, 2);
std::unique_ptr<LayerImpl> scale =
LayerImpl::Create(host_impl().active_tree(), 3);
scale->test_properties()->transform = scale_matrix;
scale->SetBounds(gfx::Size(50, 50));
std::unique_ptr<LayerImpl> clip =
LayerImpl::Create(host_impl().active_tree(), 4);
clip->SetBounds(gfx::Size(25, 25));
clip->SetMasksToBounds(true);
std::unique_ptr<LayerImpl> test =
LayerImpl::Create(host_impl().active_tree(), 5);
test->SetBounds(gfx::Size(100, 100));
test->SetDrawsContent(true);
clip->test_properties()->AddChild(std::move(test));
scale->test_properties()->AddChild(std::move(clip));
render_surface->test_properties()->AddChild(std::move(scale));
root->test_properties()->AddChild(std::move(render_surface));
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
gfx::PointF test_point(160.f, 160.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(140.f, 140.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(5, result_layer->id());
ClipTree& clip_tree = host_impl().active_tree()->property_trees()->clip_tree;
ClipNode* clip_node = clip_tree.Node(result_layer->clip_tree_index());
EXPECT_NE(clip_node->transform_id, clip_node->target_transform_id);
}
TEST_F(LayerTreeImplTest, HitTestingSiblings) {
// This tests hit testing when the test point hits only one of the siblings.
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
std::unique_ptr<LayerImpl> child1 =
LayerImpl::Create(host_impl().active_tree(), 2);
child1->SetBounds(gfx::Size(25, 25));
child1->SetMasksToBounds(true);
child1->SetDrawsContent(true);
std::unique_ptr<LayerImpl> child2 =
LayerImpl::Create(host_impl().active_tree(), 3);
child2->SetBounds(gfx::Size(75, 75));
child2->SetMasksToBounds(true);
child2->SetDrawsContent(true);
root->test_properties()->AddChild(std::move(child1));
root->test_properties()->AddChild(std::move(child2));
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
gfx::PointF test_point(50.f, 50.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingPointOutsideMaxTextureSize) {
gfx::Transform identity_matrix;
int max_texture_size =
host_impl().active_tree()->resource_provider()->max_texture_size();
gfx::Size bounds(max_texture_size + 100, max_texture_size + 100);
LayerImpl* root = root_layer();
root->SetBounds(bounds);
std::unique_ptr<LayerImpl> surface =
LayerImpl::Create(host_impl().active_tree(), 2);
surface->SetBounds(bounds);
surface->SetMasksToBounds(true);
surface->SetDrawsContent(true);
surface->test_properties()->force_render_surface = true;
root->test_properties()->AddChild(std::move(surface));
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
gfx::PointF test_point(max_texture_size - 50, max_texture_size - 50);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_TRUE(result_layer);
test_point = gfx::PointF(max_texture_size + 50, max_texture_size + 50);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
}
TEST_F(LayerTreeImplTest, HitTestingForSinglePerspectiveLayer) {
// perspective_projection_about_center * translation_by_z is designed so that
// the 100 x 100 layer becomes 50 x 50, and remains centered at (50, 50).
gfx::Transform perspective_projection_about_center;
perspective_projection_about_center.Translate(50.0, 50.0);
perspective_projection_about_center.ApplyPerspectiveDepth(1.0);
perspective_projection_about_center.Translate(-50.0, -50.0);
gfx::Transform translation_by_z;
translation_by_z.Translate3d(0.0, 0.0, -1.0);
LayerImpl* root = root_layer();
root->test_properties()->transform =
(perspective_projection_about_center * translation_by_z);
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root_layer()->GetRenderSurface()->layer_list().size());
// Hit testing for points outside the layer.
// These corners would have been inside the un-transformed layer, but they
// should not hit the correctly transformed layer.
gfx::PointF test_point(24.f, 24.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(76.f, 76.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Hit testing for a point inside should return the root layer.
test_point = gfx::PointF(26.f, 26.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
test_point = gfx::PointF(74.f, 74.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingForSimpleClippedLayer) {
// Test that hit-testing will only work for the visible portion of a layer,
// and not the entire layer bounds. Here we just test the simple axis-aligned
// case.
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
{
std::unique_ptr<LayerImpl> clipping_layer =
LayerImpl::Create(host_impl().active_tree(), 123);
// this layer is positioned, and hit testing should correctly know where the
// layer is located.
clipping_layer->SetPosition(gfx::PointF(25.f, 25.f));
clipping_layer->SetBounds(gfx::Size(50, 50));
clipping_layer->SetMasksToBounds(true);
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), 456);
child->SetPosition(gfx::PointF(-50.f, -50.f));
child->SetBounds(gfx::Size(300, 300));
child->SetDrawsContent(true);
clipping_layer->test_properties()->AddChild(std::move(child));
root->test_properties()->AddChild(std::move(clipping_layer));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root_layer()->GetRenderSurface()->layer_list().size());
ASSERT_EQ(456, root_layer()->GetRenderSurface()->layer_list().at(0)->id());
// Hit testing for a point outside the layer should return a null pointer.
// Despite the child layer being very large, it should be clipped to the root
// layer's bounds.
gfx::PointF test_point(24.f, 24.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Even though the layer exists at (101, 101), it should not be visible there
// since the clipping_layer would clamp it.
test_point = gfx::PointF(76.f, 76.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Hit testing for a point inside should return the child layer.
test_point = gfx::PointF(26.f, 26.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(456, result_layer->id());
test_point = gfx::PointF(74.f, 74.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(456, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingForMultiClippedRotatedLayer) {
// This test checks whether hit testing correctly avoids hit testing with
// multiple ancestors that clip in non axis-aligned ways. To pass this test,
// the hit testing algorithm needs to recognize that multiple parent layers
// may clip the layer, and should not actually hit those clipped areas.
//
// The child and grand_child layers are both initialized to clip the
// rotated_leaf. The child layer is rotated about the top-left corner, so that
// the root + child clips combined create a triangle. The rotated_leaf will
// only be visible where it overlaps this triangle.
//
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetMasksToBounds(true);
// Visible rects computed by combinig clips in target space and root space
// don't match because of rotation transforms. So, we skip
// verify_visible_rect_calculations.
bool skip_verify_visible_rect_calculations = true;
{
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), 456);
std::unique_ptr<LayerImpl> grand_child =
LayerImpl::Create(host_impl().active_tree(), 789);
std::unique_ptr<LayerImpl> rotated_leaf =
LayerImpl::Create(host_impl().active_tree(), 2468);
child->SetPosition(gfx::PointF(10.f, 10.f));
child->SetBounds(gfx::Size(80, 80));
child->SetMasksToBounds(true);
gfx::Transform rotation45_degrees_about_corner;
rotation45_degrees_about_corner.RotateAboutZAxis(45.0);
// This is positioned with respect to its parent which is already at
// position (10, 10).
// The size is to ensure it covers at least sqrt(2) * 100.
grand_child->SetBounds(gfx::Size(200, 200));
grand_child->test_properties()->transform = rotation45_degrees_about_corner;
grand_child->SetMasksToBounds(true);
// Rotates about the center of the layer
gfx::Transform rotated_leaf_transform;
rotated_leaf_transform.Translate(
-10.0, -10.0); // cancel out the grand_parent's position
rotated_leaf_transform.RotateAboutZAxis(
-45.0); // cancel out the corner 45-degree rotation of the parent.
rotated_leaf_transform.Translate(50.0, 50.0);
rotated_leaf_transform.RotateAboutZAxis(45.0);
rotated_leaf_transform.Translate(-50.0, -50.0);
rotated_leaf->SetBounds(gfx::Size(100, 100));
rotated_leaf->test_properties()->transform = rotated_leaf_transform;
rotated_leaf->SetDrawsContent(true);
grand_child->test_properties()->AddChild(std::move(rotated_leaf));
child->test_properties()->AddChild(std::move(grand_child));
root->test_properties()->AddChild(std::move(child));
ExecuteCalculateDrawProperties(root, skip_verify_visible_rect_calculations);
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree(
skip_verify_visible_rect_calculations);
// (11, 89) is close to the the bottom left corner within the clip, but it is
// not inside the layer.
gfx::PointF test_point(11.f, 89.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Closer inwards from the bottom left will overlap the layer.
test_point = gfx::PointF(25.f, 75.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(2468, result_layer->id());
// (4, 50) is inside the unclipped layer, but that corner of the layer should
// be clipped away by the grandparent and should not get hit. If hit testing
// blindly uses visible content rect without considering how parent may clip
// the layer, then hit testing would accidentally think that the point
// successfully hits the layer.
test_point = gfx::PointF(4.f, 50.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// (11, 50) is inside the layer and within the clipped area.
test_point = gfx::PointF(11.f, 50.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(2468, result_layer->id());
// Around the middle, just to the right and up, would have hit the layer
// except that that area should be clipped away by the parent.
test_point = gfx::PointF(51.f, 49.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Around the middle, just to the left and down, should successfully hit the
// layer.
test_point = gfx::PointF(49.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(2468, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingForNonClippingIntermediateLayer) {
// This test checks that hit testing code does not accidentally clip to layer
// bounds for a layer that actually does not clip.
gfx::Transform identity_matrix;
gfx::Point3F transform_origin;
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
{
std::unique_ptr<LayerImpl> intermediate_layer =
LayerImpl::Create(host_impl().active_tree(), 123);
// this layer is positioned, and hit testing should correctly know where the
// layer is located.
intermediate_layer->SetPosition(gfx::PointF(10.f, 10.f));
intermediate_layer->SetBounds(gfx::Size(50, 50));
// Sanity check the intermediate layer should not clip.
ASSERT_FALSE(intermediate_layer->masks_to_bounds());
ASSERT_FALSE(intermediate_layer->test_properties()->mask_layer);
// The child of the intermediate_layer is translated so that it does not
// overlap intermediate_layer at all. If child is incorrectly clipped, we
// would not be able to hit it successfully.
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), 456);
child->SetPosition(gfx::PointF(60.f, 60.f)); // 70, 70 in screen space
child->SetBounds(gfx::Size(20, 20));
child->SetDrawsContent(true);
intermediate_layer->test_properties()->AddChild(std::move(child));
root->test_properties()->AddChild(std::move(intermediate_layer));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root_layer()->GetRenderSurface()->layer_list().size());
ASSERT_EQ(456, root_layer()->GetRenderSurface()->layer_list().at(0)->id());
// Hit testing for a point outside the layer should return a null pointer.
gfx::PointF test_point(69.f, 69.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(91.f, 91.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
EXPECT_FALSE(result_layer);
// Hit testing for a point inside should return the child layer.
test_point = gfx::PointF(71.f, 71.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(456, result_layer->id());
test_point = gfx::PointF(89.f, 89.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(456, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingForMultipleLayers) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
{
// child 1 and child2 are initialized to overlap between x=50 and x=60.
// grand_child is set to overlap both child1 and child2 between y=50 and
// y=60. The expected stacking order is: (front) child2, (second)
// grand_child, (third) child1, and (back) the root layer behind all other
// layers.
std::unique_ptr<LayerImpl> child1 =
LayerImpl::Create(host_impl().active_tree(), 2);
std::unique_ptr<LayerImpl> child2 =
LayerImpl::Create(host_impl().active_tree(), 3);
std::unique_ptr<LayerImpl> grand_child1 =
LayerImpl::Create(host_impl().active_tree(), 4);
child1->SetPosition(gfx::PointF(10.f, 10.f));
child1->SetBounds(gfx::Size(50, 50));
child1->SetDrawsContent(true);
child2->SetPosition(gfx::PointF(50.f, 10.f));
child2->SetBounds(gfx::Size(50, 50));
child2->SetDrawsContent(true);
// Remember that grand_child is positioned with respect to its parent (i.e.
// child1). In screen space, the intended position is (10, 50), with size
// 100 x 50.
grand_child1->SetPosition(gfx::PointF(0.f, 40.f));
grand_child1->SetBounds(gfx::Size(100, 50));
grand_child1->SetDrawsContent(true);
child1->test_properties()->AddChild(std::move(grand_child1));
root->test_properties()->AddChild(std::move(child1));
root->test_properties()->AddChild(std::move(child2));
ExecuteCalculateDrawProperties(root);
}
LayerImpl* child1 = root->test_properties()->children[0];
LayerImpl* child2 = root->test_properties()->children[1];
LayerImpl* grand_child1 = child1->test_properties()->children[0];
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_TRUE(child1);
ASSERT_TRUE(child2);
ASSERT_TRUE(grand_child1);
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
RenderSurfaceImpl* root_render_surface = root->GetRenderSurface();
ASSERT_EQ(4u, root_render_surface->layer_list().size());
ASSERT_EQ(1, root_render_surface->layer_list().at(0)->id()); // root layer
ASSERT_EQ(2, root_render_surface->layer_list().at(1)->id()); // child1
ASSERT_EQ(4, root_render_surface->layer_list().at(2)->id()); // grand_child1
ASSERT_EQ(3, root_render_surface->layer_list().at(3)->id()); // child2
// Nothing overlaps the root at (1, 1), so hit testing there should find
// the root layer.
gfx::PointF test_point = gfx::PointF(1.f, 1.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(1, result_layer->id());
// At (15, 15), child1 and root are the only layers. child1 is expected to be
// on top.
test_point = gfx::PointF(15.f, 15.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(2, result_layer->id());
// At (51, 20), child1 and child2 overlap. child2 is expected to be on top.
test_point = gfx::PointF(51.f, 20.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (80, 51), child2 and grand_child1 overlap. child2 is expected to be on
// top.
test_point = gfx::PointF(80.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (51, 51), all layers overlap each other. child2 is expected to be on top
// of all other layers.
test_point = gfx::PointF(51.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (20, 51), child1 and grand_child1 overlap. grand_child1 is expected to
// be on top.
test_point = gfx::PointF(20.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(4, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingSameSortingContextTied) {
int hit_layer_id = HitTestSimpleTree(/* ids */ 1, 2, 3,
/* sorting_contexts */ 10, 10, 10,
/* depths */ 0, 0, 0);
// 3 is the last in tree order, and so should be on top.
EXPECT_EQ(3, hit_layer_id);
}
TEST_F(LayerTreeImplTest, HitTestingSameSortingContextChildWins) {
int hit_layer_id = HitTestSimpleTree(/* ids */ 1, 2, 3,
/* sorting_contexts */ 10, 10, 10,
/* depths */ 0, 1, 0);
EXPECT_EQ(2, hit_layer_id);
}
TEST_F(LayerTreeImplTest, HitTestingWithoutSortingContext) {
int hit_layer_id = HitTestSimpleTree(/* ids */ 1, 2, 3,
/* sorting_contexts */ 0, 0, 0,
/* depths */ 0, 1, 0);
EXPECT_EQ(3, hit_layer_id);
}
TEST_F(LayerTreeImplTest, HitTestingDistinctSortingContext) {
int hit_layer_id = HitTestSimpleTree(/* ids */ 1, 2, 3,
/* sorting_contexts */ 10, 11, 12,
/* depths */ 0, 1, 0);
EXPECT_EQ(3, hit_layer_id);
}
TEST_F(LayerTreeImplTest, HitTestingSameSortingContextParentWins) {
int hit_layer_id = HitTestSimpleTree(/* ids */ 1, 2, 3,
/* sorting_contexts */ 10, 10, 10,
/* depths */ 0, -1, -1);
EXPECT_EQ(1, hit_layer_id);
}
TEST_F(LayerTreeImplTest, HitTestingForMultipleLayersAtVaryingDepths) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
root->test_properties()->should_flatten_transform = false;
root->test_properties()->sorting_context_id = 1;
{
// child 1 and child2 are initialized to overlap between x=50 and x=60.
// grand_child is set to overlap both child1 and child2 between y=50 and
// y=60. The expected stacking order is: (front) child2, (second)
// grand_child, (third) child1, and (back) the root layer behind all other
// layers.
std::unique_ptr<LayerImpl> child1 =
LayerImpl::Create(host_impl().active_tree(), 2);
std::unique_ptr<LayerImpl> child2 =
LayerImpl::Create(host_impl().active_tree(), 3);
std::unique_ptr<LayerImpl> grand_child1 =
LayerImpl::Create(host_impl().active_tree(), 4);
child1->SetPosition(gfx::PointF(10.f, 10.f));
child1->SetBounds(gfx::Size(50, 50));
child1->SetDrawsContent(true);
child1->test_properties()->should_flatten_transform = false;
child1->test_properties()->sorting_context_id = 1;
child2->SetPosition(gfx::PointF(50.f, 10.f));
child2->SetBounds(gfx::Size(50, 50));
gfx::Transform translate_z;
translate_z.Translate3d(0, 0, 10.f);
child2->test_properties()->transform = translate_z;
child2->SetDrawsContent(true);
child2->test_properties()->should_flatten_transform = false;
child2->test_properties()->sorting_context_id = 1;
// Remember that grand_child is positioned with respect to its parent (i.e.
// child1). In screen space, the intended position is (10, 50), with size
// 100 x 50.
grand_child1->SetPosition(gfx::PointF(0.f, 40.f));
grand_child1->SetBounds(gfx::Size(100, 50));
grand_child1->SetDrawsContent(true);
grand_child1->test_properties()->should_flatten_transform = false;
child1->test_properties()->AddChild(std::move(grand_child1));
root->test_properties()->AddChild(std::move(child1));
root->test_properties()->AddChild(std::move(child2));
}
LayerImpl* child1 = root->test_properties()->children[0];
LayerImpl* child2 = root->test_properties()->children[1];
LayerImpl* grand_child1 = child1->test_properties()->children[0];
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_TRUE(child1);
ASSERT_TRUE(child2);
ASSERT_TRUE(grand_child1);
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
// Nothing overlaps the root_layer at (1, 1), so hit testing there should find
// the root layer.
gfx::PointF test_point = gfx::PointF(1.f, 1.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(1, result_layer->id());
// At (15, 15), child1 and root are the only layers. child1 is expected to be
// on top.
test_point = gfx::PointF(15.f, 15.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(2, result_layer->id());
// At (51, 20), child1 and child2 overlap. child2 is expected to be on top,
// as it was transformed to the foreground.
test_point = gfx::PointF(51.f, 20.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (80, 51), child2 and grand_child1 overlap. child2 is expected to
// be on top, as it was transformed to the foreground.
test_point = gfx::PointF(80.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (51, 51), child1, child2 and grand_child1 overlap. child2 is expected to
// be on top, as it was transformed to the foreground.
test_point = gfx::PointF(51.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (20, 51), child1 and grand_child1 overlap. grand_child1 is expected to
// be on top, as it descends from child1.
test_point = gfx::PointF(20.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(4, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingRespectsClipParents) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
{
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), 2);
std::unique_ptr<LayerImpl> grand_child =
LayerImpl::Create(host_impl().active_tree(), 4);
child->SetPosition(gfx::PointF(10.f, 10.f));
child->SetBounds(gfx::Size(1, 1));
child->SetDrawsContent(true);
child->SetMasksToBounds(true);
grand_child->SetPosition(gfx::PointF(0.f, 40.f));
grand_child->SetBounds(gfx::Size(100, 50));
grand_child->SetDrawsContent(true);
grand_child->test_properties()->force_render_surface = true;
// This should let |grand_child| "escape" |child|'s clip.
grand_child->test_properties()->clip_parent = root;
std::unique_ptr<std::set<LayerImpl*>> clip_children(
new std::set<LayerImpl*>);
clip_children->insert(grand_child.get());
root->test_properties()->clip_children.reset(clip_children.release());
child->test_properties()->AddChild(std::move(grand_child));
root->test_properties()->AddChild(std::move(child));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
gfx::PointF test_point(12.f, 52.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(4, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingRespectsScrollParents) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
{
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), 2);
std::unique_ptr<LayerImpl> scroll_child =
LayerImpl::Create(host_impl().active_tree(), 3);
std::unique_ptr<LayerImpl> grand_child =
LayerImpl::Create(host_impl().active_tree(), 4);
child->SetPosition(gfx::PointF(10.f, 10.f));
child->SetBounds(gfx::Size(1, 1));
child->SetDrawsContent(true);
child->SetMasksToBounds(true);
scroll_child->SetBounds(gfx::Size(200, 200));
scroll_child->SetDrawsContent(true);
// This should cause scroll child and its descendants to be affected by
// |child|'s clip.
scroll_child->test_properties()->scroll_parent = child.get();
child->test_properties()->scroll_children =
base::MakeUnique<std::set<LayerImpl*>>();
child->test_properties()->scroll_children->insert(scroll_child.get());
grand_child->SetBounds(gfx::Size(200, 200));
grand_child->SetDrawsContent(true);
grand_child->test_properties()->force_render_surface = true;
scroll_child->test_properties()->AddChild(std::move(grand_child));
root->test_properties()->AddChild(std::move(scroll_child));
root->test_properties()->AddChild(std::move(child));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
gfx::PointF test_point(12.f, 52.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
// The |test_point| should have been clipped away by |child|, the scroll
// parent, so the only thing that should be hit is |root|.
ASSERT_TRUE(result_layer);
ASSERT_EQ(1, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitTestingForMultipleLayerLists) {
//
// The geometry is set up similarly to the previous case, but
// all layers are forced to be render surfaces now.
//
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
{
// child 1 and child2 are initialized to overlap between x=50 and x=60.
// grand_child is set to overlap both child1 and child2 between y=50 and
// y=60. The expected stacking order is: (front) child2, (second)
// grand_child, (third) child1, and (back) the root layer behind all other
// layers.
std::unique_ptr<LayerImpl> child1 =
LayerImpl::Create(host_impl().active_tree(), 2);
std::unique_ptr<LayerImpl> child2 =
LayerImpl::Create(host_impl().active_tree(), 3);
std::unique_ptr<LayerImpl> grand_child1 =
LayerImpl::Create(host_impl().active_tree(), 4);
child1->SetPosition(gfx::PointF(10.f, 10.f));
child1->SetBounds(gfx::Size(50, 50));
child1->SetDrawsContent(true);
child1->test_properties()->force_render_surface = true;
child2->SetPosition(gfx::PointF(50.f, 10.f));
child2->SetBounds(gfx::Size(50, 50));
child2->SetDrawsContent(true);
child2->test_properties()->force_render_surface = true;
// Remember that grand_child is positioned with respect to its parent (i.e.
// child1). In screen space, the intended position is (10, 50), with size
// 100 x 50.
grand_child1->SetPosition(gfx::PointF(0.f, 40.f));
grand_child1->SetBounds(gfx::Size(100, 50));
grand_child1->SetDrawsContent(true);
grand_child1->test_properties()->force_render_surface = true;
child1->test_properties()->AddChild(std::move(grand_child1));
root->test_properties()->AddChild(std::move(child1));
root->test_properties()->AddChild(std::move(child2));
ExecuteCalculateDrawProperties(root);
}
LayerImpl* child1 = root->test_properties()->children[0];
LayerImpl* child2 = root->test_properties()->children[1];
LayerImpl* grand_child1 = child1->test_properties()->children[0];
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_TRUE(child1);
ASSERT_TRUE(child2);
ASSERT_TRUE(grand_child1);
ASSERT_TRUE(child1->GetRenderSurface());
ASSERT_TRUE(child2->GetRenderSurface());
ASSERT_TRUE(grand_child1->GetRenderSurface());
ASSERT_EQ(4u, RenderSurfaceLayerList().size());
// The root surface has the root layer, and child1's and child2's render
// surfaces.
ASSERT_EQ(3u, root->GetRenderSurface()->layer_list().size());
// The child1 surface has the child1 layer and grand_child1's render surface.
ASSERT_EQ(2u, child1->GetRenderSurface()->layer_list().size());
ASSERT_EQ(1u, child2->GetRenderSurface()->layer_list().size());
ASSERT_EQ(1u, grand_child1->GetRenderSurface()->layer_list().size());
ASSERT_EQ(1, RenderSurfaceLayerList().at(0)->id()); // root layer
ASSERT_EQ(2, RenderSurfaceLayerList()[1]->id()); // child1
ASSERT_EQ(4, RenderSurfaceLayerList().at(2)->id()); // grand_child1
ASSERT_EQ(3, RenderSurfaceLayerList()[3]->id()); // child2
// Nothing overlaps the root at (1, 1), so hit testing there should find
// the root layer.
gfx::PointF test_point(1.f, 1.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(1, result_layer->id());
// At (15, 15), child1 and root are the only layers. child1 is expected to be
// on top.
test_point = gfx::PointF(15.f, 15.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(2, result_layer->id());
// At (51, 20), child1 and child2 overlap. child2 is expected to be on top.
test_point = gfx::PointF(51.f, 20.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (80, 51), child2 and grand_child1 overlap. child2 is expected to be on
// top.
test_point = gfx::PointF(80.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (51, 51), all layers overlap each other. child2 is expected to be on top
// of all other layers.
test_point = gfx::PointF(51.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(3, result_layer->id());
// At (20, 51), child1 and grand_child1 overlap. grand_child1 is expected to
// be on top.
test_point = gfx::PointF(20.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(4, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitCheckingTouchHandlerRegionsForSingleLayer) {
Region touch_handler_region(gfx::Rect(10, 10, 50, 50));
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root->GetRenderSurface()->layer_list().size());
// Hit checking for any point should return a null pointer for a layer without
// any touch event handler regions.
gfx::PointF test_point(11.f, 11.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
root->SetTouchEventHandlerRegion(touch_handler_region);
// Hit checking for a point outside the layer should return a null pointer.
test_point = gfx::PointF(101.f, 101.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(-1.f, -1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the layer, but outside the touch handler
// region should return a null pointer.
test_point = gfx::PointF(1.f, 1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(99.f, 99.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the touch event handler region should
// return the root layer.
test_point = gfx::PointF(11.f, 11.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
test_point = gfx::PointF(59.f, 59.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
}
TEST_F(LayerTreeImplTest,
HitCheckingTouchHandlerRegionsForUninvertibleTransform) {
gfx::Transform uninvertible_transform;
uninvertible_transform.matrix().set(0, 0, 0.0);
uninvertible_transform.matrix().set(1, 1, 0.0);
uninvertible_transform.matrix().set(2, 2, 0.0);
uninvertible_transform.matrix().set(3, 3, 0.0);
ASSERT_FALSE(uninvertible_transform.IsInvertible());
Region touch_handler_region(gfx::Rect(10, 10, 50, 50));
LayerImpl* root = root_layer();
root->test_properties()->transform = uninvertible_transform;
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
root->SetTouchEventHandlerRegion(touch_handler_region);
host_impl().SetViewportSize(root->bounds());
// While computing visible rects by combining clips in screen space, we set
// the entire layer as visible if the screen space transform is singular. This
// is not always true when we combine clips in target space because if the
// intersection of combined_clip in taret space with layer_rect projected to
// target space is empty, we set it to an empty rect.
bool skip_verify_visible_rect_calculations = true;
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree(
skip_verify_visible_rect_calculations);
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root->GetRenderSurface()->layer_list().size());
ASSERT_FALSE(root->ScreenSpaceTransform().IsInvertible());
// Hit checking any point should not hit the touch handler region on the
// layer. If the invertible matrix is accidentally ignored and treated like an
// identity, then the hit testing will incorrectly hit the layer when it
// shouldn't.
gfx::PointF test_point(1.f, 1.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(10.f, 10.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(10.f, 30.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(50.f, 50.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(67.f, 48.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(99.f, 99.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(-1.f, -1.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
}
TEST_F(LayerTreeImplTest,
HitCheckingTouchHandlerRegionsForSinglePositionedLayer) {
Region touch_handler_region(gfx::Rect(10, 10, 50, 50));
// This layer is positioned, and hit testing should correctly know where the
// layer is located.
LayerImpl* root = root_layer();
root->SetPosition(gfx::PointF(50.f, 50.f));
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
root->SetTouchEventHandlerRegion(touch_handler_region);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root->GetRenderSurface()->layer_list().size());
// Hit checking for a point outside the layer should return a null pointer.
gfx::PointF test_point(49.f, 49.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Even though the layer has a touch handler region containing (101, 101), it
// should not be visible there since the root render surface would clamp it.
test_point = gfx::PointF(101.f, 101.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the layer, but outside the touch handler
// region should return a null pointer.
test_point = gfx::PointF(51.f, 51.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the touch event handler region should
// return the root layer.
test_point = gfx::PointF(61.f, 61.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
test_point = gfx::PointF(99.f, 99.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(root->id(), result_layer->id());
}
TEST_F(LayerTreeImplTest,
HitCheckingTouchHandlerRegionsForSingleLayerWithDeviceScale) {
// The layer's device_scale_factor and page_scale_factor should scale the
// content rect and we should be able to hit the touch handler region by
// scaling the points accordingly.
// Set the bounds of the root layer big enough to fit the child when scaled.
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
{
Region touch_handler_region(gfx::Rect(10, 10, 30, 30));
gfx::PointF position(25.f, 25.f);
gfx::Size bounds(50, 50);
std::unique_ptr<LayerImpl> test_layer =
LayerImpl::Create(host_impl().active_tree(), 12345);
test_layer->SetPosition(gfx::PointF(25.f, 25.f));
test_layer->SetBounds(gfx::Size(50, 50));
test_layer->SetDrawsContent(true);
test_layer->SetTouchEventHandlerRegion(touch_handler_region);
root->test_properties()->AddChild(std::move(test_layer));
}
float device_scale_factor = 3.f;
float page_scale_factor = 5.f;
float max_page_scale_factor = 10.f;
gfx::Size scaled_bounds_for_root = gfx::ScaleToCeiledSize(
root->bounds(), device_scale_factor * page_scale_factor);
host_impl().SetViewportSize(scaled_bounds_for_root);
host_impl().active_tree()->SetDeviceScaleFactor(device_scale_factor);
host_impl().active_tree()->SetViewportLayersFromIds(Layer::INVALID_ID, 1, 1,
Layer::INVALID_ID);
host_impl().active_tree()->BuildLayerListAndPropertyTreesForTesting();
host_impl().active_tree()->PushPageScaleFromMainThread(
page_scale_factor, page_scale_factor, max_page_scale_factor);
host_impl().active_tree()->SetPageScaleOnActiveTree(page_scale_factor);
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
// The visible content rect for test_layer is actually 100x100, even though
// its layout size is 50x50, positioned at 25x25.
LayerImpl* test_layer = root->test_properties()->children[0];
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root->GetRenderSurface()->layer_list().size());
// Check whether the child layer fits into the root after scaled.
EXPECT_EQ(gfx::Rect(test_layer->bounds()), test_layer->visible_layer_rect());
// Hit checking for a point outside the layer should return a null pointer
// (the root layer does not have a touch event handler, so it will not be
// tested either).
gfx::PointF test_point(76.f, 76.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the layer, but outside the touch handler
// region should return a null pointer.
test_point = gfx::PointF(26.f, 26.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(34.f, 34.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(65.f, 65.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(74.f, 74.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the touch event handler region should
// return the root layer.
test_point = gfx::PointF(35.f, 35.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(12345, result_layer->id());
test_point = gfx::PointF(64.f, 64.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(12345, result_layer->id());
// Check update of page scale factor on the active tree when page scale layer
// is also the root layer.
page_scale_factor *= 1.5f;
host_impl().active_tree()->SetPageScaleOnActiveTree(page_scale_factor);
EXPECT_EQ(root, host_impl().active_tree()->PageScaleLayer());
test_point = gfx::PointF(35.f, 35.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(12345, result_layer->id());
test_point = gfx::PointF(64.f, 64.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(12345, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitCheckingTouchHandlerRegionsForSimpleClippedLayer) {
// Test that hit-checking will only work for the visible portion of a layer,
// and not the entire layer bounds. Here we just test the simple axis-aligned
// case.
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
{
std::unique_ptr<LayerImpl> clipping_layer =
LayerImpl::Create(host_impl().active_tree(), 123);
// this layer is positioned, and hit testing should correctly know where the
// layer is located.
clipping_layer->SetPosition(gfx::PointF(25.f, 25.f));
clipping_layer->SetBounds(gfx::Size(50, 50));
clipping_layer->SetMasksToBounds(true);
Region touch_handler_region(gfx::Rect(10, 10, 50, 50));
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), 456);
child->SetPosition(gfx::PointF(-50.f, -50.f));
child->SetBounds(gfx::Size(300, 300));
child->SetDrawsContent(true);
child->SetTouchEventHandlerRegion(touch_handler_region);
clipping_layer->test_properties()->AddChild(std::move(child));
root->test_properties()->AddChild(std::move(clipping_layer));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root->GetRenderSurface()->layer_list().size());
ASSERT_EQ(456, root->GetRenderSurface()->layer_list().at(0)->id());
// Hit checking for a point outside the layer should return a null pointer.
// Despite the child layer being very large, it should be clipped to the root
// layer's bounds.
gfx::PointF test_point(24.f, 24.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the layer, but outside the touch handler
// region should return a null pointer.
test_point = gfx::PointF(35.f, 35.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
test_point = gfx::PointF(74.f, 74.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the touch event handler region should
// return the root layer.
test_point = gfx::PointF(25.f, 25.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(456, result_layer->id());
test_point = gfx::PointF(34.f, 34.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(456, result_layer->id());
}
TEST_F(LayerTreeImplTest,
HitCheckingTouchHandlerRegionsForClippedLayerWithDeviceScale) {
// The layer's device_scale_factor and page_scale_factor should scale the
// content rect and we should be able to hit the touch handler region by
// scaling the points accordingly.
// Set the bounds of the root layer big enough to fit the child when scaled.
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
std::unique_ptr<LayerImpl> surface =
LayerImpl::Create(host_impl().active_tree(), 2);
surface->SetBounds(gfx::Size(100, 100));
surface->test_properties()->force_render_surface = true;
{
std::unique_ptr<LayerImpl> clipping_layer =
LayerImpl::Create(host_impl().active_tree(), 123);
// This layer is positioned, and hit testing should correctly know where the
// layer is located.
clipping_layer->SetPosition(gfx::PointF(25.f, 20.f));
clipping_layer->SetBounds(gfx::Size(50, 50));
clipping_layer->SetMasksToBounds(true);
Region touch_handler_region(gfx::Rect(0, 0, 300, 300));
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), 456);
child->SetPosition(gfx::PointF(-50.f, -50.f));
child->SetBounds(gfx::Size(300, 300));
child->SetDrawsContent(true);
child->SetTouchEventHandlerRegion(touch_handler_region);
clipping_layer->test_properties()->AddChild(std::move(child));
surface->test_properties()->AddChild(std::move(clipping_layer));
root->test_properties()->AddChild(std::move(surface));
}
float device_scale_factor = 3.f;
float page_scale_factor = 1.f;
float max_page_scale_factor = 1.f;
gfx::Size scaled_bounds_for_root = gfx::ScaleToCeiledSize(
root->bounds(), device_scale_factor * page_scale_factor);
host_impl().SetViewportSize(scaled_bounds_for_root);
host_impl().active_tree()->SetDeviceScaleFactor(device_scale_factor);
host_impl().active_tree()->SetViewportLayersFromIds(Layer::INVALID_ID, 1, 1,
Layer::INVALID_ID);
host_impl().active_tree()->BuildLayerListAndPropertyTreesForTesting();
host_impl().active_tree()->PushPageScaleFromMainThread(
page_scale_factor, page_scale_factor, max_page_scale_factor);
host_impl().active_tree()->SetPageScaleOnActiveTree(page_scale_factor);
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(2u, RenderSurfaceLayerList().size());
// Hit checking for a point outside the layer should return a null pointer.
// Despite the child layer being very large, it should be clipped to the root
// layer's bounds.
gfx::PointF test_point(24.f, 24.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
// Hit checking for a point inside the touch event handler region should
// return the child layer.
test_point = gfx::PointF(25.f, 25.f);
test_point =
gfx::ScalePoint(test_point, device_scale_factor * page_scale_factor);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(456, result_layer->id());
}
TEST_F(LayerTreeImplTest, HitCheckingTouchHandlerOverlappingRegions) {
gfx::Transform identity_matrix;
gfx::Point3F transform_origin;
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
{
std::unique_ptr<LayerImpl> touch_layer =
LayerImpl::Create(host_impl().active_tree(), 123);
// this layer is positioned, and hit testing should correctly know where the
// layer is located.
touch_layer->SetBounds(gfx::Size(50, 50));
touch_layer->SetDrawsContent(true);
touch_layer->SetTouchEventHandlerRegion(gfx::Rect(0, 0, 50, 50));
root->test_properties()->AddChild(std::move(touch_layer));
}
{
std::unique_ptr<LayerImpl> notouch_layer =
LayerImpl::Create(host_impl().active_tree(), 1234);
// this layer is positioned, and hit testing should correctly know where the
// layer is located.
notouch_layer->SetPosition(gfx::PointF(0, 25));
notouch_layer->SetBounds(gfx::Size(50, 50));
notouch_layer->SetDrawsContent(true);
root->test_properties()->AddChild(std::move(notouch_layer));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(2u, root->GetRenderSurface()->layer_list().size());
ASSERT_EQ(123, root->GetRenderSurface()->layer_list().at(0)->id());
ASSERT_EQ(1234, root->GetRenderSurface()->layer_list().at(1)->id());
gfx::PointF test_point(35.f, 35.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
// We should have passed through the no-touch layer and found the layer
// behind it.
EXPECT_TRUE(result_layer);
host_impl().active_tree()->LayerById(1234)->SetContentsOpaque(true);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
// Even with an opaque layer in the middle, we should still find the layer
// with
// the touch handler behind it (since we can't assume that opaque layers are
// opaque to hit testing).
EXPECT_TRUE(result_layer);
test_point = gfx::PointF(35.f, 15.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
EXPECT_EQ(123, result_layer->id());
test_point = gfx::PointF(35.f, 65.f);
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
}
TEST_F(LayerTreeImplTest, HitTestingTouchHandlerRegionsForLayerThatIsNotDrawn) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
{
Region touch_handler_region(gfx::Rect(10, 10, 30, 30));
std::unique_ptr<LayerImpl> test_layer =
LayerImpl::Create(host_impl().active_tree(), 12345);
test_layer->SetBounds(gfx::Size(50, 50));
test_layer->SetDrawsContent(false);
test_layer->SetTouchEventHandlerRegion(touch_handler_region);
root->test_properties()->AddChild(std::move(test_layer));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
LayerImpl* test_layer = root->test_properties()->children[0];
// As test_layer doesn't draw content, the layer list of root's render surface
// should contain only the root layer.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root->GetRenderSurface()->layer_list().size());
// Hit testing for a point outside the test layer should return null pointer.
// We also implicitly check that the updated screen space transform of a layer
// that is not in drawn render surface layer list (test_layer) is used during
// hit testing (becuase the point is inside test_layer with respect to the old
// screen space transform).
gfx::PointF test_point(24.f, 24.f);
test_layer->SetPosition(gfx::PointF(25.f, 25.f));
gfx::Transform expected_screen_space_transform;
expected_screen_space_transform.Translate(25.f, 25.f);
host_impl().active_tree()->property_trees()->needs_rebuild = true;
host_impl().active_tree()->BuildLayerListAndPropertyTreesForTesting();
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
EXPECT_FALSE(result_layer);
EXPECT_FALSE(test_layer->is_drawn_render_surface_layer_list_member());
EXPECT_TRANSFORMATION_MATRIX_EQ(
expected_screen_space_transform,
draw_property_utils::ScreenSpaceTransform(
test_layer,
host_impl().active_tree()->property_trees()->transform_tree));
// We change the position of the test layer such that the test point is now
// inside the test_layer.
test_layer = root->test_properties()->children[0];
test_layer->SetPosition(gfx::PointF(10.f, 10.f));
test_layer->NoteLayerPropertyChanged();
expected_screen_space_transform.MakeIdentity();
expected_screen_space_transform.Translate(10.f, 10.f);
host_impl().active_tree()->property_trees()->needs_rebuild = true;
host_impl().active_tree()->BuildLayerListAndPropertyTreesForTesting();
result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPointInTouchHandlerRegion(
test_point);
ASSERT_TRUE(result_layer);
ASSERT_EQ(test_layer, result_layer);
EXPECT_FALSE(result_layer->is_drawn_render_surface_layer_list_member());
EXPECT_TRANSFORMATION_MATRIX_EQ(
expected_screen_space_transform,
draw_property_utils::ScreenSpaceTransform(
test_layer,
host_impl().active_tree()->property_trees()->transform_tree));
}
TEST_F(LayerTreeImplTest, SelectionBoundsForSingleLayer) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
ASSERT_EQ(1u, root->GetRenderSurface()->layer_list().size());
LayerSelection input;
input.start.type = gfx::SelectionBound::LEFT;
input.start.edge_top = gfx::Point(10, 10);
input.start.edge_bottom = gfx::Point(10, 20);
input.start.layer_id = root->id();
input.end.type = gfx::SelectionBound::RIGHT;
input.end.edge_top = gfx::Point(50, 10);
input.end.edge_bottom = gfx::Point(50, 30);
input.end.layer_id = root->id();
Selection<gfx::SelectionBound> output;
// Empty input bounds should produce empty output bounds.
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_EQ(gfx::SelectionBound(), output.start);
EXPECT_EQ(gfx::SelectionBound(), output.end);
// Selection bounds should produce distinct left and right bounds.
host_impl().active_tree()->RegisterSelection(input);
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_EQ(input.start.type, output.start.type());
EXPECT_EQ(gfx::PointF(input.start.edge_bottom), output.start.edge_bottom());
EXPECT_EQ(gfx::PointF(input.start.edge_top), output.start.edge_top());
EXPECT_TRUE(output.start.visible());
EXPECT_EQ(input.end.type, output.end.type());
EXPECT_EQ(gfx::PointF(input.end.edge_bottom), output.end.edge_bottom());
EXPECT_EQ(gfx::PointF(input.end.edge_top), output.end.edge_top());
EXPECT_TRUE(output.end.visible());
// Insertion bounds should produce identical left and right bounds.
LayerSelection insertion_input;
insertion_input.start.type = gfx::SelectionBound::CENTER;
insertion_input.start.edge_top = gfx::Point(15, 10);
insertion_input.start.edge_bottom = gfx::Point(15, 30);
insertion_input.start.layer_id = root->id();
insertion_input.end = insertion_input.start;
host_impl().active_tree()->RegisterSelection(insertion_input);
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_EQ(insertion_input.start.type, output.start.type());
EXPECT_EQ(gfx::PointF(insertion_input.start.edge_bottom),
output.start.edge_bottom());
EXPECT_EQ(gfx::PointF(insertion_input.start.edge_top),
output.start.edge_top());
EXPECT_TRUE(output.start.visible());
EXPECT_EQ(output.start, output.end);
}
TEST_F(LayerTreeImplTest, SelectionBoundsForPartialOccludedLayers) {
LayerImpl* root = root_layer();
root->SetDrawsContent(true);
root->SetBounds(gfx::Size(100, 100));
int clip_layer_id = 1234;
int clipped_layer_id = 123;
gfx::Vector2dF clipping_offset(10, 10);
{
std::unique_ptr<LayerImpl> clipping_layer =
LayerImpl::Create(host_impl().active_tree(), clip_layer_id);
// The clipping layer should occlude the right selection bound.
clipping_layer->SetPosition(gfx::PointF() + clipping_offset);
clipping_layer->SetBounds(gfx::Size(50, 50));
clipping_layer->SetMasksToBounds(true);
std::unique_ptr<LayerImpl> clipped_layer =
LayerImpl::Create(host_impl().active_tree(), clipped_layer_id);
clipped_layer->SetBounds(gfx::Size(100, 100));
clipped_layer->SetDrawsContent(true);
clipping_layer->test_properties()->AddChild(std::move(clipped_layer));
root->test_properties()->AddChild(std::move(clipping_layer));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
LayerSelection input;
input.start.type = gfx::SelectionBound::LEFT;
input.start.edge_top = gfx::Point(25, 10);
input.start.edge_bottom = gfx::Point(25, 30);
input.start.layer_id = clipped_layer_id;
input.end.type = gfx::SelectionBound::RIGHT;
input.end.edge_top = gfx::Point(75, 10);
input.end.edge_bottom = gfx::Point(75, 30);
input.end.layer_id = clipped_layer_id;
host_impl().active_tree()->RegisterSelection(input);
// The left bound should be occluded by the clip layer.
Selection<gfx::SelectionBound> output;
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_EQ(input.start.type, output.start.type());
auto expected_output_start_top = gfx::PointF(input.start.edge_top);
auto expected_output_edge_botom = gfx::PointF(input.start.edge_bottom);
expected_output_start_top.Offset(clipping_offset.x(), clipping_offset.y());
expected_output_edge_botom.Offset(clipping_offset.x(), clipping_offset.y());
EXPECT_EQ(expected_output_start_top, output.start.edge_top());
EXPECT_EQ(expected_output_edge_botom, output.start.edge_bottom());
EXPECT_TRUE(output.start.visible());
EXPECT_EQ(input.end.type, output.end.type());
auto expected_output_end_top = gfx::PointF(input.end.edge_top);
auto expected_output_end_bottom = gfx::PointF(input.end.edge_bottom);
expected_output_end_bottom.Offset(clipping_offset.x(), clipping_offset.y());
expected_output_end_top.Offset(clipping_offset.x(), clipping_offset.y());
EXPECT_EQ(expected_output_end_top, output.end.edge_top());
EXPECT_EQ(expected_output_end_bottom, output.end.edge_bottom());
EXPECT_FALSE(output.end.visible());
// Handles outside the viewport bounds should be marked invisible.
input.start.edge_top = gfx::Point(-25, 0);
input.start.edge_bottom = gfx::Point(-25, 20);
host_impl().active_tree()->RegisterSelection(input);
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_FALSE(output.start.visible());
input.start.edge_top = gfx::Point(0, -25);
input.start.edge_bottom = gfx::Point(0, -5);
host_impl().active_tree()->RegisterSelection(input);
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_FALSE(output.start.visible());
// If the handle bottom is partially visible, the handle is marked visible.
input.start.edge_top = gfx::Point(0, -20);
input.start.edge_bottom = gfx::Point(0, 1);
host_impl().active_tree()->RegisterSelection(input);
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_TRUE(output.start.visible());
}
TEST_F(LayerTreeImplTest, NodesiesForProxies) {
LayerImpl* root = root_layer();
root->SetDrawsContent(true);
root->SetBounds(gfx::Size(100, 100));
uint32_t properties[] = {
MutableProperty::kOpacity, MutableProperty::kScrollLeft,
MutableProperty::kScrollTop, MutableProperty::kTransform,
};
for (size_t i = 0; i < arraysize(properties); ++i) {
int sub_layer_id = i + 2;
std::unique_ptr<LayerImpl> sub_layer =
LayerImpl::Create(host_impl().active_tree(), sub_layer_id);
sub_layer->SetBounds(gfx::Size(50, 50));
sub_layer->SetDrawsContent(true);
sub_layer->SetMutableProperties(properties[i]);
root->test_properties()->AddChild(std::move(sub_layer));
}
host_impl().active_tree()->BuildPropertyTreesForTesting();
for (size_t i = 0; i < arraysize(properties); ++i) {
LayerImpl* layer = host_impl().active_tree()->LayerById(i + 2);
switch (properties[i]) {
case MutableProperty::kOpacity:
DCHECK_EQ(root->transform_tree_index(), layer->transform_tree_index());
DCHECK_NE(root->effect_tree_index(), layer->effect_tree_index());
break;
case MutableProperty::kScrollLeft:
case MutableProperty::kScrollTop:
case MutableProperty::kTransform:
DCHECK_EQ(root->effect_tree_index(), layer->effect_tree_index());
DCHECK_NE(root->transform_tree_index(), layer->transform_tree_index());
for (size_t j = 0; j < arraysize(properties); ++j) {
if (j == i)
continue;
LayerImpl* other = host_impl().active_tree()->LayerById(j + 2);
DCHECK_NE(other->transform_tree_index(),
layer->transform_tree_index());
}
break;
}
}
}
TEST_F(LayerTreeImplTest, SelectionBoundsForScaledLayers) {
LayerImpl* root = root_layer();
root->SetDrawsContent(true);
root->SetBounds(gfx::Size(100, 100));
int root_layer_id = root->id();
int sub_layer_id = 2;
gfx::Vector2dF sub_layer_offset(10, 0);
{
std::unique_ptr<LayerImpl> sub_layer =
LayerImpl::Create(host_impl().active_tree(), sub_layer_id);
sub_layer->SetPosition(gfx::PointF() + sub_layer_offset);
sub_layer->SetBounds(gfx::Size(50, 50));
sub_layer->SetDrawsContent(true);
root->test_properties()->AddChild(std::move(sub_layer));
}
host_impl().active_tree()->BuildPropertyTreesForTesting();
float device_scale_factor = 3.f;
float page_scale_factor = 5.f;
gfx::Size scaled_bounds_for_root = gfx::ScaleToCeiledSize(
root->bounds(), device_scale_factor * page_scale_factor);
host_impl().SetViewportSize(scaled_bounds_for_root);
host_impl().active_tree()->SetViewportLayersFromIds(0, root->id(), 0, 0);
host_impl().active_tree()->SetDeviceScaleFactor(device_scale_factor);
host_impl().active_tree()->SetPageScaleOnActiveTree(page_scale_factor);
host_impl().active_tree()->SetViewportLayersFromIds(Layer::INVALID_ID, 1, 1,
Layer::INVALID_ID);
host_impl().active_tree()->PushPageScaleFromMainThread(
page_scale_factor, page_scale_factor, page_scale_factor);
host_impl().active_tree()->SetPageScaleOnActiveTree(page_scale_factor);
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
// Sanity check the scenario we just created.
ASSERT_EQ(1u, RenderSurfaceLayerList().size());
LayerSelection input;
input.start.type = gfx::SelectionBound::LEFT;
input.start.edge_top = gfx::Point(10, 10);
input.start.edge_bottom = gfx::Point(10, 30);
input.start.layer_id = root_layer_id;
input.end.type = gfx::SelectionBound::RIGHT;
input.end.edge_top = gfx::Point(0, 0);
input.end.edge_bottom = gfx::Point(0, 20);
input.end.layer_id = sub_layer_id;
host_impl().active_tree()->RegisterSelection(input);
// The viewport bounds should be properly scaled by the page scale, but should
// remain in DIP coordinates.
Selection<gfx::SelectionBound> output;
host_impl().active_tree()->GetViewportSelection(&output);
EXPECT_EQ(input.start.type, output.start.type());
auto expected_output_start_top = gfx::PointF(input.start.edge_top);
auto expected_output_edge_bottom = gfx::PointF(input.start.edge_bottom);
expected_output_start_top.Scale(page_scale_factor);
expected_output_edge_bottom.Scale(page_scale_factor);
EXPECT_EQ(expected_output_start_top, output.start.edge_top());
EXPECT_EQ(expected_output_edge_bottom, output.start.edge_bottom());
EXPECT_TRUE(output.start.visible());
EXPECT_EQ(input.end.type, output.end.type());
auto expected_output_end_top = gfx::PointF(input.end.edge_top);
auto expected_output_end_bottom = gfx::PointF(input.end.edge_bottom);
expected_output_end_top.Offset(sub_layer_offset.x(), sub_layer_offset.y());
expected_output_end_bottom.Offset(sub_layer_offset.x(), sub_layer_offset.y());
expected_output_end_top.Scale(page_scale_factor);
expected_output_end_bottom.Scale(page_scale_factor);
EXPECT_EQ(expected_output_end_top, output.end.edge_top());
EXPECT_EQ(expected_output_end_bottom, output.end.edge_bottom());
EXPECT_TRUE(output.end.visible());
}
TEST_F(LayerTreeImplTest, SelectionBoundsWithLargeTransforms) {
LayerImpl* root = root_layer();
root->SetBounds(gfx::Size(100, 100));
int child_id = 2;
int grand_child_id = 3;
gfx::Transform large_transform;
large_transform.Scale(SkDoubleToMScalar(1e37), SkDoubleToMScalar(1e37));
large_transform.RotateAboutYAxis(30);
{
std::unique_ptr<LayerImpl> child =
LayerImpl::Create(host_impl().active_tree(), child_id);
child->test_properties()->transform = large_transform;
child->SetBounds(gfx::Size(100, 100));
std::unique_ptr<LayerImpl> grand_child =
LayerImpl::Create(host_impl().active_tree(), grand_child_id);
grand_child->test_properties()->transform = large_transform;
grand_child->SetBounds(gfx::Size(100, 100));
grand_child->SetDrawsContent(true);
child->test_properties()->AddChild(std::move(grand_child));
root->test_properties()->AddChild(std::move(child));
}
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
LayerSelection input;
input.start.type = gfx::SelectionBound::LEFT;
input.start.edge_top = gfx::Point(10, 10);
input.start.edge_bottom = gfx::Point(10, 20);
input.start.layer_id = grand_child_id;
input.end.type = gfx::SelectionBound::RIGHT;
input.end.edge_top = gfx::Point(50, 10);
input.end.edge_bottom = gfx::Point(50, 30);
input.end.layer_id = grand_child_id;
host_impl().active_tree()->RegisterSelection(input);
Selection<gfx::SelectionBound> output;
host_impl().active_tree()->GetViewportSelection(&output);
// edge_bottom and edge_top aren't allowed to have NaNs, so the selection
// should be empty.
EXPECT_EQ(gfx::SelectionBound(), output.start);
EXPECT_EQ(gfx::SelectionBound(), output.end);
}
TEST_F(LayerTreeImplTest, NumLayersTestOne) {
// Root is created by the test harness.
EXPECT_EQ(1u, host_impl().active_tree()->NumLayers());
EXPECT_TRUE(root_layer());
// Create another layer, should increment.
auto layer = LayerImpl::Create(host_impl().active_tree(), 2);
EXPECT_EQ(2u, host_impl().active_tree()->NumLayers());
}
TEST_F(LayerTreeImplTest, NumLayersSmallTree) {
EXPECT_EQ(1u, host_impl().active_tree()->NumLayers());
LayerImpl* root = root_layer();
root->test_properties()->AddChild(
LayerImpl::Create(host_impl().active_tree(), 2));
root->test_properties()->AddChild(
LayerImpl::Create(host_impl().active_tree(), 3));
root->test_properties()->children[1]->test_properties()->AddChild(
LayerImpl::Create(host_impl().active_tree(), 4));
EXPECT_EQ(4u, host_impl().active_tree()->NumLayers());
}
TEST_F(LayerTreeImplTest, DeviceScaleFactorNeedsDrawPropertiesUpdate) {
host_impl().active_tree()->BuildPropertyTreesForTesting();
host_impl().active_tree()->SetDeviceScaleFactor(1.f);
host_impl().active_tree()->UpdateDrawProperties(false);
EXPECT_FALSE(host_impl().active_tree()->needs_update_draw_properties());
host_impl().active_tree()->SetDeviceScaleFactor(2.f);
EXPECT_TRUE(host_impl().active_tree()->needs_update_draw_properties());
}
TEST_F(LayerTreeImplTest, DeviceColorSpaceDoesNotNeedDrawPropertiesUpdate) {
host_impl().active_tree()->BuildPropertyTreesForTesting();
host_impl().active_tree()->SetDeviceColorSpace(
gfx::ColorSpace::CreateXYZD50());
host_impl().active_tree()->UpdateDrawProperties(false);
EXPECT_FALSE(host_impl().active_tree()->needs_update_draw_properties());
host_impl().active_tree()->SetDeviceColorSpace(gfx::ColorSpace::CreateSRGB());
EXPECT_FALSE(host_impl().active_tree()->needs_update_draw_properties());
}
TEST_F(LayerTreeImplTest, HitTestingCorrectLayerWheelListener) {
host_impl().active_tree()->set_event_listener_properties(
EventListenerClass::kMouseWheel, EventListenerProperties::kBlocking);
LayerImpl* root = root_layer();
std::unique_ptr<LayerImpl> left_child =
LayerImpl::Create(host_impl().active_tree(), 2);
std::unique_ptr<LayerImpl> right_child =
LayerImpl::Create(host_impl().active_tree(), 3);
{
gfx::Transform translate_z;
translate_z.Translate3d(0, 0, 10);
root->test_properties()->transform = translate_z;
root->SetBounds(gfx::Size(100, 100));
root->SetDrawsContent(true);
}
{
gfx::Transform translate_z;
translate_z.Translate3d(0, 0, 10);
left_child->test_properties()->transform = translate_z;
left_child->SetBounds(gfx::Size(100, 100));
left_child->SetDrawsContent(true);
}
{
gfx::Transform translate_z;
translate_z.Translate3d(0, 0, 10);
right_child->test_properties()->transform = translate_z;
right_child->SetBounds(gfx::Size(100, 100));
}
root->test_properties()->AddChild(std::move(left_child));
root->test_properties()->AddChild(std::move(right_child));
host_impl().SetViewportSize(root->bounds());
host_impl().UpdateNumChildrenAndDrawPropertiesForActiveTree();
CHECK_EQ(1u, RenderSurfaceLayerList().size());
gfx::PointF test_point = gfx::PointF(1.f, 1.f);
LayerImpl* result_layer =
host_impl().active_tree()->FindLayerThatIsHitByPoint(test_point);
CHECK(result_layer);
EXPECT_EQ(2, result_layer->id());
}
namespace {
class PersistentSwapPromise
: public SwapPromise,
public base::SupportsWeakPtr<PersistentSwapPromise> {
public:
PersistentSwapPromise() = default;
~PersistentSwapPromise() override = default;
void DidActivate() override {}
MOCK_METHOD1(WillSwap, void(CompositorFrameMetadata* metadata));
MOCK_METHOD0(DidSwap, void());
DidNotSwapAction DidNotSwap(DidNotSwapReason reason) override {
return DidNotSwapAction::KEEP_ACTIVE;
}
void OnCommit() override {}
int64_t TraceId() const override { return 0; }
};
class NotPersistentSwapPromise
: public SwapPromise,
public base::SupportsWeakPtr<NotPersistentSwapPromise> {
public:
NotPersistentSwapPromise() = default;
~NotPersistentSwapPromise() override = default;
void DidActivate() override {}
void WillSwap(CompositorFrameMetadata* metadata) override {}
void DidSwap() override {}
DidNotSwapAction DidNotSwap(DidNotSwapReason reason) override {
return DidNotSwapAction::BREAK_PROMISE;
}
void OnCommit() override {}
int64_t TraceId() const override { return 0; }
};
} // namespace
TEST_F(LayerTreeImplTest, PersistentSwapPromisesAreKeptAlive) {
const size_t promises_count = 2;
std::vector<base::WeakPtr<PersistentSwapPromise>> persistent_promises;
std::vector<std::unique_ptr<PersistentSwapPromise>>
persistent_promises_to_pass;
for (size_t i = 0; i < promises_count; ++i) {
persistent_promises_to_pass.push_back(
base::MakeUnique<PersistentSwapPromise>());
}
for (auto& promise : persistent_promises_to_pass) {
persistent_promises.push_back(promise->AsWeakPtr());
host_impl().active_tree()->QueueSwapPromise(std::move(promise));
}
std::vector<std::unique_ptr<SwapPromise>> promises;
host_impl().active_tree()->PassSwapPromises(std::move(promises));
host_impl().active_tree()->BreakSwapPromises(
SwapPromise::DidNotSwapReason::SWAP_FAILS);
ASSERT_EQ(promises_count, persistent_promises.size());
for (size_t i = 0; i < persistent_promises.size(); ++i) {
SCOPED_TRACE(testing::Message() << "While checking case #" << i);
ASSERT_TRUE(persistent_promises[i]);
EXPECT_CALL(*persistent_promises[i], WillSwap(testing::_));
}
host_impl().active_tree()->FinishSwapPromises(nullptr);
}
TEST_F(LayerTreeImplTest, NotPersistentSwapPromisesAreDroppedWhenSwapFails) {
const size_t promises_count = 2;
std::vector<base::WeakPtr<NotPersistentSwapPromise>> not_persistent_promises;
std::vector<std::unique_ptr<NotPersistentSwapPromise>>
not_persistent_promises_to_pass;
for (size_t i = 0; i < promises_count; ++i) {
not_persistent_promises_to_pass.push_back(
base::MakeUnique<NotPersistentSwapPromise>());
}
for (auto& promise : not_persistent_promises_to_pass) {
not_persistent_promises.push_back(promise->AsWeakPtr());
host_impl().active_tree()->QueueSwapPromise(std::move(promise));
}
std::vector<std::unique_ptr<SwapPromise>> promises;
host_impl().active_tree()->PassSwapPromises(std::move(promises));
ASSERT_EQ(promises_count, not_persistent_promises.size());
for (size_t i = 0; i < not_persistent_promises.size(); ++i) {
EXPECT_FALSE(not_persistent_promises[i]) << "While checking case #" << i;
}
// Finally, check that not persistent promise doesn't survive
// |LayerTreeImpl::BreakSwapPromises|.
{
std::unique_ptr<NotPersistentSwapPromise> promise(
new NotPersistentSwapPromise());
auto weak_promise = promise->AsWeakPtr();
host_impl().active_tree()->QueueSwapPromise(std::move(promise));
host_impl().active_tree()->BreakSwapPromises(
SwapPromise::DidNotSwapReason::SWAP_FAILS);
EXPECT_FALSE(weak_promise);
}
}
} // namespace
} // namespace cc