| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "crypto/ec_private_key.h" |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/ec.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/pkcs12.h> |
| #include <openssl/x509.h> |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <memory> |
| |
| #include "base/logging.h" |
| #include "crypto/auto_cbb.h" |
| #include "crypto/openssl_util.h" |
| #include "crypto/scoped_openssl_types.h" |
| |
| namespace crypto { |
| |
| namespace { |
| |
| // Function pointer definition, for injecting the required key export function |
| // into ExportKeyWithBio, below. |bio| is a temporary memory BIO object, and |
| // |key| is a handle to the input key object. Return 1 on success, 0 otherwise. |
| // NOTE: Used with OpenSSL functions, which do not comply with the Chromium |
| // style guide, hence the unusual parameter placement / types. |
| typedef int (*ExportBioFunction)(BIO* bio, const void* key); |
| |
| using ScopedPKCS8_PRIV_KEY_INFO = |
| ScopedOpenSSL<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_free>; |
| using ScopedX509_SIG = ScopedOpenSSL<X509_SIG, X509_SIG_free>; |
| |
| // Helper to export |key| into |output| via the specified ExportBioFunction. |
| bool ExportKeyWithBio(const void* key, |
| ExportBioFunction export_fn, |
| std::vector<uint8_t>* output) { |
| if (!key) |
| return false; |
| |
| ScopedBIO bio(BIO_new(BIO_s_mem())); |
| if (!bio.get()) |
| return false; |
| |
| if (!export_fn(bio.get(), key)) |
| return false; |
| |
| char* data = NULL; |
| long len = BIO_get_mem_data(bio.get(), &data); |
| if (!data || len < 0) |
| return false; |
| |
| output->assign(data, data + len); |
| return true; |
| } |
| |
| } // namespace |
| |
| ECPrivateKey::~ECPrivateKey() { |
| if (key_) |
| EVP_PKEY_free(key_); |
| } |
| |
| ECPrivateKey* ECPrivateKey::Copy() const { |
| std::unique_ptr<ECPrivateKey> copy(new ECPrivateKey); |
| if (key_) |
| copy->key_ = EVP_PKEY_up_ref(key_); |
| return copy.release(); |
| } |
| |
| // static |
| ECPrivateKey* ECPrivateKey::Create() { |
| OpenSSLErrStackTracer err_tracer(FROM_HERE); |
| |
| ScopedEC_KEY ec_key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1)); |
| if (!ec_key.get() || !EC_KEY_generate_key(ec_key.get())) |
| return NULL; |
| |
| std::unique_ptr<ECPrivateKey> result(new ECPrivateKey()); |
| result->key_ = EVP_PKEY_new(); |
| if (!result->key_ || !EVP_PKEY_set1_EC_KEY(result->key_, ec_key.get())) |
| return NULL; |
| |
| CHECK_EQ(EVP_PKEY_EC, EVP_PKEY_id(result->key_)); |
| return result.release(); |
| } |
| |
| // static |
| std::unique_ptr<ECPrivateKey> ECPrivateKey::CreateFromPrivateKeyInfo( |
| const std::vector<uint8_t>& input) { |
| OpenSSLErrStackTracer err_tracer(FROM_HERE); |
| |
| CBS cbs; |
| CBS_init(&cbs, input.data(), input.size()); |
| ScopedEVP_PKEY pkey(EVP_parse_private_key(&cbs)); |
| if (!pkey || CBS_len(&cbs) != 0 || EVP_PKEY_id(pkey.get()) != EVP_PKEY_EC) |
| return nullptr; |
| |
| std::unique_ptr<ECPrivateKey> result(new ECPrivateKey); |
| result->key_ = pkey.release(); |
| return result; |
| } |
| |
| // static |
| ECPrivateKey* ECPrivateKey::CreateFromEncryptedPrivateKeyInfo( |
| const std::string& password, |
| const std::vector<uint8_t>& encrypted_private_key_info, |
| const std::vector<uint8_t>& subject_public_key_info) { |
| // NOTE: The |subject_public_key_info| can be ignored here, it is only |
| // useful for the NSS implementation (which uses the public key's SHA1 |
| // as a lookup key when storing the private one in its store). |
| if (encrypted_private_key_info.empty()) |
| return NULL; |
| |
| OpenSSLErrStackTracer err_tracer(FROM_HERE); |
| |
| const uint8_t* data = &encrypted_private_key_info[0]; |
| const uint8_t* ptr = data; |
| ScopedX509_SIG p8_encrypted( |
| d2i_X509_SIG(NULL, &ptr, encrypted_private_key_info.size())); |
| if (!p8_encrypted || ptr != data + encrypted_private_key_info.size()) |
| return NULL; |
| |
| ScopedPKCS8_PRIV_KEY_INFO p8_decrypted; |
| if (password.empty()) { |
| // Hack for reading keys generated by an older version of the OpenSSL |
| // code. OpenSSL used to use "\0\0" rather than the empty string because it |
| // would treat the password as an ASCII string to be converted to UCS-2 |
| // while NSS used a byte string. |
| p8_decrypted.reset(PKCS8_decrypt_pbe( |
| p8_encrypted.get(), reinterpret_cast<const uint8_t*>("\0\0"), 2)); |
| } |
| if (!p8_decrypted) { |
| p8_decrypted.reset(PKCS8_decrypt_pbe( |
| p8_encrypted.get(), |
| reinterpret_cast<const uint8_t*>(password.data()), |
| password.size())); |
| } |
| |
| if (!p8_decrypted) |
| return NULL; |
| |
| // Create a new EVP_PKEY for it. |
| std::unique_ptr<ECPrivateKey> result(new ECPrivateKey); |
| result->key_ = EVP_PKCS82PKEY(p8_decrypted.get()); |
| if (!result->key_ || EVP_PKEY_id(result->key_) != EVP_PKEY_EC) |
| return NULL; |
| |
| return result.release(); |
| } |
| |
| bool ECPrivateKey::ExportPrivateKey(std::vector<uint8_t>* output) const { |
| OpenSSLErrStackTracer err_tracer(FROM_HERE); |
| uint8_t* der; |
| size_t der_len; |
| AutoCBB cbb; |
| if (!CBB_init(cbb.get(), 0) || !EVP_marshal_private_key(cbb.get(), key_) || |
| !CBB_finish(cbb.get(), &der, &der_len)) { |
| return false; |
| } |
| output->assign(der, der + der_len); |
| OPENSSL_free(der); |
| return true; |
| } |
| |
| bool ECPrivateKey::ExportEncryptedPrivateKey( |
| const std::string& password, |
| int iterations, |
| std::vector<uint8_t>* output) const { |
| OpenSSLErrStackTracer err_tracer(FROM_HERE); |
| // Convert into a PKCS#8 object. |
| ScopedPKCS8_PRIV_KEY_INFO pkcs8(EVP_PKEY2PKCS8(key_)); |
| if (!pkcs8.get()) |
| return false; |
| |
| // Encrypt the object. |
| // NOTE: NSS uses SEC_OID_PKCS12_V2_PBE_WITH_SHA1_AND_3KEY_TRIPLE_DES_CBC |
| // so use NID_pbe_WithSHA1And3_Key_TripleDES_CBC which should be the OpenSSL |
| // equivalent. |
| ScopedX509_SIG encrypted(PKCS8_encrypt_pbe( |
| NID_pbe_WithSHA1And3_Key_TripleDES_CBC, |
| nullptr, |
| reinterpret_cast<const uint8_t*>(password.data()), |
| password.size(), |
| nullptr, |
| 0, |
| iterations, |
| pkcs8.get())); |
| if (!encrypted.get()) |
| return false; |
| |
| // Write it into |*output| |
| return ExportKeyWithBio(encrypted.get(), |
| reinterpret_cast<ExportBioFunction>(i2d_PKCS8_bio), |
| output); |
| } |
| |
| bool ECPrivateKey::ExportPublicKey(std::vector<uint8_t>* output) const { |
| OpenSSLErrStackTracer err_tracer(FROM_HERE); |
| uint8_t *der; |
| size_t der_len; |
| AutoCBB cbb; |
| if (!CBB_init(cbb.get(), 0) || |
| !EVP_marshal_public_key(cbb.get(), key_) || |
| !CBB_finish(cbb.get(), &der, &der_len)) { |
| return false; |
| } |
| output->assign(der, der + der_len); |
| OPENSSL_free(der); |
| return true; |
| } |
| |
| bool ECPrivateKey::ExportRawPublicKey(std::string* output) const { |
| OpenSSLErrStackTracer err_tracer(FROM_HERE); |
| |
| // Export the x and y field elements as 32-byte, big-endian numbers. (This is |
| // the same as X9.62 uncompressed form without the leading 0x04 byte.) |
| EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(key_); |
| ScopedBIGNUM x(BN_new()); |
| ScopedBIGNUM y(BN_new()); |
| uint8_t buf[64]; |
| if (!x || !y || |
| !EC_POINT_get_affine_coordinates_GFp(EC_KEY_get0_group(ec_key), |
| EC_KEY_get0_public_key(ec_key), |
| x.get(), y.get(), nullptr) || |
| !BN_bn2bin_padded(buf, 32, x.get()) || |
| !BN_bn2bin_padded(buf + 32, 32, y.get())) { |
| return false; |
| } |
| |
| output->assign(reinterpret_cast<const char*>(buf), sizeof(buf)); |
| return true; |
| } |
| |
| ECPrivateKey::ECPrivateKey() : key_(NULL) {} |
| |
| } // namespace crypto |