blob: 77f3210c518f57fcdb67cc3f548ccb1ce1077547 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/tiles/gpu_image_decode_cache.h"
#include <memory>
#include "cc/paint/draw_image.h"
#include "cc/paint/image_transfer_cache_entry.h"
#include "cc/paint/paint_image_builder.h"
#include "cc/test/fake_paint_image_generator.h"
#include "cc/test/skia_common.h"
#include "cc/test/test_tile_task_runner.h"
#include "cc/test/transfer_cache_test_helper.h"
#include "components/viz/test/test_context_provider.h"
#include "components/viz/test/test_gles2_interface.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkImageGenerator.h"
#include "third_party/skia/include/core/SkRefCnt.h"
#include "third_party/skia/include/gpu/GrBackendSurface.h"
#include "third_party/skia/include/gpu/GrContext.h"
namespace cc {
namespace {
class FakeDiscardableManager {
public:
void SetGLES2Interface(viz::TestGLES2Interface* gl) { gl_ = gl; }
void Initialize(GLuint texture_id) {
EXPECT_EQ(textures_.end(), textures_.find(texture_id));
textures_[texture_id] = kHandleLockedStart;
live_textures_count_++;
}
void Unlock(GLuint texture_id) {
EXPECT_NE(textures_.end(), textures_.find(texture_id));
ExpectLocked(texture_id);
textures_[texture_id]--;
}
bool Lock(GLuint texture_id) {
EnforceLimit();
EXPECT_NE(textures_.end(), textures_.find(texture_id));
if (textures_[texture_id] >= kHandleUnlocked) {
textures_[texture_id]++;
return true;
}
return false;
}
void DeleteTexture(GLuint texture_id) {
if (textures_.end() == textures_.find(texture_id))
return;
ExpectLocked(texture_id);
textures_[texture_id] = kHandleDeleted;
live_textures_count_--;
}
void set_cached_textures_limit(size_t limit) {
cached_textures_limit_ = limit;
}
void ExpectLocked(GLuint texture_id) {
EXPECT_TRUE(textures_.end() != textures_.find(texture_id));
// Any value > kHandleLockedStart represents a locked texture. As we
// increment this value with each lock, we need the entire range and can't
// add additional values > kHandleLockedStart in the future.
EXPECT_GE(textures_[texture_id], kHandleLockedStart);
EXPECT_LE(textures_[texture_id], kHandleLockedEnd);
}
private:
void EnforceLimit() {
for (auto it = textures_.begin(); it != textures_.end(); ++it) {
if (live_textures_count_ <= cached_textures_limit_)
return;
if (it->second != kHandleUnlocked)
continue;
it->second = kHandleDeleted;
gl_->TestGLES2Interface::DeleteTextures(1, &it->first);
live_textures_count_--;
}
}
const int32_t kHandleDeleted = 0;
const int32_t kHandleUnlocked = 1;
const int32_t kHandleLockedStart = 2;
const int32_t kHandleLockedEnd = std::numeric_limits<int32_t>::max();
std::map<GLuint, int32_t> textures_;
size_t live_textures_count_ = 0;
size_t cached_textures_limit_ = std::numeric_limits<size_t>::max();
viz::TestGLES2Interface* gl_ = nullptr;
};
class FakeGPUImageDecodeTestGLES2Interface : public viz::TestGLES2Interface,
public viz::TestContextSupport {
public:
explicit FakeGPUImageDecodeTestGLES2Interface(
FakeDiscardableManager* discardable_manager,
TransferCacheTestHelper* transfer_cache_helper)
: extension_string_(
"GL_EXT_texture_format_BGRA8888 GL_OES_rgb8_rgba8 "
"GL_OES_texture_npot GL_EXT_texture_rg "
"GL_OES_texture_half_float GL_OES_texture_half_float_linear"),
discardable_manager_(discardable_manager),
transfer_cache_helper_(transfer_cache_helper) {}
~FakeGPUImageDecodeTestGLES2Interface() override {
// All textures / framebuffers / renderbuffers should be cleaned up.
EXPECT_EQ(0u, NumTextures());
EXPECT_EQ(0u, NumFramebuffers());
EXPECT_EQ(0u, NumRenderbuffers());
}
void InitializeDiscardableTextureCHROMIUM(GLuint texture_id) override {
discardable_manager_->Initialize(texture_id);
}
void UnlockDiscardableTextureCHROMIUM(GLuint texture_id) override {
discardable_manager_->Unlock(texture_id);
}
bool LockDiscardableTextureCHROMIUM(GLuint texture_id) override {
return discardable_manager_->Lock(texture_id);
}
bool ThreadSafeShallowLockDiscardableTexture(uint32_t texture_id) override {
return discardable_manager_->Lock(texture_id);
}
void CompleteLockDiscardableTexureOnContextThread(
uint32_t texture_id) override {}
void* MapTransferCacheEntry(uint32_t serialized_size) override {
mapped_entry_size_ = serialized_size;
mapped_entry_.reset(new uint8_t[serialized_size]);
return mapped_entry_.get();
}
void UnmapAndCreateTransferCacheEntry(uint32_t type, uint32_t id) override {
transfer_cache_helper_->CreateEntryDirect(
MakeEntryKey(type, id),
base::make_span(mapped_entry_.get(), mapped_entry_size_));
mapped_entry_ = nullptr;
mapped_entry_size_ = 0;
}
bool ThreadsafeLockTransferCacheEntry(uint32_t type, uint32_t id) override {
return transfer_cache_helper_->LockEntryDirect(MakeEntryKey(type, id));
}
void UnlockTransferCacheEntries(
const std::vector<std::pair<uint32_t, uint32_t>>& entries) override {
std::vector<std::pair<TransferCacheEntryType, uint32_t>> keys;
keys.reserve(entries.size());
for (const auto& e : entries)
keys.emplace_back(MakeEntryKey(e.first, e.second));
transfer_cache_helper_->UnlockEntriesDirect(keys);
}
void DeleteTransferCacheEntry(uint32_t type, uint32_t id) override {
transfer_cache_helper_->DeleteEntryDirect(MakeEntryKey(type, id));
}
std::pair<TransferCacheEntryType, uint32_t> MakeEntryKey(uint32_t type,
uint32_t id) {
DCHECK_LE(type, static_cast<uint32_t>(TransferCacheEntryType::kLast));
return std::make_pair(static_cast<TransferCacheEntryType>(type), id);
}
// viz::TestGLES2Interface:
const GLubyte* GetString(GLenum name) override {
switch (name) {
case GL_EXTENSIONS:
return reinterpret_cast<const GLubyte*>(extension_string_.c_str());
case GL_VERSION:
return reinterpret_cast<const GLubyte*>("4.0 Null GL");
case GL_SHADING_LANGUAGE_VERSION:
return reinterpret_cast<const GLubyte*>("4.20.8 Null GLSL");
case GL_VENDOR:
return reinterpret_cast<const GLubyte*>("Null Vendor");
case GL_RENDERER:
return reinterpret_cast<const GLubyte*>("The Null (Non-)Renderer");
}
return nullptr;
}
void GetIntegerv(GLenum name, GLint* params) override {
switch (name) {
case GL_MAX_TEXTURE_IMAGE_UNITS:
*params = 8;
return;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
*params = 8;
return;
case GL_MAX_RENDERBUFFER_SIZE:
*params = 2048;
return;
case GL_MAX_VERTEX_ATTRIBS:
*params = 8;
return;
default:
break;
}
TestGLES2Interface::GetIntegerv(name, params);
}
void DeleteTextures(GLsizei n, const GLuint* textures) override {
for (GLsizei i = 0; i < n; i++) {
discardable_manager_->DeleteTexture(textures[i]);
}
TestGLES2Interface::DeleteTextures(n, textures);
}
private:
const std::string extension_string_;
FakeDiscardableManager* discardable_manager_;
TransferCacheTestHelper* transfer_cache_helper_;
size_t mapped_entry_size_ = 0;
std::unique_ptr<uint8_t[]> mapped_entry_;
};
class GPUImageDecodeTestMockContextProvider : public viz::TestContextProvider {
public:
static scoped_refptr<GPUImageDecodeTestMockContextProvider> Create(
FakeDiscardableManager* discardable_manager,
TransferCacheTestHelper* transfer_cache_helper) {
return new GPUImageDecodeTestMockContextProvider(
std::make_unique<FakeGPUImageDecodeTestGLES2Interface>(
discardable_manager, transfer_cache_helper),
std::make_unique<FakeGPUImageDecodeTestGLES2Interface>(
discardable_manager, transfer_cache_helper));
}
private:
~GPUImageDecodeTestMockContextProvider() override = default;
GPUImageDecodeTestMockContextProvider(
std::unique_ptr<viz::TestContextSupport> support,
std::unique_ptr<viz::TestGLES2Interface> gl)
: TestContextProvider(std::move(support), std::move(gl), true) {}
};
SkMatrix CreateMatrix(const SkSize& scale, bool is_decomposable) {
SkMatrix matrix;
matrix.setScale(scale.width(), scale.height());
if (!is_decomposable) {
// Perspective is not decomposable, add it.
matrix[SkMatrix::kMPersp0] = 0.1f;
}
return matrix;
}
#define EXPECT_TRUE_IF_NOT_USING_TRANSFER_CACHE(condition) \
if (!use_transfer_cache_) \
EXPECT_TRUE(condition);
#define EXPECT_FALSE_IF_NOT_USING_TRANSFER_CACHE(condition) \
if (!use_transfer_cache_) \
EXPECT_FALSE(condition);
size_t kGpuMemoryLimitBytes = 96 * 1024 * 1024;
class GpuImageDecodeCacheTest
: public ::testing::TestWithParam<std::tuple<SkColorType,
bool /* use_transfer_cache */,
bool /* do_yuv_decode */>> {
public:
void SetUp() override {
context_provider_ = GPUImageDecodeTestMockContextProvider::Create(
&discardable_manager_, &transfer_cache_helper_);
discardable_manager_.SetGLES2Interface(
context_provider_->UnboundTestContextGL());
context_provider_->BindToCurrentThread();
{
viz::RasterContextProvider::ScopedRasterContextLock context_lock(
context_provider_.get());
transfer_cache_helper_.SetGrContext(context_provider_->GrContext());
max_texture_size_ =
context_provider_->ContextCapabilities().max_texture_size;
}
color_type_ = std::get<0>(GetParam());
use_transfer_cache_ = std::get<1>(GetParam());
do_yuv_decode_ = std::get<2>(GetParam());
}
std::unique_ptr<GpuImageDecodeCache> CreateCache() {
return std::make_unique<GpuImageDecodeCache>(
context_provider_.get(), use_transfer_cache_, color_type_,
kGpuMemoryLimitBytes, max_texture_size_,
PaintImage::kDefaultGeneratorClientId);
}
// Returns dimensions for an image that will not fit in GPU memory and hence
// triggers software fallback.
gfx::Size GetLargeImageSize() const {
return gfx::Size(1, max_texture_size_ + 1);
}
// Returns dimensions for an image that will fit in GPU memory.
gfx::Size GetNormalImageSize() const {
int dimension = std::min(100, max_texture_size_ - 1);
return gfx::Size(dimension, dimension);
}
PaintImage CreatePaintImageInternal(
const gfx::Size& size,
sk_sp<SkColorSpace> color_space = nullptr,
PaintImage::Id id = PaintImage::kInvalidId) {
const bool allocate_encoded_memory = true;
return CreateDiscardablePaintImage(size, color_space,
allocate_encoded_memory, id, color_type_,
do_yuv_decode_);
}
PaintImage CreateLargePaintImageForSoftwareFallback() {
return CreateLargePaintImageForSoftwareFallback(GetLargeImageSize());
}
// Create an image that's too large to upload and will trigger falling back to
// software rendering and decoded data storage.
PaintImage CreateLargePaintImageForSoftwareFallback(
const gfx::Size test_image_size) {
CHECK(test_image_size.width() > max_texture_size_ ||
test_image_size.height() > max_texture_size_);
SkImageInfo info = SkImageInfo::Make(
test_image_size.width(), test_image_size.height(), color_type_,
kPremul_SkAlphaType, SkColorSpace::MakeSRGB());
sk_sp<FakePaintImageGenerator> generator;
if (do_yuv_decode_) {
generator = sk_make_sp<FakePaintImageGenerator>(
info, GetYUV420SizeInfo(test_image_size));
generator->SetExpectFallbackToRGB();
} else {
generator = sk_make_sp<FakePaintImageGenerator>(info);
}
PaintImage image = PaintImageBuilder::WithDefault()
.set_id(PaintImage::GetNextId())
.set_paint_image_generator(generator)
.TakePaintImage();
return image;
}
PaintImage CreateBitmapImageInternal(const gfx::Size& size) {
DCHECK(!do_yuv_decode_);
return CreateBitmapImage(size, color_type_);
}
gfx::ColorSpace DefaultColorSpace() {
if (color_type_ != kRGBA_F16_SkColorType)
return gfx::ColorSpace::CreateSRGB();
return gfx::ColorSpace(gfx::ColorSpace::PrimaryID::SMPTEST432_1, // P3
gfx::ColorSpace::TransferID::LINEAR);
}
GPUImageDecodeTestMockContextProvider* context_provider() {
return context_provider_.get();
}
size_t GetBytesNeededForSingleImage(gfx::Size image_dimensions) {
// TODO(crbug.com/915972): Assumes YUV 420.
if (do_yuv_decode_) {
return GetYUV420SizeInfo(image_dimensions).computeTotalBytes();
}
const size_t test_image_area_bytes =
base::checked_cast<size_t>(image_dimensions.GetArea());
base::CheckedNumeric<size_t> bytes_for_rgb_image_safe(
test_image_area_bytes);
bytes_for_rgb_image_safe *= SkColorTypeBytesPerPixel(color_type_);
return bytes_for_rgb_image_safe.ValueOrDie();
}
void SetCachedTexturesLimit(size_t limit) {
discardable_manager_.set_cached_textures_limit(limit);
transfer_cache_helper_.SetCachedItemsLimit(limit);
}
// If this is an image-backed DecodedDrawImage, does nothing. Otherwise this
// retreives the image from the transfer cache and builds a new
// DecodedDrawImage.
DecodedDrawImage EnsureImageBacked(DecodedDrawImage&& draw_image) {
if (draw_image.transfer_cache_entry_id()) {
EXPECT_TRUE(use_transfer_cache_);
auto* image_entry =
transfer_cache_helper_.GetEntryAs<ServiceImageTransferCacheEntry>(
*draw_image.transfer_cache_entry_id());
if (draw_image.transfer_cache_entry_needs_mips())
image_entry->EnsureMips();
DecodedDrawImage new_draw_image(
image_entry->image(), draw_image.src_rect_offset(),
draw_image.scale_adjustment(), draw_image.filter_quality(),
draw_image.is_budgeted());
return new_draw_image;
}
return std::move(draw_image);
}
sk_sp<SkImage> GetLastTransferredImage() {
auto& key = transfer_cache_helper_.GetLastAddedEntry();
ServiceTransferCacheEntry* entry =
transfer_cache_helper_.GetEntryInternal(key.first, key.second);
if (!entry)
return nullptr;
CHECK_EQ(TransferCacheEntryType::kImage, entry->Type());
return static_cast<ServiceImageTransferCacheEntry*>(entry)->image();
}
void CompareAllPlanesToMippedVersions(GpuImageDecodeCache* cache,
const DrawImage& draw_image,
bool should_have_mips) {
for (size_t i = 0; i < SkYUVASizeInfo::kMaxCount; ++i) {
// TODO(crbug.com/910276): Skip alpha plane until supported in cache.
if (i != SkYUVAIndex::kA_Index) {
auto original_uploaded_plane =
cache->GetUploadedPlaneForTesting(draw_image, i);
ASSERT_TRUE(original_uploaded_plane);
auto plane_with_mips = original_uploaded_plane->makeTextureImage(
context_provider()->GrContext(), nullptr /* color space */,
GrMipMapped::kYes);
ASSERT_TRUE(plane_with_mips);
EXPECT_EQ(should_have_mips, original_uploaded_plane == plane_with_mips);
}
}
}
protected:
FakeDiscardableManager discardable_manager_;
scoped_refptr<GPUImageDecodeTestMockContextProvider> context_provider_;
TransferCacheTestHelper transfer_cache_helper_;
bool use_transfer_cache_;
SkColorType color_type_;
bool do_yuv_decode_;
int max_texture_size_ = 0;
};
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageSameImage) {
auto cache = CreateCache();
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.5f, 1.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
DrawImage another_draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(1.5f, 1.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult another_result = cache->GetTaskForImageAndRef(
another_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(another_result.need_unref);
EXPECT_TRUE(result.task.get() == another_result.task.get());
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageSmallerScale) {
auto cache = CreateCache();
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.5f, 1.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
// |result| is an upload task which depends on a decode task.
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
DrawImage another_draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult another_result = cache->GetTaskForImageAndRef(
another_draw_image, ImageDecodeCache::TracingInfo());
// |another_draw_image| represents previous image but at a different scale.
// It still has one dependency (decoding), and its upload task is equivalent
// to the larger decoded textures being uploaded.
EXPECT_EQ(another_result.task->dependencies().size(), 1u);
EXPECT_TRUE(another_result.task->dependencies()[0]);
EXPECT_TRUE(another_result.need_unref);
EXPECT_TRUE(result.task.get() == another_result.task.get());
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
cache->UnrefImage(another_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageLowerQuality) {
auto cache = CreateCache();
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
bool is_decomposable = true;
SkMatrix matrix = CreateMatrix(SkSize::Make(0.4f, 0.4f), is_decomposable);
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
kHigh_SkFilterQuality, matrix,
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
DrawImage another_draw_image(
image, SkIRect::MakeWH(image.width(), image.height()),
kLow_SkFilterQuality, matrix, PaintImage::kDefaultFrameIndex,
DefaultColorSpace());
ImageDecodeCache::TaskResult another_result = cache->GetTaskForImageAndRef(
another_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(another_result.need_unref);
EXPECT_TRUE(result.task.get() == another_result.task.get());
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
cache->UnrefImage(another_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageDifferentImage) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage first_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
PaintImage second_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage second_draw_image(
second_image,
SkIRect::MakeWH(second_image.width(), second_image.height()), quality,
CreateMatrix(SkSize::Make(0.25f, 0.25f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
TestTileTaskRunner::ProcessTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(first_result.task.get());
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(first_draw_image);
cache->UnrefImage(second_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageLargerScale) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage first_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
TestTileTaskRunner::ProcessTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(first_result.task.get());
cache->UnrefImage(first_draw_image);
DrawImage second_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
DrawImage third_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult third_result = cache->GetTaskForImageAndRef(
third_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(third_result.need_unref);
EXPECT_TRUE(third_result.task.get() == second_result.task.get());
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(second_draw_image);
cache->UnrefImage(third_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageLargerScaleNoReuse) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage first_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
DrawImage second_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
DrawImage third_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult third_result = cache->GetTaskForImageAndRef(
third_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(third_result.need_unref);
EXPECT_TRUE(third_result.task.get() == first_result.task.get());
TestTileTaskRunner::ProcessTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(first_result.task.get());
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(first_draw_image);
cache->UnrefImage(second_draw_image);
cache->UnrefImage(third_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageHigherQuality) {
auto cache = CreateCache();
bool is_decomposable = true;
SkMatrix matrix = CreateMatrix(SkSize::Make(0.4f, 0.4f), is_decomposable);
PaintImage first_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
kLow_SkFilterQuality, matrix, PaintImage::kDefaultFrameIndex,
DefaultColorSpace());
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
TestTileTaskRunner::ProcessTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(first_result.task.get());
cache->UnrefImage(first_draw_image);
DrawImage second_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
kHigh_SkFilterQuality, matrix, PaintImage::kDefaultFrameIndex,
DefaultColorSpace());
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(second_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageAlreadyDecodedAndLocked) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
// Run the decode but don't complete it (this will keep the decode locked).
TestTileTaskRunner::ScheduleTask(result.task->dependencies()[0].get());
TestTileTaskRunner::RunTask(result.task->dependencies()[0].get());
// Cancel the upload.
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
// Get the image again - we should have an upload task, but no dependent
// decode task, as the decode was already locked.
ImageDecodeCache::TaskResult another_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(another_result.need_unref);
EXPECT_TRUE(another_result.task);
EXPECT_EQ(another_result.task->dependencies().size(), 0u);
TestTileTaskRunner::ProcessTask(another_result.task.get());
// Finally, complete the original decode task.
TestTileTaskRunner::CompleteTask(result.task->dependencies()[0].get());
cache->UnrefImage(draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageAlreadyDecodedNotLocked) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
// Run the decode.
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
// Cancel the upload.
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
// Unref the image.
cache->UnrefImage(draw_image);
// Get the image again - we should have an upload task and a dependent decode
// task - this dependent task will typically just re-lock the image.
ImageDecodeCache::TaskResult another_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(another_result.need_unref);
EXPECT_TRUE(another_result.task);
EXPECT_EQ(another_result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
TestTileTaskRunner::ProcessTask(another_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(another_result.task.get());
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageAlreadyUploaded) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ScheduleTask(result.task.get());
TestTileTaskRunner::RunTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
ImageDecodeCache::TaskResult another_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(another_result.need_unref);
EXPECT_FALSE(another_result.task);
cache->UnrefImage(draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageCanceledGetsNewTask) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
ImageDecodeCache::TaskResult another_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(another_result.task.get() == result.task.get());
// Didn't run the task, so cancel it.
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
// Fully cancel everything (so the raster would unref things).
cache->UnrefImage(draw_image);
cache->UnrefImage(draw_image);
// Here a new task is created.
ImageDecodeCache::TaskResult third_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(third_result.need_unref);
EXPECT_TRUE(third_result.task);
EXPECT_FALSE(third_result.task.get() == result.task.get());
TestTileTaskRunner::ProcessTask(third_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(third_result.task.get());
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageCanceledWhileReffedGetsNewTask) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
ASSERT_GT(result.task->dependencies().size(), 0u);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
ImageDecodeCache::TaskResult another_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(another_result.need_unref);
EXPECT_TRUE(another_result.task.get() == result.task.get());
// Didn't run the task, so cancel it.
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
// 2 Unrefs, so that the decode is unlocked as well.
cache->UnrefImage(draw_image);
cache->UnrefImage(draw_image);
// Note that here, everything is reffed, but a new task is created. This is
// possible with repeated schedule/cancel operations.
ImageDecodeCache::TaskResult third_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(third_result.need_unref);
EXPECT_TRUE(third_result.task);
EXPECT_FALSE(third_result.task.get() == result.task.get());
ASSERT_GT(third_result.task->dependencies().size(), 0u);
TestTileTaskRunner::ProcessTask(third_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(third_result.task.get());
// Unref!
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageUploadCanceledButDecodeRun) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
// Cancel the upload.
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
// Unref the image.
cache->UnrefImage(draw_image);
// Run the decode task. Even though the image only has a decode ref at this
// point, this should complete successfully.
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
}
TEST_P(GpuImageDecodeCacheTest, NoTaskForImageAlreadyFailedDecoding) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
// Didn't run the task, so cancel it.
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
cache->SetImageDecodingFailedForTesting(draw_image);
ImageDecodeCache::TaskResult another_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_FALSE(another_result.need_unref);
EXPECT_EQ(another_result.task.get(), nullptr);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetDecodedImageForDraw) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetLargeDecodedImageForDraw) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreateLargePaintImageForSoftwareFallback();
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(decoded_draw_image.image()->isTextureBacked());
EXPECT_TRUE_IF_NOT_USING_TRANSFER_CACHE(
cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
}
TEST_P(GpuImageDecodeCacheTest, GetDecodedImageForDrawAtRasterDecode) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
cache->SetWorkingSetLimitsForTesting(0 /* max_bytes */, 0 /* max_items */);
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_FALSE(result.need_unref);
EXPECT_FALSE(result.task);
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_FALSE(decoded_draw_image.is_budgeted());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
// Our 0 working set size shouldn't prevent caching of unlocked discardable,
// so our single entry should be cached.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 1u);
}
TEST_P(GpuImageDecodeCacheTest, GetDecodedImageForDrawLargerScale) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
kLow_SkFilterQuality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
DrawImage larger_draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(1.5f, 1.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult larger_result = cache->GetTaskForImageAndRef(
larger_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(larger_result.need_unref);
EXPECT_TRUE(larger_result.task);
TestTileTaskRunner::ProcessTask(larger_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(larger_result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.is_budgeted());
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
DecodedDrawImage larger_decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(larger_draw_image));
EXPECT_TRUE(larger_decoded_draw_image.image());
EXPECT_TRUE(larger_decoded_draw_image.is_budgeted());
EXPECT_TRUE(larger_decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
EXPECT_FALSE(decoded_draw_image.image() == larger_decoded_draw_image.image());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
cache->DrawWithImageFinished(larger_draw_image, larger_decoded_draw_image);
cache->UnrefImage(larger_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetDecodedImageForDrawHigherQuality) {
auto cache = CreateCache();
bool is_decomposable = true;
SkMatrix matrix = CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable);
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
kLow_SkFilterQuality, matrix,
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
DrawImage higher_quality_draw_image(
image, SkIRect::MakeWH(image.width(), image.height()),
kHigh_SkFilterQuality, matrix, PaintImage::kDefaultFrameIndex,
DefaultColorSpace());
ImageDecodeCache::TaskResult hq_result = cache->GetTaskForImageAndRef(
higher_quality_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(hq_result.need_unref);
EXPECT_TRUE(hq_result.task);
TestTileTaskRunner::ProcessTask(hq_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(hq_result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
DecodedDrawImage larger_decoded_draw_image = EnsureImageBacked(
cache->GetDecodedImageForDraw(higher_quality_draw_image));
EXPECT_TRUE(larger_decoded_draw_image.image());
EXPECT_TRUE(larger_decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
EXPECT_FALSE(decoded_draw_image.image() == larger_decoded_draw_image.image());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
cache->DrawWithImageFinished(higher_quality_draw_image,
larger_decoded_draw_image);
cache->UnrefImage(higher_quality_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetDecodedImageForDrawNegative) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(-0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
const int expected_width =
image.width() * std::abs(draw_image.scale().width());
const int expected_height =
image.height() * std::abs(draw_image.scale().height());
EXPECT_EQ(decoded_draw_image.image()->width(), expected_width);
EXPECT_EQ(decoded_draw_image.image()->height(), expected_height);
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetLargeScaledDecodedImageForDraw) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreateLargePaintImageForSoftwareFallback(
gfx::Size(GetLargeImageSize().width(), GetLargeImageSize().height() * 2));
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
// The mip level scale should never go below 0 in any dimension.
EXPECT_EQ(GetLargeImageSize().width(), decoded_draw_image.image()->width());
EXPECT_EQ(GetLargeImageSize().height(), decoded_draw_image.image()->height());
EXPECT_EQ(decoded_draw_image.filter_quality(), kMedium_SkFilterQuality);
EXPECT_FALSE(decoded_draw_image.image()->isTextureBacked());
EXPECT_TRUE_IF_NOT_USING_TRANSFER_CACHE(
cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
}
TEST_P(GpuImageDecodeCacheTest, AtRasterUsedDirectlyIfSpaceAllows) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
const gfx::Size test_image_size = GetNormalImageSize();
cache->SetWorkingSetLimitsForTesting(0 /* max_bytes */, 0 /* max_items */);
PaintImage image = CreatePaintImageInternal(test_image_size);
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_FALSE(result.need_unref);
EXPECT_FALSE(result.task);
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
// Increase memory limit to allow the image and attempt to use the same image.
// It should be available for ref.
const size_t bytes_for_test_image =
GetBytesNeededForSingleImage(test_image_size);
cache->SetWorkingSetLimitsForTesting(bytes_for_test_image /* max_bytes */,
256 /* max_items */);
ImageDecodeCache::TaskResult another_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(another_result.need_unref);
EXPECT_FALSE(another_result.task);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest,
GetDecodedImageForDrawAtRasterDecodeMultipleTimes) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
cache->SetWorkingSetLimitsForTesting(0 /* max_bytes */, 0 /* max_items */);
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_FALSE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
DecodedDrawImage another_decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_FALSE(another_decoded_draw_image.is_budgeted());
EXPECT_EQ(decoded_draw_image.image()->uniqueID(),
another_decoded_draw_image.image()->uniqueID());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->DrawWithImageFinished(draw_image, another_decoded_draw_image);
// Our 0 working set size shouldn't prevent caching of unlocked discardable,
// so our single entry should be cached.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 1u);
}
TEST_P(GpuImageDecodeCacheTest,
GetLargeDecodedImageForDrawAtRasterDecodeMultipleTimes) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
cache->SetWorkingSetLimitsForTesting(0 /* max_bytes */, 0 /* max_items */);
PaintImage image = CreateLargePaintImageForSoftwareFallback();
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_FALSE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(decoded_draw_image.image()->isTextureBacked());
EXPECT_TRUE_IF_NOT_USING_TRANSFER_CACHE(
cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
DecodedDrawImage second_decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(second_decoded_draw_image.image());
EXPECT_FALSE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(second_decoded_draw_image.image()->isTextureBacked());
EXPECT_TRUE_IF_NOT_USING_TRANSFER_CACHE(
cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, second_decoded_draw_image);
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
}
TEST_P(GpuImageDecodeCacheTest, ZeroSizedImagesAreSkipped) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.f, 0.f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_FALSE(result.task);
EXPECT_FALSE(result.need_unref);
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_FALSE(decoded_draw_image.image());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, NonOverlappingSrcRectImagesAreSkipped) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image,
SkIRect::MakeXYWH(image.width() + 1, image.height() + 1,
image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.f, 1.f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_FALSE(result.task);
EXPECT_FALSE(result.need_unref);
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_FALSE(decoded_draw_image.image());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, CanceledTasksDoNotCountAgainstBudget) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(
image, SkIRect::MakeXYWH(0, 0, image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(1.f, 1.f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_NE(0u, cache->GetNumCacheEntriesForTesting());
EXPECT_TRUE(result.task);
EXPECT_TRUE(result.need_unref);
TestTileTaskRunner::CancelTask(result.task->dependencies()[0].get());
TestTileTaskRunner::CompleteTask(result.task->dependencies()[0].get());
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
cache->UnrefImage(draw_image);
EXPECT_EQ(0u, cache->GetWorkingSetBytesForTesting());
}
TEST_P(GpuImageDecodeCacheTest, ShouldAggressivelyFreeResources) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
// We should now have data image in our cache.
EXPECT_GT(cache->GetNumCacheEntriesForTesting(), 0u);
// Tell our cache to aggressively free resources.
cache->SetShouldAggressivelyFreeResources(true);
EXPECT_EQ(0u, cache->GetNumCacheEntriesForTesting());
}
// Attempting to upload a new image should succeed, but the image should not
// be cached past its use.
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 0u);
}
// We now tell the cache to not aggressively free resources. The image may
// now be cached past its use.
cache->SetShouldAggressivelyFreeResources(false);
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
EXPECT_GT(cache->GetNumCacheEntriesForTesting(), 0u);
}
}
TEST_P(GpuImageDecodeCacheTest, OrphanedImagesFreeOnReachingZeroRefs) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
// Create a downscaled image.
PaintImage first_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
// The budget should account for exactly one image.
EXPECT_EQ(cache->GetWorkingSetBytesForTesting(),
cache->GetDrawImageSizeForTesting(first_draw_image));
// Create a larger version of |first_image|, this should immediately free the
// memory used by |first_image| for the smaller scale.
DrawImage second_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(second_draw_image);
// Unref the first image, it was orphaned, so it should be immediately
// deleted.
TestTileTaskRunner::ProcessTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(first_result.task.get());
cache->UnrefImage(first_draw_image);
// The cache should have exactly one image.
EXPECT_EQ(1u, cache->GetNumCacheEntriesForTesting());
EXPECT_EQ(0u, cache->GetInUseCacheEntriesForTesting());
}
TEST_P(GpuImageDecodeCacheTest, OrphanedZeroRefImagesImmediatelyDeleted) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
// Create a downscaled image.
PaintImage first_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
TestTileTaskRunner::ProcessTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(first_result.task.get());
cache->UnrefImage(first_draw_image);
// The budget should account for exactly one image.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 1u);
EXPECT_EQ(cache->GetInUseCacheEntriesForTesting(), 0u);
// Create a larger version of |first_image|, this should immediately free the
// memory used by |first_image| for the smaller scale.
DrawImage second_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(second_draw_image);
// The budget should account for exactly one image.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 1u);
EXPECT_EQ(cache->GetInUseCacheEntriesForTesting(), 0u);
}
TEST_P(GpuImageDecodeCacheTest, QualityCappedAtMedium) {
auto cache = CreateCache();
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
bool is_decomposable = true;
SkMatrix matrix = CreateMatrix(SkSize::Make(0.4f, 0.4f), is_decomposable);
// Create an image with kLow_FilterQuality.
DrawImage low_draw_image(image,
SkIRect::MakeWH(image.width(), image.height()),
kLow_SkFilterQuality, matrix,
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult low_result = cache->GetTaskForImageAndRef(
low_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(low_result.need_unref);
EXPECT_TRUE(low_result.task);
// Get the same image at kMedium_SkFilterQuality. We can't re-use low, so we
// should get a new task/ref.
DrawImage medium_draw_image(
image, SkIRect::MakeWH(image.width(), image.height()),
kMedium_SkFilterQuality, matrix, PaintImage::kDefaultFrameIndex,
DefaultColorSpace());
ImageDecodeCache::TaskResult medium_result = cache->GetTaskForImageAndRef(
medium_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(medium_result.need_unref);
EXPECT_TRUE(medium_result.task.get());
EXPECT_FALSE(low_result.task.get() == medium_result.task.get());
// Get the same image at kHigh_FilterQuality. We should re-use medium.
DrawImage high_quality_draw_image(
image, SkIRect::MakeWH(image.width(), image.height()),
kHigh_SkFilterQuality, matrix, PaintImage::kDefaultFrameIndex,
DefaultColorSpace());
ImageDecodeCache::TaskResult high_quality_result =
cache->GetTaskForImageAndRef(high_quality_draw_image,
ImageDecodeCache::TracingInfo());
EXPECT_TRUE(high_quality_result.need_unref);
EXPECT_TRUE(medium_result.task.get() == high_quality_result.task.get());
TestTileTaskRunner::ProcessTask(low_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(low_result.task.get());
TestTileTaskRunner::ProcessTask(medium_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(medium_result.task.get());
cache->UnrefImage(low_draw_image);
cache->UnrefImage(medium_draw_image);
cache->UnrefImage(high_quality_draw_image);
}
// Ensure that switching to a mipped version of an image after the initial
// cache entry creation doesn't cause a buffer overflow/crash.
TEST_P(GpuImageDecodeCacheTest, GetDecodedImageForDrawMipUsageChange) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
// Create an image decode task and cache entry that does not need mips.
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
// Cancel the task without ever using it.
TestTileTaskRunner::CancelTask(result.task->dependencies()[0].get());
TestTileTaskRunner::CompleteTask(result.task->dependencies()[0].get());
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
cache->UnrefImage(draw_image);
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
// Do an at-raster decode of the above image that *does* require mips.
DrawImage draw_image_mips(
image, SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(0.6f, 0.6f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image_mips));
cache->DrawWithImageFinished(draw_image_mips, decoded_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, OutOfRasterDecodeTask) {
auto cache = CreateCache();
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
bool is_decomposable = true;
SkMatrix matrix = CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable);
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
kLow_SkFilterQuality, matrix,
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetOutOfRasterDecodeTaskForImageAndRef(draw_image);
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_TRUE(cache->IsInInUseCacheForTesting(draw_image));
// Run the decode task.
TestTileTaskRunner::ProcessTask(result.task.get());
// The image should remain in the cache till we unref it.
EXPECT_TRUE(cache->IsInInUseCacheForTesting(draw_image));
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, ZeroCacheNormalWorkingSet) {
SetCachedTexturesLimit(0);
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
// Add an image to the cache-> Due to normal working set, this should produce
// a task and a ref.
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
// Run the task.
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Request the same image - it should be cached.
ImageDecodeCache::TaskResult second_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_FALSE(second_result.task);
// Unref both images.
cache->UnrefImage(draw_image);
cache->UnrefImage(draw_image);
// Ensure the unref is processed:
cache->ReduceCacheUsage();
// Get the image again. As it was fully unreffed, it is no longer in the
// working set and will be evicted due to 0 cache size.
ImageDecodeCache::TaskResult third_result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(third_result.need_unref);
EXPECT_TRUE(third_result.task);
EXPECT_EQ(third_result.task->dependencies().size(), 1u);
EXPECT_TRUE(third_result.task->dependencies()[0]);
TestTileTaskRunner::ProcessTask(third_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(third_result.task.get());
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, SmallCacheNormalWorkingSet) {
// Cache will fit one image.
SetCachedTexturesLimit(1);
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
PaintImage image2 = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image2(
image2, SkIRect::MakeWH(image2.width(), image2.height()), quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
// Add an image to the cache and un-ref it.
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
// Run the task and unref the image.
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
}
// Request the same image - it should be cached.
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_FALSE(result.task);
cache->UnrefImage(draw_image);
}
// Add a new image to the cache It should push out the old one.
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image2, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
// Run the task and unref the image.
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image2);
}
// Request the second image - it should be cached.
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image2, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_FALSE(result.task);
cache->UnrefImage(draw_image2);
}
// Request the first image - it should have been evicted and return a new
// task.
{
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_EQ(result.task->dependencies().size(), 1u);
EXPECT_TRUE(result.task->dependencies()[0]);
// Run the task and unref the image.
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
}
}
TEST_P(GpuImageDecodeCacheTest, ClearCache) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
for (int i = 0; i < 10; ++i) {
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
}
// We should now have images in our cache.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 10u);
// Tell our cache to clear resources.
cache->ClearCache();
// We should now have nothing in our cache.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 0u);
}
TEST_P(GpuImageDecodeCacheTest, ClearCacheInUse) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
// Create an image but keep it reffed so it can't be immediately freed.
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// We should now have data image in our cache.
EXPECT_GT(cache->GetWorkingSetBytesForTesting(), 0u);
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 1u);
// Tell our cache to clear resources.
cache->ClearCache();
// We should still have data, as we can't clear the in-use entry.
EXPECT_GT(cache->GetWorkingSetBytesForTesting(), 0u);
// But the num (persistent) entries should be 0, as the entry is orphaned.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 0u);
// Unref the image, it should immidiately delete, leaving our cache empty.
cache->UnrefImage(draw_image);
EXPECT_EQ(cache->GetWorkingSetBytesForTesting(), 0u);
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 0u);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForImageDifferentColorSpace) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
gfx::ColorSpace color_space_a = gfx::ColorSpace::CreateSRGB();
gfx::ColorSpace color_space_b = gfx::ColorSpace::CreateXYZD50();
PaintImage first_image = CreatePaintImageInternal(gfx::Size(100, 100));
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, color_space_a);
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
DrawImage second_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, color_space_b);
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
DrawImage third_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, color_space_a);
ImageDecodeCache::TaskResult third_result = cache->GetTaskForImageAndRef(
third_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(third_result.need_unref);
EXPECT_TRUE(third_result.task.get() == first_result.task.get());
TestTileTaskRunner::ProcessTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(first_result.task.get());
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(first_draw_image);
cache->UnrefImage(second_draw_image);
cache->UnrefImage(third_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, GetTaskForLargeImageNonSRGBColorSpace) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
gfx::ColorSpace color_space = gfx::ColorSpace::CreateXYZD50();
PaintImage image = CreateLargePaintImageForSoftwareFallback();
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, color_space);
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, CacheDecodesExpectedFrames) {
auto cache = CreateCache();
std::vector<FrameMetadata> frames = {
FrameMetadata(true, base::TimeDelta::FromMilliseconds(2)),
FrameMetadata(true, base::TimeDelta::FromMilliseconds(3)),
FrameMetadata(true, base::TimeDelta::FromMilliseconds(4)),
FrameMetadata(true, base::TimeDelta::FromMilliseconds(5)),
};
const gfx::Size test_image_size = GetNormalImageSize();
SkImageInfo info =
SkImageInfo::Make(test_image_size.width(), test_image_size.height(),
color_type_, kPremul_SkAlphaType);
sk_sp<FakePaintImageGenerator> generator =
do_yuv_decode_ ? sk_make_sp<FakePaintImageGenerator>(
info, GetYUV420SizeInfo(test_image_size), frames)
: sk_make_sp<FakePaintImageGenerator>(info, frames);
PaintImage image = PaintImageBuilder::WithDefault()
.set_id(PaintImage::GetNextId())
.set_paint_image_generator(generator)
.TakePaintImage();
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
1u, DefaultColorSpace());
auto decoded_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
ASSERT_TRUE(decoded_image.image());
ASSERT_EQ(generator->frames_decoded().size(), 1u);
EXPECT_EQ(generator->frames_decoded().count(1u), 1u);
generator->reset_frames_decoded();
cache->DrawWithImageFinished(draw_image, decoded_image);
// Scaled.
DrawImage scaled_draw_image(draw_image, 0.5f, 2u,
draw_image.target_color_space());
decoded_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(scaled_draw_image));
ASSERT_TRUE(decoded_image.image());
ASSERT_EQ(generator->frames_decoded().size(), 1u);
EXPECT_EQ(generator->frames_decoded().count(2u), 1u);
generator->reset_frames_decoded();
cache->DrawWithImageFinished(scaled_draw_image, decoded_image);
// Subset.
const int32_t subset_width = 5;
const int32_t subset_height = 5;
ASSERT_LT(subset_width, test_image_size.width());
ASSERT_LT(subset_height, test_image_size.height());
DrawImage subset_draw_image(
image, SkIRect::MakeWH(subset_width, subset_height), quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable), 3u,
DefaultColorSpace());
decoded_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(subset_draw_image));
ASSERT_TRUE(decoded_image.image());
ASSERT_EQ(generator->frames_decoded().size(), 1u);
EXPECT_EQ(generator->frames_decoded().count(3u), 1u);
generator->reset_frames_decoded();
cache->DrawWithImageFinished(subset_draw_image, decoded_image);
}
TEST_P(GpuImageDecodeCacheTest, OrphanedDataCancelledWhileReplaced) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
// Create a downscaled image.
PaintImage first_image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage first_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult first_result = cache->GetTaskForImageAndRef(
first_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(first_result.need_unref);
EXPECT_TRUE(first_result.task);
// The cache should have exactly one image.
EXPECT_EQ(1u, cache->GetNumCacheEntriesForTesting());
// Create a larger version of |first_image|, this should immediately free
// the memory used by |first_image| for the smaller scale.
DrawImage second_draw_image(
first_image, SkIRect::MakeWH(first_image.width(), first_image.height()),
quality, CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult second_result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(second_result.need_unref);
EXPECT_TRUE(second_result.task);
EXPECT_TRUE(first_result.task.get() != second_result.task.get());
// The cache should have two images.
EXPECT_EQ(1u, cache->GetNumCacheEntriesForTesting());
// Cancel and unref the first image, it was orphaned, so it should be
// immediately deleted.
TestTileTaskRunner::CancelTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::CompleteTask(first_result.task->dependencies()[0].get());
TestTileTaskRunner::CancelTask(first_result.task.get());
TestTileTaskRunner::CompleteTask(first_result.task.get());
cache->UnrefImage(first_draw_image);
// The cache should have exactly one image.
EXPECT_EQ(1u, cache->GetNumCacheEntriesForTesting());
// Unref the second image. It is persistent, and should remain in the cache.
TestTileTaskRunner::ProcessTask(second_result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(second_result.task.get());
cache->UnrefImage(second_draw_image);
// The cache should have exactly one image.
EXPECT_EQ(1u, cache->GetNumCacheEntriesForTesting());
EXPECT_EQ(0u, cache->GetInUseCacheEntriesForTesting());
}
TEST_P(GpuImageDecodeCacheTest, AlreadyBudgetedImagesAreNotAtRaster) {
auto cache = CreateCache();
bool is_decomposable = true;
const SkFilterQuality quality = kHigh_SkFilterQuality;
const gfx::Size test_image_size = GetNormalImageSize();
PaintImage image = CreatePaintImageInternal(test_image_size);
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
const size_t bytes_for_test_image =
GetBytesNeededForSingleImage(test_image_size);
// Allow a single small image and lock it.
cache->SetWorkingSetLimitsForTesting(bytes_for_test_image,
1u /* max_items */);
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
// Try locking the same image again, its already budgeted so it shouldn't be
// at-raster.
result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.is_budgeted());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, ImageBudgetingByCount) {
auto cache = CreateCache();
bool is_decomposable = true;
const SkFilterQuality quality = kHigh_SkFilterQuality;
const gfx::Size test_image_size = GetNormalImageSize();
// Allow a single image by count. Use a high byte limit as we want to test the
// count restriction.
const size_t bytes_for_test_image =
GetBytesNeededForSingleImage(test_image_size);
cache->SetWorkingSetLimitsForTesting(
bytes_for_test_image * 100 /* max_bytes */, 1u /* max_items */);
PaintImage image = CreatePaintImageInternal(test_image_size);
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
// The image counts against our budget.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
// Try another image, it shouldn't be budgeted and should be at-raster.
DrawImage second_draw_image(
CreatePaintImageInternal(GetNormalImageSize()),
SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
// Should be at raster.
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_FALSE(result.need_unref);
EXPECT_FALSE(result.task);
// Image retrieved from at-raster decode should not be budgeted.
DecodedDrawImage second_decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(second_draw_image));
EXPECT_TRUE(second_decoded_draw_image.image());
EXPECT_FALSE(second_decoded_draw_image.is_budgeted());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->DrawWithImageFinished(second_draw_image, second_decoded_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, ImageBudgetingBySize) {
auto cache = CreateCache();
bool is_decomposable = true;
const SkFilterQuality quality = kHigh_SkFilterQuality;
const gfx::Size test_image_size = GetNormalImageSize();
PaintImage image = CreatePaintImageInternal(test_image_size);
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
const size_t bytes_for_test_image =
GetBytesNeededForSingleImage(test_image_size);
// Allow a single small image by size. Don't restrict the
// items limit as we want to test the size limit.
cache->SetWorkingSetLimitsForTesting(bytes_for_test_image,
256 /* max_items */);
// The image counts against our budget.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
// Try another image, it shouldn't be budgeted and should be at-raster.
DrawImage second_draw_image(
CreatePaintImageInternal(test_image_size),
SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
// Should be at raster.
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
second_draw_image, ImageDecodeCache::TracingInfo());
EXPECT_FALSE(result.need_unref);
EXPECT_FALSE(result.task);
// Image retrieved from at-raster decode should not be budgeted.
DecodedDrawImage second_decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(second_draw_image));
EXPECT_TRUE(second_decoded_draw_image.image());
EXPECT_FALSE(second_decoded_draw_image.is_budgeted());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->DrawWithImageFinished(second_draw_image, second_decoded_draw_image);
}
TEST_P(GpuImageDecodeCacheTest,
ColorConversionDuringDecodeForLargeImageNonSRGBColorSpace) {
auto cache = CreateCache();
bool is_decomposable = true;
const SkFilterQuality quality = kHigh_SkFilterQuality;
gfx::ColorSpace color_space = gfx::ColorSpace::CreateXYZD50();
PaintImage image = CreateLargePaintImageForSoftwareFallback();
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, color_space);
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
cache->GetDecodedImageForDraw(draw_image);
sk_sp<SkColorSpace> target_color_space = cache->SupportsColorSpaceConversion()
? color_space.ToSkColorSpace()
: nullptr;
if (use_transfer_cache_) {
// If using the transfer cache, the color conversion should be applied
// there as well, even if it is a software image.
sk_sp<SkImage> service_image = GetLastTransferredImage();
ASSERT_TRUE(image);
EXPECT_FALSE(service_image->isTextureBacked());
EXPECT_EQ(image.width(), service_image->width());
EXPECT_EQ(image.height(), service_image->height());
// Color space should be logically equal to the original color space.
EXPECT_TRUE(SkColorSpace::Equals(service_image->colorSpace(),
target_color_space.get()));
} else {
sk_sp<SkImage> decoded_image =
cache->GetSWImageDecodeForTesting(draw_image);
// Ensure that the "uploaded" image we get back is the same as the decoded
// image we've cached.
EXPECT_TRUE(decoded_image == decoded_draw_image.image());
// Ensure that the SW decoded image had colorspace conversion applied.
EXPECT_TRUE(SkColorSpace::Equals(decoded_image->colorSpace(),
target_color_space.get()));
}
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest,
ColorConversionDuringUploadForSmallImageNonSRGBColorSpace) {
auto cache = CreateCache();
bool is_decomposable = true;
const SkFilterQuality quality = kHigh_SkFilterQuality;
gfx::ColorSpace color_space = gfx::ColorSpace::CreateDisplayP3D65();
PaintImage image = CreatePaintImageInternal(gfx::Size(11, 12));
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, color_space);
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
cache->GetDecodedImageForDraw(draw_image);
sk_sp<SkColorSpace> target_color_space = cache->SupportsColorSpaceConversion()
? color_space.ToSkColorSpace()
: nullptr;
if (use_transfer_cache_) {
// If using the transfer cache, the color conversion should be applied
// there during upload.
sk_sp<SkImage> service_image = GetLastTransferredImage();
ASSERT_TRUE(image);
EXPECT_TRUE(service_image->isTextureBacked());
EXPECT_EQ(image.width(), service_image->width());
EXPECT_EQ(image.height(), service_image->height());
// Color space should be logically equal to the original color space.
EXPECT_TRUE(SkColorSpace::Equals(service_image->colorSpace(),
target_color_space.get()));
} else {
// Ensure that the HW uploaded image had color space conversion applied.
EXPECT_TRUE(SkColorSpace::Equals(decoded_draw_image.image()->colorSpace(),
target_color_space.get()));
}
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, NonLazyImageUploadNoScale) {
if (do_yuv_decode_) {
// YUV bitmap images do not happen, so this test will always skip for YUV.
return;
}
auto cache = CreateCache();
bool is_decomposable = true;
const SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreateBitmapImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
// For non-lazy images used at the original scale, no cpu component should be
// cached
EXPECT_FALSE(cache->GetSWImageDecodeForTesting(draw_image));
}
TEST_P(GpuImageDecodeCacheTest, NonLazyImageUploadTaskHasNoDeps) {
if (do_yuv_decode_) {
// YUV bitmap images do not happen, so this test will always skip for YUV.
return;
}
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreateBitmapImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
auto result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_TRUE(result.task->dependencies().empty());
TestTileTaskRunner::ProcessTask(result.task.get());
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, NonLazyImageUploadTaskCancelled) {
if (do_yuv_decode_) {
// YUV bitmap images do not happen, so this test will always skip for YUV.
return;
}
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreateBitmapImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
auto result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
EXPECT_TRUE(result.task->dependencies().empty());
TestTileTaskRunner::CancelTask(result.task.get());
TestTileTaskRunner::CompleteTask(result.task.get());
cache->UnrefImage(draw_image);
}
TEST_P(GpuImageDecodeCacheTest, NonLazyImageLargeImageColorConverted) {
if (do_yuv_decode_) {
// YUV bitmap images do not happen, so this test will always skip for YUV.
return;
}
auto cache = CreateCache();
const bool should_cache_sw_image =
cache->SupportsColorSpaceConversion() && !use_transfer_cache_;
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreateBitmapImageInternal(GetLargeImageSize());
DrawImage draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, gfx::ColorSpace::CreateDisplayP3D65());
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
// For non-lazy images color converted during scaling, cpu component should be
// cached.
auto sw_image = cache->GetSWImageDecodeForTesting(draw_image);
ASSERT_EQ(!!sw_image, should_cache_sw_image);
if (should_cache_sw_image) {
EXPECT_TRUE(SkColorSpace::Equals(
sw_image->colorSpace(),
gfx::ColorSpace::CreateDisplayP3D65().ToSkColorSpace().get()));
}
}
TEST_P(GpuImageDecodeCacheTest, NonLazyImageUploadDownscaled) {
if (do_yuv_decode_) {
// YUV bitmap images do not happen, so this test will always skip for YUV.
return;
}
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage image = CreateBitmapImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
}
TEST_P(GpuImageDecodeCacheTest, KeepOnlyLast2ContentIds) {
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
const PaintImage::Id paint_image_id = PaintImage::GetNextId();
std::vector<DrawImage> draw_images;
std::vector<DecodedDrawImage> decoded_draw_images;
for (int i = 0; i < 10; ++i) {
PaintImage image = CreatePaintImageInternal(
GetNormalImageSize(), SkColorSpace::MakeSRGB(), paint_image_id);
DrawImage draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), quality,
CreateMatrix(SkSize::Make(0.5f, 0.5f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
draw_images.push_back(draw_image);
decoded_draw_images.push_back(decoded_draw_image);
if (i == 0)
continue;
// We should only have the last 2 entries in the persistent cache, even
// though everything is in the in use cache.
EXPECT_EQ(cache->GetNumCacheEntriesForTesting(), 2u);
EXPECT_EQ(cache->GetInUseCacheEntriesForTesting(), i + 1u);
EXPECT_TRUE(cache->IsInPersistentCacheForTesting(draw_images[i]));
EXPECT_TRUE(cache->IsInPersistentCacheForTesting(draw_images[i - 1]));
}
for (int i = 0; i < 10; ++i) {
cache->DrawWithImageFinished(draw_images[i], decoded_draw_images[i]);
}
// We have a single tracked entry, that gets cleared once we purge the cache.
EXPECT_EQ(cache->paint_image_entries_count_for_testing(), 1u);
cache->OnMemoryPressure(
base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL);
EXPECT_EQ(cache->paint_image_entries_count_for_testing(), 0u);
}
TEST_P(GpuImageDecodeCacheTest, DecodeToScale) {
if (do_yuv_decode_) {
// TODO(crbug.com/927437): Modify test after decoding to scale for YUV is
// implemented.
return;
}
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kMedium_SkFilterQuality;
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
const SkISize full_size = SkISize::Make(100, 100);
const std::vector<SkISize> supported_sizes = {SkISize::Make(25, 25),
SkISize::Make(50, 50)};
const std::vector<FrameMetadata> frames = {FrameMetadata()};
const SkImageInfo info =
SkImageInfo::MakeN32Premul(full_size.width(), full_size.height(),
DefaultColorSpace().ToSkColorSpace());
sk_sp<FakePaintImageGenerator> generator =
sk_make_sp<FakePaintImageGenerator>(info, frames, true, supported_sizes);
PaintImage paint_image = PaintImageBuilder::WithDefault()
.set_id(PaintImage::GetNextId())
.set_paint_image_generator(generator)
.TakePaintImage();
DrawImage draw_image(
paint_image, SkIRect::MakeWH(paint_image.width(), paint_image.height()),
quality, CreateMatrix(SkSize::Make(0.5, 0.5), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
DecodedDrawImage decoded_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
const int expected_width =
paint_image.width() * std::abs(draw_image.scale().width());
const int expected_height =
paint_image.height() * std::abs(draw_image.scale().height());
ASSERT_TRUE(decoded_image.image());
EXPECT_EQ(decoded_image.image()->width(), expected_width);
EXPECT_EQ(decoded_image.image()->height(), expected_height);
// We should have requested a scaled decode from the generator.
ASSERT_EQ(generator->decode_infos().size(), 1u);
EXPECT_EQ(generator->decode_infos().at(0).width(), expected_width);
EXPECT_EQ(generator->decode_infos().at(0).height(), expected_height);
cache->DrawWithImageFinished(draw_image, decoded_image);
}
TEST_P(GpuImageDecodeCacheTest, DecodeToScaleNoneQuality) {
if (do_yuv_decode_) {
// TODO(crbug.com/927437): Modify test after decoding to scale for YUV is
// implemented.
return;
}
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kNone_SkFilterQuality;
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
SkISize full_size = SkISize::Make(100, 100);
std::vector<SkISize> supported_sizes = {SkISize::Make(25, 25),
SkISize::Make(50, 50)};
std::vector<FrameMetadata> frames = {FrameMetadata()};
sk_sp<FakePaintImageGenerator> generator =
sk_make_sp<FakePaintImageGenerator>(
SkImageInfo::MakeN32Premul(full_size.width(), full_size.height(),
DefaultColorSpace().ToSkColorSpace()),
frames, true, supported_sizes);
PaintImage paint_image = PaintImageBuilder::WithDefault()
.set_id(PaintImage::GetNextId())
.set_paint_image_generator(generator)
.TakePaintImage();
DrawImage draw_image(
paint_image, SkIRect::MakeWH(paint_image.width(), paint_image.height()),
quality, CreateMatrix(SkSize::Make(0.5, 0.5), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
DecodedDrawImage decoded_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
ASSERT_TRUE(decoded_image.image());
const int expected_drawn_width =
paint_image.width() * std::abs(draw_image.scale().width());
const int expected_drawn_height =
paint_image.height() * std::abs(draw_image.scale().height());
EXPECT_EQ(decoded_image.image()->width(), expected_drawn_width);
EXPECT_EQ(decoded_image.image()->height(), expected_drawn_height);
// We should have requested the original decode from the generator.
ASSERT_EQ(generator->decode_infos().size(), 1u);
EXPECT_EQ(generator->decode_infos().at(0).width(), full_size.width());
EXPECT_EQ(generator->decode_infos().at(0).height(), full_size.height());
cache->DrawWithImageFinished(draw_image, decoded_image);
}
TEST_P(GpuImageDecodeCacheTest, BasicMips) {
auto decode_and_check_mips = [this](SkFilterQuality filter_quality,
SkSize scale, gfx::ColorSpace color_space,
bool should_have_mips) {
auto cache = CreateCache();
bool is_decomposable = true;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
DrawImage draw_image(image, SkIRect::MakeWH(image.width(), image.height()),
filter_quality, CreateMatrix(scale, is_decomposable),
PaintImage::kDefaultFrameIndex, color_space);
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
if (do_yuv_decode_) {
// As of M74, Skia will flatten a YUV SkImage upon calling
// makeTextureImage. Thus, we must separately request mips for each
// plane and compare to the original uploaded planes.
CompareAllPlanesToMippedVersions(cache.get(), draw_image,
should_have_mips);
EXPECT_TRUE(
SkColorSpace::Equals(cache->SupportsColorSpaceConversion()
? color_space.ToSkColorSpace().get()
: nullptr,
decoded_draw_image.image()->colorSpace()));
} else {
sk_sp<SkImage> image_with_mips =
decoded_draw_image.image()->makeTextureImage(
context_provider()->GrContext(), nullptr /* color space */,
GrMipMapped::kYes);
EXPECT_EQ(should_have_mips,
image_with_mips == decoded_draw_image.image());
}
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
};
// No scale == no mips.
decode_and_check_mips(kMedium_SkFilterQuality, SkSize::Make(1.0f, 1.0f),
DefaultColorSpace(), false);
// Full mip level scale == no mips
decode_and_check_mips(kMedium_SkFilterQuality, SkSize::Make(0.5f, 0.5f),
DefaultColorSpace(), false);
// Low filter quality == no mips
decode_and_check_mips(kLow_SkFilterQuality, SkSize::Make(0.6f, 0.6f),
DefaultColorSpace(), false);
// None filter quality == no mips
decode_and_check_mips(kNone_SkFilterQuality, SkSize::Make(0.6f, 0.6f),
DefaultColorSpace(), false);
// Medium filter quality == mips
decode_and_check_mips(kMedium_SkFilterQuality, SkSize::Make(0.6f, 0.6f),
DefaultColorSpace(), true);
// High filter quality == mips
decode_and_check_mips(kHigh_SkFilterQuality, SkSize::Make(0.6f, 0.6f),
DefaultColorSpace(), true);
// Color conversion preserves mips
decode_and_check_mips(kMedium_SkFilterQuality, SkSize::Make(0.6f, 0.6f),
gfx::ColorSpace::CreateXYZD50(), true);
}
TEST_P(GpuImageDecodeCacheTest, MipsAddedSubsequentDraw) {
auto cache = CreateCache();
bool is_decomposable = true;
auto filter_quality = kMedium_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
// Create an image with no scaling. It will not have mips.
{
DrawImage draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), filter_quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
// No mips should be generated.
if (do_yuv_decode_) {
// As of M74, Skia will flatten a YUV SkImage upon calling
// makeTextureImage. Thus, we must separately request mips for each
// plane and compare to the original uploaded planes.
CompareAllPlanesToMippedVersions(cache.get(), draw_image,
false /* should_have_mips */);
} else {
sk_sp<SkImage> image_with_mips =
decoded_draw_image.image()->makeTextureImage(
context_provider()->GrContext(), nullptr, GrMipMapped::kYes);
ASSERT_TRUE(image_with_mips);
EXPECT_NE(image_with_mips, decoded_draw_image.image());
}
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
}
// Call ReduceCacheUsage to clean up.
cache->ReduceCacheUsage();
// Request the same image again, but this time with a scale. We should get
// no new task (re-uses the existing image), but mips should have been
// added.
{
DrawImage draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), filter_quality,
CreateMatrix(SkSize::Make(0.6f, 0.6f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_FALSE(result.task);
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
// Mips should be generated
if (do_yuv_decode_) {
CompareAllPlanesToMippedVersions(cache.get(), draw_image,
true /* should_have_mips */);
EXPECT_TRUE(
SkColorSpace::Equals(cache->SupportsColorSpaceConversion()
? DefaultColorSpace().ToSkColorSpace().get()
: nullptr,
decoded_draw_image.image()->colorSpace()));
} else {
sk_sp<SkImage> image_with_mips =
decoded_draw_image.image()->makeTextureImage(
context_provider()->GrContext(), nullptr, GrMipMapped::kYes);
EXPECT_EQ(image_with_mips, decoded_draw_image.image());
}
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
}
}
TEST_P(GpuImageDecodeCacheTest, MipsAddedWhileOriginalInUse) {
auto cache = CreateCache();
bool is_decomposable = true;
auto filter_quality = kMedium_SkFilterQuality;
PaintImage image = CreatePaintImageInternal(GetNormalImageSize());
struct Decode {
DrawImage image;
DecodedDrawImage decoded_image;
};
std::vector<Decode> images_to_unlock;
// Create an image with no scaling. It will not have mips.
{
DrawImage draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), filter_quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_TRUE(result.task);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
ASSERT_TRUE(decoded_draw_image.image());
ASSERT_TRUE(decoded_draw_image.image()->isTextureBacked());
// No mips should be generated.
if (do_yuv_decode_) {
// As of M74, Skia will flatten a YUV SkImage upon calling
// makeTextureImage. Thus, we must separately request mips for each
// plane and compare to the original uploaded planes.
CompareAllPlanesToMippedVersions(cache.get(), draw_image,
false /* should_have_mips */);
} else {
sk_sp<SkImage> image_with_mips =
decoded_draw_image.image()->makeTextureImage(
context_provider()->GrContext(), nullptr, GrMipMapped::kYes);
EXPECT_NE(image_with_mips, decoded_draw_image.image());
}
images_to_unlock.push_back({draw_image, decoded_draw_image});
}
// Second decode with mips.
{
DrawImage draw_image(
image, SkIRect::MakeWH(image.width(), image.height()), filter_quality,
CreateMatrix(SkSize::Make(0.6f, 0.6f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result = cache->GetTaskForImageAndRef(
draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
EXPECT_FALSE(result.task);
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
ASSERT_TRUE(decoded_draw_image.image());
ASSERT_TRUE(decoded_draw_image.image()->isTextureBacked());
// Mips should be generated.
if (do_yuv_decode_) {
CompareAllPlanesToMippedVersions(cache.get(), draw_image,
true /* should_have_mips */);
EXPECT_TRUE(
SkColorSpace::Equals(cache->SupportsColorSpaceConversion()
? DefaultColorSpace().ToSkColorSpace().get()
: nullptr,
decoded_draw_image.image()->colorSpace()));
} else {
sk_sp<SkImage> image_with_mips =
decoded_draw_image.image()->makeTextureImage(
context_provider()->GrContext(), nullptr, GrMipMapped::kYes);
EXPECT_EQ(image_with_mips, decoded_draw_image.image());
}
images_to_unlock.push_back({draw_image, decoded_draw_image});
}
// Reduce cache usage to make sure anything marked for deletion is actually
// deleted.
cache->ReduceCacheUsage();
{
// All images which are currently ref-ed must have locked textures.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
for (const auto& draw_and_decoded_draw_image : images_to_unlock) {
if (!use_transfer_cache_) {
if (do_yuv_decode_) {
DrawImage draw_image = draw_and_decoded_draw_image.image;
for (size_t i = 0; i < SkYUVASizeInfo::kMaxCount; ++i) {
// TODO(crbug.com/910276): Skip alpha plane until supported in
// cache.
if (i != SkYUVAIndex::kA_Index) {
SkImage* plane_image =
cache->GetUploadedPlaneForTesting(draw_image, i).get();
discardable_manager_.ExpectLocked(
GpuImageDecodeCache::GlIdFromSkImage(plane_image));
}
}
} else {
discardable_manager_.ExpectLocked(
GpuImageDecodeCache::GlIdFromSkImage(
draw_and_decoded_draw_image.decoded_image.image().get()));
}
}
cache->DrawWithImageFinished(draw_and_decoded_draw_image.image,
draw_and_decoded_draw_image.decoded_image);
cache->UnrefImage(draw_and_decoded_draw_image.image);
}
}
}
TEST_P(GpuImageDecodeCacheTest, GetBorderlineLargeDecodedImageForDraw) {
// We will create a texture that's at the maximum size the GPU says it can
// support for uploads.
auto cache = CreateCache();
bool is_decomposable = true;
SkFilterQuality quality = kHigh_SkFilterQuality;
PaintImage almost_too_large_image =
CreatePaintImageInternal(gfx::Size(max_texture_size_, max_texture_size_));
DrawImage draw_image(almost_too_large_image,
SkIRect::MakeWH(almost_too_large_image.width(),
almost_too_large_image.height()),
quality,
CreateMatrix(SkSize::Make(1.0f, 1.0f), is_decomposable),
PaintImage::kDefaultFrameIndex, DefaultColorSpace());
ImageDecodeCache::TaskResult result =
cache->GetTaskForImageAndRef(draw_image, ImageDecodeCache::TracingInfo());
EXPECT_TRUE(result.need_unref);
ASSERT_TRUE(result.task);
ASSERT_EQ(result.task->dependencies().size(), 1u);
ASSERT_TRUE(result.task->dependencies()[0]);
TestTileTaskRunner::ProcessTask(result.task->dependencies()[0].get());
TestTileTaskRunner::ProcessTask(result.task.get());
// Must hold context lock before calling GetDecodedImageForDraw /
// DrawWithImageFinished.
viz::ContextProvider::ScopedContextLock context_lock(context_provider());
DecodedDrawImage decoded_draw_image =
EnsureImageBacked(cache->GetDecodedImageForDraw(draw_image));
EXPECT_TRUE(decoded_draw_image.image());
EXPECT_TRUE(decoded_draw_image.image()->isTextureBacked());
EXPECT_TRUE(decoded_draw_image.is_budgeted());
EXPECT_FALSE(cache->DiscardableIsLockedForTesting(draw_image));
cache->DrawWithImageFinished(draw_image, decoded_draw_image);
cache->UnrefImage(draw_image);
}
SkColorType test_color_types[] = {kN32_SkColorType, kARGB_4444_SkColorType,
kRGBA_F16_SkColorType};
bool false_array[] = {false};
bool true_array[] = {true};
INSTANTIATE_TEST_SUITE_P(
GpuImageDecodeCacheTestsInProcessRaster,
GpuImageDecodeCacheTest,
testing::Combine(testing::ValuesIn(test_color_types),
testing::ValuesIn(false_array) /* use_transfer_cache */,
testing::Bool() /* do_yuv_decode */));
INSTANTIATE_TEST_SUITE_P(
GpuImageDecodeCacheTestsOOPR,
GpuImageDecodeCacheTest,
testing::Combine(testing::ValuesIn(test_color_types),
testing::ValuesIn(true_array) /* use_transfer_cache */,
testing::ValuesIn(false_array) /* do_yuv_decode */));
#undef EXPECT_TRUE_IF_NOT_USING_TRANSFER_CACHE
#undef EXPECT_FALSE_IF_NOT_USING_TRANSFER_CACHE
} // namespace
} // namespace cc