blob: 855fbb3327bacdf5e3c9b7ba2f6a147a616bc81c [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/nqe/network_quality_estimator.h"
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "base/metrics/histogram_samples.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/test/histogram_tester.h"
#include "base/test/simple_test_tick_clock.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "net/base/load_flags.h"
#include "net/base/network_change_notifier.h"
#include "net/http/http_response_headers.h"
#include "net/http/http_response_info.h"
#include "net/http/http_status_code.h"
#include "net/nqe/effective_connection_type.h"
#include "net/nqe/external_estimate_provider.h"
#include "net/nqe/network_quality_estimator_test_util.h"
#include "net/nqe/network_quality_observation.h"
#include "net/nqe/network_quality_observation_source.h"
#include "net/nqe/observation_buffer.h"
#include "net/socket/socket_performance_watcher.h"
#include "net/socket/socket_performance_watcher_factory.h"
#include "net/url_request/url_request.h"
#include "net/url_request/url_request_test_util.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "url/gurl.h"
namespace net {
namespace {
class TestEffectiveConnectionTypeObserver
: public NetworkQualityEstimator::EffectiveConnectionTypeObserver {
public:
std::vector<EffectiveConnectionType>& effective_connection_types() {
return effective_connection_types_;
}
// EffectiveConnectionTypeObserver implementation:
void OnEffectiveConnectionTypeChanged(EffectiveConnectionType type) override {
effective_connection_types_.push_back(type);
}
private:
std::vector<EffectiveConnectionType> effective_connection_types_;
};
class TestRTTAndThroughputEstimatesObserver
: public NetworkQualityEstimator::RTTAndThroughputEstimatesObserver {
public:
TestRTTAndThroughputEstimatesObserver()
: http_rtt_(nqe::internal::InvalidRTT()),
transport_rtt_(nqe::internal::InvalidRTT()),
downstream_throughput_kbps_(nqe::internal::kInvalidThroughput),
notifications_received_(0) {}
// RTTAndThroughputEstimatesObserver implementation:
void OnRTTOrThroughputEstimatesComputed(
base::TimeDelta http_rtt,
base::TimeDelta transport_rtt,
int32_t downstream_throughput_kbps) override {
http_rtt_ = http_rtt;
transport_rtt_ = transport_rtt;
downstream_throughput_kbps_ = downstream_throughput_kbps;
notifications_received_++;
}
int notifications_received() const { return notifications_received_; }
base::TimeDelta http_rtt() const { return http_rtt_; }
base::TimeDelta transport_rtt() const { return transport_rtt_; }
int32_t downstream_throughput_kbps() const {
return downstream_throughput_kbps_;
}
private:
base::TimeDelta http_rtt_;
base::TimeDelta transport_rtt_;
int32_t downstream_throughput_kbps_;
int notifications_received_;
};
class TestRTTObserver : public NetworkQualityEstimator::RTTObserver {
public:
struct Observation {
Observation(int32_t ms,
const base::TimeTicks& ts,
NetworkQualityObservationSource src)
: rtt_ms(ms), timestamp(ts), source(src) {}
int32_t rtt_ms;
base::TimeTicks timestamp;
NetworkQualityObservationSource source;
};
std::vector<Observation>& observations() { return observations_; }
// RttObserver implementation:
void OnRTTObservation(int32_t rtt_ms,
const base::TimeTicks& timestamp,
NetworkQualityObservationSource source) override {
observations_.push_back(Observation(rtt_ms, timestamp, source));
}
private:
std::vector<Observation> observations_;
};
class TestThroughputObserver
: public NetworkQualityEstimator::ThroughputObserver {
public:
struct Observation {
Observation(int32_t kbps,
const base::TimeTicks& ts,
NetworkQualityObservationSource src)
: throughput_kbps(kbps), timestamp(ts), source(src) {}
int32_t throughput_kbps;
base::TimeTicks timestamp;
NetworkQualityObservationSource source;
};
std::vector<Observation>& observations() { return observations_; }
// ThroughputObserver implementation:
void OnThroughputObservation(
int32_t throughput_kbps,
const base::TimeTicks& timestamp,
NetworkQualityObservationSource source) override {
observations_.push_back(Observation(throughput_kbps, timestamp, source));
}
private:
std::vector<Observation> observations_;
};
} // namespace
TEST(NetworkQualityEstimatorTest, TestKbpsRTTUpdates) {
base::HistogramTester histogram_tester;
// Enable requests to local host to be used for network quality estimation.
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN, "test");
histogram_tester.ExpectUniqueSample("NQE.CachedNetworkQualityAvailable",
false, 1);
base::TimeDelta rtt;
int32_t kbps;
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
// Both RTT and downstream throughput should be updated.
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_FALSE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
// Check UMA histograms.
histogram_tester.ExpectTotalCount("NQE.PeakKbps.Unknown", 0);
histogram_tester.ExpectTotalCount("NQE.FastestRTT.Unknown", 0);
histogram_tester.ExpectUniqueSample(
"NQE.MainFrame.EffectiveConnectionType",
EffectiveConnectionType::EFFECTIVE_CONNECTION_TYPE_UNKNOWN, 1);
histogram_tester.ExpectUniqueSample(
"NQE.MainFrame.EffectiveConnectionType.Unknown",
EffectiveConnectionType::EFFECTIVE_CONNECTION_TYPE_UNKNOWN, 1);
histogram_tester.ExpectUniqueSample("NQE.EstimateAvailable.MainFrame.RTT", 0,
1);
histogram_tester.ExpectUniqueSample(
"NQE.EstimateAvailable.MainFrame.TransportRTT", 0, 1);
histogram_tester.ExpectUniqueSample("NQE.EstimateAvailable.MainFrame.Kbps", 0,
1);
std::unique_ptr<URLRequest> request2(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request2->SetLoadFlags(request2->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request2->Start();
base::RunLoop().Run();
histogram_tester.ExpectTotalCount("NQE.MainFrame.EffectiveConnectionType", 2);
histogram_tester.ExpectTotalCount(
"NQE.MainFrame.EffectiveConnectionType.Unknown", 2);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.RTT", 1,
1);
histogram_tester.ExpectUniqueSample(
"NQE.EstimateAvailable.MainFrame.TransportRTT", 0, 2);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.Kbps", 1,
1);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-1");
histogram_tester.ExpectUniqueSample("NQE.CachedNetworkQualityAvailable",
false, 2);
histogram_tester.ExpectTotalCount("NQE.PeakKbps.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.FastestRTT.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.RatioMedianRTT.WiFi", 0);
histogram_tester.ExpectTotalCount("NQE.RTT.Percentile0.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.RTT.Percentile10.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.RTT.Percentile50.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.RTT.Percentile90.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.RTT.Percentile100.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.TransportRTT.Percentile50.Unknown", 0);
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
// Verify that metrics are logged correctly on main-frame requests.
histogram_tester.ExpectTotalCount("NQE.MainFrame.RTT.Percentile50", 1);
histogram_tester.ExpectTotalCount("NQE.MainFrame.RTT.Percentile50.Unknown",
1);
histogram_tester.ExpectTotalCount("NQE.MainFrame.TransportRTT.Percentile50",
0);
histogram_tester.ExpectTotalCount(
"NQE.MainFrame.TransportRTT.Percentile50.Unknown", 0);
histogram_tester.ExpectTotalCount("NQE.MainFrame.Kbps.Percentile50", 1);
histogram_tester.ExpectTotalCount("NQE.MainFrame.Kbps.Percentile50.Unknown",
1);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, std::string());
histogram_tester.ExpectUniqueSample("NQE.CachedNetworkQualityAvailable",
false, 3);
histogram_tester.ExpectTotalCount("NQE.PeakKbps.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.FastestRTT.Unknown", 1);
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
std::unique_ptr<URLRequest> request3(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request3->SetLoadFlags(request2->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request3->Start();
base::RunLoop().Run();
histogram_tester.ExpectUniqueSample(
"NQE.MainFrame.EffectiveConnectionType.WiFi",
EffectiveConnectionType::EFFECTIVE_CONNECTION_TYPE_UNKNOWN, 1);
histogram_tester.ExpectTotalCount("NQE.MainFrame.EffectiveConnectionType", 3);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.RTT", 0,
2);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.RTT", 1,
1);
histogram_tester.ExpectUniqueSample(
"NQE.EstimateAvailable.MainFrame.TransportRTT", 0, 3);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.Kbps", 0,
2);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.Kbps", 1,
1);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN, "test");
histogram_tester.ExpectBucketCount("NQE.CachedNetworkQualityAvailable", false,
3);
histogram_tester.ExpectBucketCount("NQE.CachedNetworkQualityAvailable", true,
1);
}
// Tests that the network quality estimator writes and reads network quality
// from the cache store correctly.
TEST(NetworkQualityEstimatorTest, Caching) {
base::HistogramTester histogram_tester;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_2G, "test");
histogram_tester.ExpectUniqueSample("NQE.CachedNetworkQualityAvailable",
false, 1);
base::TimeDelta rtt;
int32_t kbps;
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
// Start two requests so that the network quality is added to cache store at
// the beginning of the second request from the network traffic observed from
// the first request.
for (size_t i = 0; i < 2; ++i) {
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
}
base::RunLoop().RunUntilIdle();
// Both RTT and downstream throughput should be updated.
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_NE(EFFECTIVE_CONNECTION_TYPE_UNKNOWN,
estimator.GetEffectiveConnectionType());
EXPECT_FALSE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
histogram_tester.ExpectBucketCount("NQE.CachedNetworkQualityAvailable", false,
1);
// Add the observers before changing the network type.
TestEffectiveConnectionTypeObserver observer;
estimator.AddEffectiveConnectionTypeObserver(&observer);
TestRTTObserver rtt_observer;
estimator.AddRTTObserver(&rtt_observer);
TestThroughputObserver throughput_observer;
estimator.AddThroughputObserver(&throughput_observer);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_2G, "test");
histogram_tester.ExpectBucketCount("NQE.CachedNetworkQualityAvailable", true,
1);
histogram_tester.ExpectTotalCount("NQE.CachedNetworkQualityAvailable", 2);
base::RunLoop().RunUntilIdle();
// Verify that the cached network quality was read, and observers were
// notified. |observer| must be notified once right after it was added, and
// once again after the cached network quality was read.
EXPECT_EQ(2U, observer.effective_connection_types().size());
EXPECT_EQ(1U, rtt_observer.observations().size());
EXPECT_EQ(1U, throughput_observer.observations().size());
}
TEST(NetworkQualityEstimatorTest, StoreObservations) {
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
base::TimeDelta rtt;
int32_t kbps;
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
// Push more observations than the maximum buffer size.
const size_t kMaxObservations = 1000;
for (size_t i = 0; i < kMaxObservations; ++i) {
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->Start();
base::RunLoop().Run();
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
}
// Verify that the stored observations are cleared on network change.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-2");
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
}
// This test notifies NetworkQualityEstimator of received data. Next,
// throughput and RTT percentiles are checked for correctness by doing simple
// verifications.
TEST(NetworkQualityEstimatorTest, ComputedPercentiles) {
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
std::vector<NetworkQualityObservationSource> disallowed_observation_sources;
disallowed_observation_sources.push_back(
NETWORK_QUALITY_OBSERVATION_SOURCE_TCP);
disallowed_observation_sources.push_back(
NETWORK_QUALITY_OBSERVATION_SOURCE_QUIC);
EXPECT_EQ(nqe::internal::InvalidRTT(),
estimator.GetRTTEstimateInternal(disallowed_observation_sources,
base::TimeTicks(), 100));
EXPECT_EQ(nqe::internal::kInvalidThroughput,
estimator.GetDownlinkThroughputKbpsEstimateInternal(
base::TimeTicks(), 100));
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
// Number of observations are more than the maximum buffer size.
for (size_t i = 0; i < 1000U; ++i) {
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->Start();
base::RunLoop().Run();
}
// Verify the percentiles through simple tests.
for (int i = 0; i <= 100; ++i) {
EXPECT_GT(estimator.GetDownlinkThroughputKbpsEstimateInternal(
base::TimeTicks(), i),
0);
EXPECT_LT(estimator.GetRTTEstimateInternal(disallowed_observation_sources,
base::TimeTicks(), i),
base::TimeDelta::Max());
if (i != 0) {
// Throughput percentiles are in decreasing order.
EXPECT_LE(estimator.GetDownlinkThroughputKbpsEstimateInternal(
base::TimeTicks(), i),
estimator.GetDownlinkThroughputKbpsEstimateInternal(
base::TimeTicks(), i - 1));
// RTT percentiles are in increasing order.
EXPECT_GE(estimator.GetRTTEstimateInternal(disallowed_observation_sources,
base::TimeTicks(), i),
estimator.GetRTTEstimateInternal(disallowed_observation_sources,
base::TimeTicks(), i - 1));
}
}
}
TEST(NetworkQualityEstimatorTest, ObtainOperatingParams) {
std::map<std::string, std::string> variation_params;
variation_params["Unknown.DefaultMedianKbps"] = "100";
variation_params["WiFi.DefaultMedianKbps"] = "200";
variation_params["2G.DefaultMedianKbps"] = "300";
variation_params["Unknown.DefaultMedianRTTMsec"] = "1000";
variation_params["WiFi.DefaultMedianRTTMsec"] = "2000";
// Negative variation value should not be used.
variation_params["2G.DefaultMedianRTTMsec"] = "-5";
TestNetworkQualityEstimator estimator(variation_params);
base::TimeDelta rtt;
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
int32_t kbps;
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_EQ(100, kbps);
EXPECT_EQ(base::TimeDelta::FromMilliseconds(1000), rtt);
EXPECT_FALSE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
// Simulate network change to Wi-Fi.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-1");
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_EQ(200, kbps);
EXPECT_EQ(base::TimeDelta::FromMilliseconds(2000), rtt);
EXPECT_FALSE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
// Peak network quality should not be affected by the network quality
// estimator field trial.
EXPECT_EQ(nqe::internal::InvalidRTT(),
estimator.peak_network_quality_.http_rtt());
EXPECT_EQ(nqe::internal::kInvalidThroughput,
estimator.peak_network_quality_.downstream_throughput_kbps());
// Simulate network change to 2G. Only the Kbps default estimate should be
// available.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_2G, "test-2");
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_EQ(300, kbps);
// Simulate network change to 3G. Default estimates should be unavailable.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_3G, "test-3");
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
}
TEST(NetworkQualityEstimatorTest, ObtainAlgorithmToUseFromParams) {
const struct {
bool set_variation_param;
std::string algorithm;
NetworkQualityEstimator::EffectiveConnectionTypeAlgorithm
expected_algorithm;
} tests[] = {
{false, "", NetworkQualityEstimator::EffectiveConnectionTypeAlgorithm::
HTTP_RTT_AND_DOWNSTREAM_THROUGHOUT},
{true, "", NetworkQualityEstimator::EffectiveConnectionTypeAlgorithm::
HTTP_RTT_AND_DOWNSTREAM_THROUGHOUT},
{true, "HttpRTTAndDownstreamThroughput",
NetworkQualityEstimator::EffectiveConnectionTypeAlgorithm::
HTTP_RTT_AND_DOWNSTREAM_THROUGHOUT},
{true, "TransportRTTOrDownstreamThroughput",
NetworkQualityEstimator::EffectiveConnectionTypeAlgorithm::
TRANSPORT_RTT_OR_DOWNSTREAM_THROUGHOUT},
};
for (const auto& test : tests) {
std::map<std::string, std::string> variation_params;
if (test.set_variation_param)
variation_params["effective_connection_type_algorithm"] = test.algorithm;
TestNetworkQualityEstimator estimator(variation_params);
EXPECT_EQ(test.expected_algorithm,
estimator.effective_connection_type_algorithm_)
<< test.algorithm;
// Make sure no two values are same in the map.
typedef std::map<std::string,
NetworkQualityEstimator::EffectiveConnectionTypeAlgorithm>
Algorithms;
for (Algorithms::const_iterator it_first =
estimator.algorithm_name_to_enum_.begin();
it_first != estimator.algorithm_name_to_enum_.end(); ++it_first) {
for (Algorithms::const_iterator it_second =
estimator.algorithm_name_to_enum_.begin();
it_second != estimator.algorithm_name_to_enum_.end(); ++it_second) {
if (it_first != it_second) {
DCHECK_NE(it_first->second, it_second->second);
}
}
}
}
}
// Tests that |GetEffectiveConnectionType| returns
// EFFECTIVE_CONNECTION_TYPE_OFFLINE when the device is currently offline.
TEST(NetworkQualityEstimatorTest, Offline) {
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
const struct {
NetworkChangeNotifier::ConnectionType connection_type;
EffectiveConnectionType expected_connection_type;
} tests[] = {
{NetworkChangeNotifier::CONNECTION_2G, EFFECTIVE_CONNECTION_TYPE_UNKNOWN},
{NetworkChangeNotifier::CONNECTION_NONE,
EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{NetworkChangeNotifier::CONNECTION_3G, EFFECTIVE_CONNECTION_TYPE_UNKNOWN},
};
for (const auto& test : tests) {
estimator.SimulateNetworkChange(test.connection_type, "test");
EXPECT_EQ(test.expected_connection_type,
estimator.GetEffectiveConnectionType());
}
}
// Tests that |GetEffectiveConnectionType| returns correct connection type when
// only RTT thresholds are specified in the variation params.
TEST(NetworkQualityEstimatorTest, ObtainThresholdsOnlyRTT) {
std::map<std::string, std::string> variation_params;
variation_params["Offline.ThresholdMedianHttpRTTMsec"] = "4000";
variation_params["Slow2G.ThresholdMedianHttpRTTMsec"] = "2000";
variation_params["2G.ThresholdMedianHttpRTTMsec"] = "1000";
variation_params["3G.ThresholdMedianHttpRTTMsec"] = "500";
TestNetworkQualityEstimator estimator(variation_params);
// Simulate the connection type as Wi-Fi so that GetEffectiveConnectionType
// does not return Offline if the device is offline.
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
const struct {
int32_t rtt_msec;
EffectiveConnectionType expected_conn_type;
} tests[] = {
{5000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{4000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{3000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{2000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{1500, EFFECTIVE_CONNECTION_TYPE_2G},
{1000, EFFECTIVE_CONNECTION_TYPE_2G},
{700, EFFECTIVE_CONNECTION_TYPE_3G},
{500, EFFECTIVE_CONNECTION_TYPE_3G},
{400, EFFECTIVE_CONNECTION_TYPE_4G},
{300, EFFECTIVE_CONNECTION_TYPE_4G},
{200, EFFECTIVE_CONNECTION_TYPE_4G},
{100, EFFECTIVE_CONNECTION_TYPE_4G},
{20, EFFECTIVE_CONNECTION_TYPE_4G},
};
for (const auto& test : tests) {
estimator.set_start_time_null_http_rtt(
base::TimeDelta::FromMilliseconds(test.rtt_msec));
estimator.set_recent_http_rtt(
base::TimeDelta::FromMilliseconds(test.rtt_msec));
estimator.set_start_time_null_downlink_throughput_kbps(INT32_MAX);
estimator.set_recent_downlink_throughput_kbps(INT32_MAX);
// Run one main frame request to force recomputation of effective connection
// type.
estimator.RunOneRequest();
EXPECT_EQ(test.expected_conn_type, estimator.GetEffectiveConnectionType());
}
}
// Tests that default transport RTT thresholds for different effective
// connection types are correctly set.
TEST(NetworkQualityEstimatorTest, DefaultTransportRTTBasedThresholds) {
const struct {
bool override_defaults_using_variation_params;
int32_t transport_rtt_msec;
EffectiveConnectionType expected_conn_type;
} tests[] = {
// When the variation params do not override connection thresholds,
// default values should be used.
{false, 5000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{false, 4000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{false, 3000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{false, 2000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{false, 1500, EFFECTIVE_CONNECTION_TYPE_2G},
{false, 1000, EFFECTIVE_CONNECTION_TYPE_3G},
{false, 100, EFFECTIVE_CONNECTION_TYPE_4G},
{false, 20, EFFECTIVE_CONNECTION_TYPE_4G},
// Override default thresholds using variation params.
{true, 5000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{true, 4000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{true, 3000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{true, 2000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{true, 1500, EFFECTIVE_CONNECTION_TYPE_2G},
{true, 1000, EFFECTIVE_CONNECTION_TYPE_2G},
{true, 20, EFFECTIVE_CONNECTION_TYPE_4G},
};
for (const auto& test : tests) {
std::map<std::string, std::string> variation_params;
variation_params["effective_connection_type_algorithm"] =
"TransportRTTOrDownstreamThroughput";
if (test.override_defaults_using_variation_params) {
variation_params["Offline.ThresholdMedianTransportRTTMsec"] = "4000";
variation_params["Slow2G.ThresholdMedianTransportRTTMsec"] = "2000";
variation_params["2G.ThresholdMedianTransportRTTMsec"] = "1000";
}
TestNetworkQualityEstimator estimator(variation_params);
// Simulate the connection type as Wi-Fi so that GetEffectiveConnectionType
// does not return Offline if the device is offline.
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
estimator.set_start_time_null_transport_rtt(
base::TimeDelta::FromMilliseconds(test.transport_rtt_msec));
estimator.set_recent_transport_rtt(
base::TimeDelta::FromMilliseconds(test.transport_rtt_msec));
estimator.set_start_time_null_downlink_throughput_kbps(INT32_MAX);
estimator.set_recent_downlink_throughput_kbps(INT32_MAX);
// Run one main frame request to force recomputation of effective connection
// type.
estimator.RunOneRequest();
EXPECT_EQ(test.expected_conn_type, estimator.GetEffectiveConnectionType());
}
}
// Tests that default HTTP RTT thresholds for different effective
// connection types are correctly set.
TEST(NetworkQualityEstimatorTest, DefaultHttpRTTBasedThresholds) {
const struct {
bool override_defaults_using_variation_params;
int32_t http_rtt_msec;
EffectiveConnectionType expected_conn_type;
} tests[] = {
// When the variation params do not override connection thresholds,
// default values should be used.
{false, 5000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{false, 4000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{false, 3000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{false, 2000, EFFECTIVE_CONNECTION_TYPE_2G},
{false, 1500, EFFECTIVE_CONNECTION_TYPE_2G},
{false, 1000, EFFECTIVE_CONNECTION_TYPE_3G},
{false, 100, EFFECTIVE_CONNECTION_TYPE_4G},
{false, 20, EFFECTIVE_CONNECTION_TYPE_4G},
// Override default thresholds using variation params.
{true, 5000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{true, 4000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{true, 3000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{true, 2000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{true, 1500, EFFECTIVE_CONNECTION_TYPE_2G},
{true, 1000, EFFECTIVE_CONNECTION_TYPE_2G},
{true, 20, EFFECTIVE_CONNECTION_TYPE_4G},
};
for (const auto& test : tests) {
std::map<std::string, std::string> variation_params;
if (test.override_defaults_using_variation_params) {
variation_params["Offline.ThresholdMedianHttpRTTMsec"] = "4000";
variation_params["Slow2G.ThresholdMedianHttpRTTMsec"] = "2000";
variation_params["2G.ThresholdMedianHttpRTTMsec"] = "1000";
}
TestNetworkQualityEstimator estimator(variation_params);
// Simulate the connection type as Wi-Fi so that GetEffectiveConnectionType
// does not return Offline if the device is offline.
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
estimator.set_start_time_null_http_rtt(
base::TimeDelta::FromMilliseconds(test.http_rtt_msec));
estimator.set_recent_http_rtt(
base::TimeDelta::FromMilliseconds(test.http_rtt_msec));
estimator.set_start_time_null_downlink_throughput_kbps(INT32_MAX);
estimator.set_recent_downlink_throughput_kbps(INT32_MAX);
// Run one main frame request to force recomputation of effective connection
// type.
estimator.RunOneRequest();
EXPECT_EQ(test.expected_conn_type, estimator.GetEffectiveConnectionType());
}
}
// Tests that |GetEffectiveConnectionType| returns correct connection type when
// only transport RTT thresholds are specified in the variation params.
TEST(NetworkQualityEstimatorTest, ObtainThresholdsOnlyTransportRTT) {
std::map<std::string, std::string> variation_params;
variation_params["effective_connection_type_algorithm"] =
"TransportRTTOrDownstreamThroughput";
variation_params["Offline.ThresholdMedianTransportRTTMsec"] = "4000";
variation_params["Slow2G.ThresholdMedianTransportRTTMsec"] = "2000";
variation_params["2G.ThresholdMedianTransportRTTMsec"] = "1000";
variation_params["3G.ThresholdMedianTransportRTTMsec"] = "500";
TestNetworkQualityEstimator estimator(variation_params);
// Simulate the connection type as Wi-Fi so that GetEffectiveConnectionType
// does not return Offline if the device is offline.
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
const struct {
int32_t transport_rtt_msec;
EffectiveConnectionType expected_conn_type;
} tests[] = {
{5000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{4000, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{3000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{2000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{1500, EFFECTIVE_CONNECTION_TYPE_2G},
{1000, EFFECTIVE_CONNECTION_TYPE_2G},
{700, EFFECTIVE_CONNECTION_TYPE_3G},
{500, EFFECTIVE_CONNECTION_TYPE_3G},
{400, EFFECTIVE_CONNECTION_TYPE_4G},
{300, EFFECTIVE_CONNECTION_TYPE_4G},
{200, EFFECTIVE_CONNECTION_TYPE_4G},
{100, EFFECTIVE_CONNECTION_TYPE_4G},
{20, EFFECTIVE_CONNECTION_TYPE_4G},
};
for (const auto& test : tests) {
estimator.set_start_time_null_transport_rtt(
base::TimeDelta::FromMilliseconds(test.transport_rtt_msec));
estimator.set_recent_transport_rtt(
base::TimeDelta::FromMilliseconds(test.transport_rtt_msec));
estimator.set_start_time_null_downlink_throughput_kbps(INT32_MAX);
estimator.set_recent_downlink_throughput_kbps(INT32_MAX);
// Run one main frame request to force recomputation of effective connection
// type.
estimator.RunOneRequest();
EXPECT_EQ(test.expected_conn_type, estimator.GetEffectiveConnectionType());
}
}
// Tests that |GetEffectiveConnectionType| returns correct connection type when
// both HTTP RTT and throughput thresholds are specified in the variation
// params.
TEST(NetworkQualityEstimatorTest, ObtainThresholdsHttpRTTandThroughput) {
std::map<std::string, std::string> variation_params;
variation_params["Offline.ThresholdMedianHttpRTTMsec"] = "4000";
variation_params["Slow2G.ThresholdMedianHttpRTTMsec"] = "2000";
variation_params["2G.ThresholdMedianHttpRTTMsec"] = "1000";
variation_params["3G.ThresholdMedianHttpRTTMsec"] = "500";
variation_params["Offline.ThresholdMedianKbps"] = "10";
variation_params["Slow2G.ThresholdMedianKbps"] = "100";
variation_params["2G.ThresholdMedianKbps"] = "300";
variation_params["3G.ThresholdMedianKbps"] = "500";
TestNetworkQualityEstimator estimator(variation_params);
// Simulate the connection type as Wi-Fi so that GetEffectiveConnectionType
// does not return Offline if the device is offline.
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
const struct {
int32_t rtt_msec;
int32_t downlink_throughput_kbps;
EffectiveConnectionType expected_conn_type;
} tests[] = {
// Set RTT to a very low value to observe the effect of throughput.
// Throughput is the bottleneck.
{1, 5, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{1, 10, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{1, 50, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{1, 100, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{1, 150, EFFECTIVE_CONNECTION_TYPE_2G},
{1, 300, EFFECTIVE_CONNECTION_TYPE_2G},
{1, 400, EFFECTIVE_CONNECTION_TYPE_3G},
{1, 500, EFFECTIVE_CONNECTION_TYPE_3G},
{1, 700, EFFECTIVE_CONNECTION_TYPE_4G},
{1, 1000, EFFECTIVE_CONNECTION_TYPE_4G},
{1, 1500, EFFECTIVE_CONNECTION_TYPE_4G},
{1, 2500, EFFECTIVE_CONNECTION_TYPE_4G},
// Set both RTT and throughput. RTT is the bottleneck.
{3000, 25000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{700, 25000, EFFECTIVE_CONNECTION_TYPE_3G},
};
for (const auto& test : tests) {
estimator.set_start_time_null_http_rtt(
base::TimeDelta::FromMilliseconds(test.rtt_msec));
estimator.set_recent_http_rtt(
base::TimeDelta::FromMilliseconds(test.rtt_msec));
estimator.set_start_time_null_downlink_throughput_kbps(
test.downlink_throughput_kbps);
estimator.set_recent_downlink_throughput_kbps(
test.downlink_throughput_kbps);
// Run one main frame request to force recomputation of effective connection
// type.
estimator.RunOneRequest();
EXPECT_EQ(test.expected_conn_type, estimator.GetEffectiveConnectionType());
}
}
// Tests that |GetEffectiveConnectionType| returns correct connection type when
// both transport RTT and throughput thresholds are specified in the variation
// params.
TEST(NetworkQualityEstimatorTest, ObtainThresholdsTransportRTTandThroughput) {
std::map<std::string, std::string> variation_params;
variation_params["effective_connection_type_algorithm"] =
"TransportRTTOrDownstreamThroughput";
variation_params["Offline.ThresholdMedianTransportRTTMsec"] = "4000";
variation_params["Slow2G.ThresholdMedianTransportRTTMsec"] = "2000";
variation_params["2G.ThresholdMedianTransportRTTMsec"] = "1000";
variation_params["3G.ThresholdMedianTransportRTTMsec"] = "500";
variation_params["Offline.ThresholdMedianKbps"] = "10";
variation_params["Slow2G.ThresholdMedianKbps"] = "100";
variation_params["2G.ThresholdMedianKbps"] = "300";
variation_params["3G.ThresholdMedianKbps"] = "500";
TestNetworkQualityEstimator estimator(variation_params);
// Simulate the connection type as Wi-Fi so that GetEffectiveConnectionType
// does not return Offline if the device is offline.
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
const struct {
int32_t transport_rtt_msec;
int32_t downlink_throughput_kbps;
EffectiveConnectionType expected_conn_type;
} tests[] = {
// Set RTT to a very low value to observe the effect of throughput.
// Throughput is the bottleneck.
{1, 5, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{1, 10, EFFECTIVE_CONNECTION_TYPE_OFFLINE},
{1, 50, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{1, 100, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{1, 150, EFFECTIVE_CONNECTION_TYPE_2G},
{1, 300, EFFECTIVE_CONNECTION_TYPE_2G},
{1, 400, EFFECTIVE_CONNECTION_TYPE_3G},
{1, 500, EFFECTIVE_CONNECTION_TYPE_3G},
{1, 700, EFFECTIVE_CONNECTION_TYPE_4G},
{1, 1000, EFFECTIVE_CONNECTION_TYPE_4G},
{1, 1500, EFFECTIVE_CONNECTION_TYPE_4G},
{1, 2500, EFFECTIVE_CONNECTION_TYPE_4G},
// Set both RTT and throughput. RTT is the bottleneck.
{3000, 25000, EFFECTIVE_CONNECTION_TYPE_SLOW_2G},
{700, 25000, EFFECTIVE_CONNECTION_TYPE_3G},
};
for (const auto& test : tests) {
estimator.set_start_time_null_transport_rtt(
base::TimeDelta::FromMilliseconds(test.transport_rtt_msec));
estimator.set_recent_transport_rtt(
base::TimeDelta::FromMilliseconds(test.transport_rtt_msec));
estimator.set_start_time_null_downlink_throughput_kbps(
test.downlink_throughput_kbps);
estimator.set_recent_downlink_throughput_kbps(
test.downlink_throughput_kbps);
// Run one main frame request to force recomputation of effective connection
// type.
estimator.RunOneRequest();
EXPECT_EQ(test.expected_conn_type, estimator.GetEffectiveConnectionType());
}
}
// Tests if |weight_multiplier_per_second_| is set to correct value for various
// values of half life parameter.
TEST(NetworkQualityEstimatorTest, HalfLifeParam) {
std::map<std::string, std::string> variation_params;
const struct {
std::string description;
std::string variation_params_value;
double expected_weight_multiplier;
} tests[] = {
{"Half life parameter is not set, default value should be used",
std::string(), 0.988},
{"Half life parameter is set to negative, default value should be used",
"-100", 0.988},
{"Half life parameter is set to zero, default value should be used", "0",
0.988},
{"Half life parameter is set correctly", "10", 0.933},
};
for (const auto& test : tests) {
variation_params["HalfLifeSeconds"] = test.variation_params_value;
TestNetworkQualityEstimator estimator(variation_params);
EXPECT_NEAR(test.expected_weight_multiplier,
estimator.weight_multiplier_per_second_, 0.001)
<< test.description;
}
}
TEST(NetworkQualityEstimatorTest, TestGetMetricsSince) {
std::map<std::string, std::string> variation_params;
const base::TimeDelta rtt_threshold_3g =
base::TimeDelta::FromMilliseconds(30);
const base::TimeDelta rtt_threshold_4g = base::TimeDelta::FromMilliseconds(1);
variation_params["3G.ThresholdMedianHttpRTTMsec"] =
base::IntToString(rtt_threshold_3g.InMilliseconds());
variation_params["HalfLifeSeconds"] = "300000";
TestNetworkQualityEstimator estimator(variation_params);
base::TimeTicks now = base::TimeTicks::Now();
base::TimeTicks old = now - base::TimeDelta::FromMilliseconds(1);
ASSERT_NE(old, now);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test");
const int32_t old_downlink_kbps = 1;
const base::TimeDelta old_url_rtt = base::TimeDelta::FromMilliseconds(1);
const base::TimeDelta old_tcp_rtt = base::TimeDelta::FromMilliseconds(10);
DCHECK_LT(old_url_rtt, rtt_threshold_3g);
DCHECK_LT(old_tcp_rtt, rtt_threshold_3g);
// First sample has very old timestamp.
for (size_t i = 0; i < 2; ++i) {
estimator.downstream_throughput_kbps_observations_.AddObservation(
NetworkQualityEstimator::ThroughputObservation(
old_downlink_kbps, old, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP));
estimator.rtt_observations_.AddObservation(
NetworkQualityEstimator::RttObservation(
old_url_rtt, old, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP));
estimator.rtt_observations_.AddObservation(
NetworkQualityEstimator::RttObservation(
old_tcp_rtt, old, NETWORK_QUALITY_OBSERVATION_SOURCE_TCP));
}
const int32_t new_downlink_kbps = 100;
const base::TimeDelta new_url_rtt = base::TimeDelta::FromMilliseconds(100);
const base::TimeDelta new_tcp_rtt = base::TimeDelta::FromMilliseconds(1000);
DCHECK_NE(old_downlink_kbps, new_downlink_kbps);
DCHECK_NE(old_url_rtt, new_url_rtt);
DCHECK_NE(old_tcp_rtt, new_tcp_rtt);
DCHECK_GT(new_url_rtt, rtt_threshold_3g);
DCHECK_GT(new_tcp_rtt, rtt_threshold_3g);
DCHECK_GT(new_url_rtt, rtt_threshold_4g);
DCHECK_GT(new_tcp_rtt, rtt_threshold_4g);
estimator.downstream_throughput_kbps_observations_.AddObservation(
NetworkQualityEstimator::ThroughputObservation(
new_downlink_kbps, now, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP));
estimator.rtt_observations_.AddObservation(
NetworkQualityEstimator::RttObservation(
new_url_rtt, now, NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP));
estimator.rtt_observations_.AddObservation(
NetworkQualityEstimator::RttObservation(
new_tcp_rtt, now, NETWORK_QUALITY_OBSERVATION_SOURCE_TCP));
const struct {
base::TimeTicks start_timestamp;
bool expect_network_quality_available;
base::TimeDelta expected_http_rtt;
base::TimeDelta expected_transport_rtt;
int32_t expected_downstream_throughput;
EffectiveConnectionType expected_effective_connection_type;
} tests[] = {
{now + base::TimeDelta::FromSeconds(10), false,
base::TimeDelta::FromMilliseconds(0),
base::TimeDelta::FromMilliseconds(0), 0, EFFECTIVE_CONNECTION_TYPE_4G},
{now, true, new_url_rtt, new_tcp_rtt, new_downlink_kbps,
EFFECTIVE_CONNECTION_TYPE_3G},
{old - base::TimeDelta::FromMicroseconds(500), true, old_url_rtt,
old_tcp_rtt, old_downlink_kbps, EFFECTIVE_CONNECTION_TYPE_4G},
};
for (const auto& test : tests) {
base::TimeDelta http_rtt;
base::TimeDelta transport_rtt;
int32_t downstream_throughput_kbps;
EXPECT_EQ(test.expect_network_quality_available,
estimator.GetRecentHttpRTT(test.start_timestamp, &http_rtt));
EXPECT_EQ(
test.expect_network_quality_available,
estimator.GetRecentTransportRTT(test.start_timestamp, &transport_rtt));
EXPECT_EQ(test.expect_network_quality_available,
estimator.GetRecentDownlinkThroughputKbps(
test.start_timestamp, &downstream_throughput_kbps));
if (test.expect_network_quality_available) {
EXPECT_EQ(test.expected_http_rtt, http_rtt);
EXPECT_EQ(test.expected_transport_rtt, transport_rtt);
EXPECT_EQ(test.expected_downstream_throughput,
downstream_throughput_kbps);
EXPECT_EQ(
test.expected_effective_connection_type,
estimator.GetRecentEffectiveConnectionType(test.start_timestamp));
}
}
}
// An external estimate provider that does not have a valid RTT or throughput
// estimate.
class InvalidExternalEstimateProvider : public ExternalEstimateProvider {
public:
InvalidExternalEstimateProvider() : update_count_(0) {}
~InvalidExternalEstimateProvider() override {}
bool GetRTT(base::TimeDelta* rtt) const override {
DCHECK(rtt);
return false;
}
bool GetDownstreamThroughputKbps(
int32_t* downstream_throughput_kbps) const override {
DCHECK(downstream_throughput_kbps);
return false;
}
bool GetUpstreamThroughputKbps(
int32_t* upstream_throughput_kbps) const override {
// NetworkQualityEstimator does not support upstream throughput.
ADD_FAILURE();
return false;
}
bool GetTimeSinceLastUpdate(
base::TimeDelta* time_since_last_update) const override {
NOTREACHED();
return false;
}
void SetUpdatedEstimateDelegate(UpdatedEstimateDelegate* delegate) override {}
void Update() const override { update_count_++; }
size_t update_count() const { return update_count_; }
private:
mutable size_t update_count_;
DISALLOW_COPY_AND_ASSIGN(InvalidExternalEstimateProvider);
};
// Tests if the RTT value from external estimate provider is discarded if the
// external estimate provider is invalid.
TEST(NetworkQualityEstimatorTest, InvalidExternalEstimateProvider) {
base::HistogramTester histogram_tester;
InvalidExternalEstimateProvider* invalid_external_estimate_provider =
new InvalidExternalEstimateProvider();
std::unique_ptr<ExternalEstimateProvider> external_estimate_provider(
invalid_external_estimate_provider);
TestNetworkQualityEstimator estimator(std::map<std::string, std::string>(),
std::move(external_estimate_provider));
estimator.SimulateNetworkChange(net::NetworkChangeNotifier::CONNECTION_WIFI,
"test");
base::TimeDelta rtt;
int32_t kbps;
EXPECT_EQ(1U, invalid_external_estimate_provider->update_count());
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
histogram_tester.ExpectTotalCount("NQE.ExternalEstimateProviderStatus", 2);
histogram_tester.ExpectBucketCount(
"NQE.ExternalEstimateProviderStatus",
1 /* EXTERNAL_ESTIMATE_PROVIDER_STATUS_AVAILABLE */, 1);
histogram_tester.ExpectBucketCount(
"NQE.ExternalEstimateProviderStatus",
2 /* EXTERNAL_ESTIMATE_PROVIDER_STATUS_QUERIED */, 1);
histogram_tester.ExpectTotalCount("NQE.ExternalEstimateProvider.RTT", 0);
histogram_tester.ExpectTotalCount(
"NQE.ExternalEstimateProvider.DownlinkBandwidth", 0);
}
class TestExternalEstimateProvider : public ExternalEstimateProvider {
public:
TestExternalEstimateProvider(base::TimeDelta rtt,
int32_t downstream_throughput_kbps)
: delegate_(nullptr),
should_notify_delegate_(true),
rtt_(rtt),
downstream_throughput_kbps_(downstream_throughput_kbps),
update_count_(0) {}
~TestExternalEstimateProvider() override {}
bool GetRTT(base::TimeDelta* rtt) const override {
NOTREACHED();
return true;
}
bool GetDownstreamThroughputKbps(
int32_t* downstream_throughput_kbps) const override {
NOTREACHED();
return true;
}
bool GetUpstreamThroughputKbps(
int32_t* upstream_throughput_kbps) const override {
NOTREACHED();
return false;
}
bool GetTimeSinceLastUpdate(
base::TimeDelta* time_since_last_update) const override {
NOTREACHED();
return true;
}
void SetUpdatedEstimateDelegate(UpdatedEstimateDelegate* delegate) override {
delegate_ = delegate;
}
void set_should_notify_delegate(bool should_notify_delegate) {
should_notify_delegate_ = should_notify_delegate;
}
void Update() const override {
update_count_++;
if (!should_notify_delegate_)
return;
delegate_->OnUpdatedEstimateAvailable(rtt_, downstream_throughput_kbps_,
-1);
}
size_t update_count() const { return update_count_; }
private:
UpdatedEstimateDelegate* delegate_;
bool should_notify_delegate_;
// RTT and downstream throughput estimates.
const base::TimeDelta rtt_;
const int32_t downstream_throughput_kbps_;
mutable size_t update_count_;
DISALLOW_COPY_AND_ASSIGN(TestExternalEstimateProvider);
};
// Tests if the external estimate provider is called in the constructor and
// on network change notification.
TEST(NetworkQualityEstimatorTest, TestExternalEstimateProvider) {
base::HistogramTester histogram_tester;
const base::TimeDelta external_estimate_provider_rtt =
base::TimeDelta::FromMilliseconds(1);
const int32_t external_estimate_provider_downstream_throughput = 100;
TestExternalEstimateProvider* test_external_estimate_provider =
new TestExternalEstimateProvider(
external_estimate_provider_rtt,
external_estimate_provider_downstream_throughput);
std::unique_ptr<ExternalEstimateProvider> external_estimate_provider(
test_external_estimate_provider);
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params,
std::move(external_estimate_provider));
estimator.SimulateNetworkChange(net::NetworkChangeNotifier::CONNECTION_WIFI,
"test");
base::TimeDelta rtt;
int32_t kbps;
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
histogram_tester.ExpectTotalCount("NQE.ExternalEstimateProviderStatus", 5);
histogram_tester.ExpectBucketCount(
"NQE.ExternalEstimateProviderStatus",
1 /* EXTERNAL_ESTIMATE_PROVIDER_STATUS_AVAILABLE */, 1);
histogram_tester.ExpectBucketCount(
"NQE.ExternalEstimateProviderStatus",
2 /* EXTERNAL_ESTIMATE_PROVIDER_STATUS_QUERIED */, 1);
histogram_tester.ExpectBucketCount(
"NQE.ExternalEstimateProviderStatus",
4 /* EXTERNAL_ESTIMATE_PROVIDER_STATUS_CALLBACK */, 1);
histogram_tester.ExpectBucketCount(
"NQE.ExternalEstimateProviderStatus",
5 /* EXTERNAL_ESTIMATE_PROVIDER_STATUS_RTT_AVAILABLE */, 1);
histogram_tester.ExpectBucketCount(
"NQE.ExternalEstimateProviderStatus",
6 /* EXTERNAL_ESTIMATE_PROVIDER_STATUS_DOWNLINK_BANDWIDTH_AVAILABLE */,
1);
histogram_tester.ExpectUniqueSample("NQE.ExternalEstimateProvider.RTT", 1, 1);
histogram_tester.ExpectUniqueSample(
"NQE.ExternalEstimateProvider.DownlinkBandwidth", 100, 1);
EXPECT_EQ(1U, test_external_estimate_provider->update_count());
// Change network type to WiFi. Number of queries to External estimate
// provider must increment.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-1");
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_EQ(2U, test_external_estimate_provider->update_count());
test_external_estimate_provider->set_should_notify_delegate(false);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_2G, "test-2");
EXPECT_EQ(3U, test_external_estimate_provider->update_count());
// Estimates are unavailable because external estimate provider never
// notifies network quality estimator of the updated estimates.
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
}
// Tests if the estimate from the external estimate provider is merged with the
// observations collected from the HTTP requests.
TEST(NetworkQualityEstimatorTest, TestExternalEstimateProviderMergeEstimates) {
const base::TimeDelta external_estimate_provider_rtt =
base::TimeDelta::FromMilliseconds(10 * 1000);
const int32_t external_estimate_provider_downstream_throughput = 100 * 1000;
TestExternalEstimateProvider* test_external_estimate_provider =
new TestExternalEstimateProvider(
external_estimate_provider_rtt,
external_estimate_provider_downstream_throughput);
std::unique_ptr<ExternalEstimateProvider> external_estimate_provider(
test_external_estimate_provider);
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params,
std::move(external_estimate_provider));
estimator.SimulateNetworkChange(net::NetworkChangeNotifier::CONNECTION_WIFI,
"test");
base::TimeDelta rtt;
// Estimate provided by network quality estimator should match the estimate
// provided by external estimate provider.
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_EQ(external_estimate_provider_rtt, rtt);
int32_t kbps;
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_EQ(external_estimate_provider_downstream_throughput, kbps);
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->Start();
base::RunLoop().Run();
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_NE(external_estimate_provider_rtt, rtt);
EXPECT_TRUE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
EXPECT_NE(external_estimate_provider_downstream_throughput, kbps);
}
// Tests if the throughput observation is taken correctly when local and network
// requests do not overlap.
TEST(NetworkQualityEstimatorTest, TestThroughputNoRequestOverlap) {
base::HistogramTester histogram_tester;
std::map<std::string, std::string> variation_params;
static const struct {
bool allow_small_localhost_requests;
} tests[] = {
{
false,
},
{
true,
},
};
for (const auto& test : tests) {
TestNetworkQualityEstimator estimator(
std::unique_ptr<net::ExternalEstimateProvider>(), variation_params,
test.allow_small_localhost_requests,
test.allow_small_localhost_requests);
base::TimeDelta rtt;
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
int32_t kbps;
EXPECT_FALSE(
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
EXPECT_EQ(test.allow_small_localhost_requests,
estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_EQ(
test.allow_small_localhost_requests,
estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(), &kbps));
}
}
// Tests that the effective connection type is computed at the specified
// interval, and that the observers are notified of any change.
TEST(NetworkQualityEstimatorTest, TestEffectiveConnectionTypeObserver) {
base::HistogramTester histogram_tester;
std::unique_ptr<base::SimpleTestTickClock> tick_clock(
new base::SimpleTestTickClock());
base::SimpleTestTickClock* tick_clock_ptr = tick_clock.get();
TestEffectiveConnectionTypeObserver observer;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.AddEffectiveConnectionTypeObserver(&observer);
estimator.SetTickClockForTesting(std::move(tick_clock));
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
EXPECT_EQ(0U, observer.effective_connection_types().size());
estimator.set_start_time_null_http_rtt(
base::TimeDelta::FromMilliseconds(1500));
estimator.set_start_time_null_downlink_throughput_kbps(100000);
tick_clock_ptr->Advance(base::TimeDelta::FromMinutes(60));
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
EXPECT_EQ(1U, observer.effective_connection_types().size());
histogram_tester.ExpectUniqueSample("NQE.MainFrame.EffectiveConnectionType",
EFFECTIVE_CONNECTION_TYPE_2G, 1);
histogram_tester.ExpectUniqueSample(
"NQE.MainFrame.EffectiveConnectionType.Unknown",
EFFECTIVE_CONNECTION_TYPE_2G, 1);
// Next request should not trigger recomputation of effective connection type
// since there has been no change in the clock.
std::unique_ptr<URLRequest> request2(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request2->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request2->Start();
base::RunLoop().Run();
EXPECT_EQ(1U, observer.effective_connection_types().size());
// Change in connection type should send out notification to the observers.
estimator.set_start_time_null_http_rtt(
base::TimeDelta::FromMilliseconds(500));
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
EXPECT_EQ(2U, observer.effective_connection_types().size());
// A change in effective connection type does not trigger notification to the
// observers, since it is not accompanied by any new observation or a network
// change event.
estimator.set_start_time_null_http_rtt(
base::TimeDelta::FromMilliseconds(100));
EXPECT_EQ(2U, observer.effective_connection_types().size());
TestEffectiveConnectionTypeObserver observer_2;
estimator.AddEffectiveConnectionTypeObserver(&observer_2);
EXPECT_EQ(0U, observer_2.effective_connection_types().size());
base::RunLoop().RunUntilIdle();
// |observer_2| must be notified as soon as it is added.
EXPECT_EQ(1U, observer_2.effective_connection_types().size());
// |observer_3| should not be notified since it unregisters before the
// message loop is run.
TestEffectiveConnectionTypeObserver observer_3;
estimator.AddEffectiveConnectionTypeObserver(&observer_3);
EXPECT_EQ(0U, observer_3.effective_connection_types().size());
estimator.RemoveEffectiveConnectionTypeObserver(&observer_3);
base::RunLoop().RunUntilIdle();
EXPECT_EQ(0U, observer_3.effective_connection_types().size());
}
// Tests that the network quality is computed at the specified interval, and
// that the network quality observers are notified of any change.
TEST(NetworkQualityEstimatorTest, TestRTTAndThroughputEstimatesObserver) {
base::HistogramTester histogram_tester;
std::unique_ptr<base::SimpleTestTickClock> tick_clock(
new base::SimpleTestTickClock());
base::SimpleTestTickClock* tick_clock_ptr = tick_clock.get();
TestRTTAndThroughputEstimatesObserver observer;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.AddRTTAndThroughputEstimatesObserver(&observer);
estimator.SetTickClockForTesting(std::move(tick_clock));
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
EXPECT_EQ(nqe::internal::InvalidRTT(), observer.http_rtt());
EXPECT_EQ(nqe::internal::InvalidRTT(), observer.transport_rtt());
EXPECT_EQ(nqe::internal::kInvalidThroughput,
observer.downstream_throughput_kbps());
int notifications_received = observer.notifications_received();
EXPECT_EQ(0, notifications_received);
base::TimeDelta http_rtt(base::TimeDelta::FromMilliseconds(100));
base::TimeDelta transport_rtt(base::TimeDelta::FromMilliseconds(200));
int32_t downstream_throughput_kbps(300);
estimator.set_start_time_null_http_rtt(http_rtt);
estimator.set_start_time_null_transport_rtt(transport_rtt);
estimator.set_start_time_null_downlink_throughput_kbps(
downstream_throughput_kbps);
tick_clock_ptr->Advance(base::TimeDelta::FromMinutes(60));
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->Start();
base::RunLoop().Run();
EXPECT_EQ(http_rtt, observer.http_rtt());
EXPECT_EQ(transport_rtt, observer.transport_rtt());
EXPECT_EQ(downstream_throughput_kbps, observer.downstream_throughput_kbps());
EXPECT_LE(1, observer.notifications_received() - notifications_received);
notifications_received = observer.notifications_received();
// The next request should not trigger recomputation of RTT or throughput
// since there has been no change in the clock.
std::unique_ptr<URLRequest> request2(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request2->Start();
base::RunLoop().Run();
EXPECT_LE(1, observer.notifications_received() - notifications_received);
notifications_received = observer.notifications_received();
// A change in the connection type should send out notification to the
// observers.
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
EXPECT_EQ(http_rtt, observer.http_rtt());
EXPECT_EQ(transport_rtt, observer.transport_rtt());
EXPECT_EQ(downstream_throughput_kbps, observer.downstream_throughput_kbps());
EXPECT_LE(1, observer.notifications_received() - notifications_received);
notifications_received = observer.notifications_received();
// A change in effective connection type does not trigger notification to the
// observers, since it is not accompanied by any new observation or a network
// change event.
estimator.set_start_time_null_http_rtt(
base::TimeDelta::FromMilliseconds(10000));
estimator.set_start_time_null_http_rtt(base::TimeDelta::FromMilliseconds(1));
EXPECT_EQ(0, observer.notifications_received() - notifications_received);
TestRTTAndThroughputEstimatesObserver observer_2;
estimator.AddRTTAndThroughputEstimatesObserver(&observer_2);
EXPECT_EQ(nqe::internal::InvalidRTT(), observer_2.http_rtt());
EXPECT_EQ(nqe::internal::InvalidRTT(), observer_2.transport_rtt());
EXPECT_EQ(nqe::internal::kInvalidThroughput,
observer_2.downstream_throughput_kbps());
base::RunLoop().RunUntilIdle();
EXPECT_NE(nqe::internal::InvalidRTT(), observer_2.http_rtt());
EXPECT_NE(nqe::internal::InvalidRTT(), observer_2.transport_rtt());
EXPECT_NE(nqe::internal::kInvalidThroughput,
observer_2.downstream_throughput_kbps());
// |observer_3| should not be notified because it is unregisters before the
// message loop is run.
TestRTTAndThroughputEstimatesObserver observer_3;
estimator.AddRTTAndThroughputEstimatesObserver(&observer_3);
EXPECT_EQ(nqe::internal::InvalidRTT(), observer_3.http_rtt());
EXPECT_EQ(nqe::internal::InvalidRTT(), observer_3.transport_rtt());
EXPECT_EQ(nqe::internal::kInvalidThroughput,
observer_3.downstream_throughput_kbps());
estimator.RemoveRTTAndThroughputEstimatesObserver(&observer_3);
base::RunLoop().RunUntilIdle();
EXPECT_EQ(nqe::internal::InvalidRTT(), observer_3.http_rtt());
EXPECT_EQ(nqe::internal::InvalidRTT(), observer_3.transport_rtt());
EXPECT_EQ(nqe::internal::kInvalidThroughput,
observer_3.downstream_throughput_kbps());
}
// Tests that the effective connection type is computed on every RTT
// observation if the last computed effective connection type was unknown.
TEST(NetworkQualityEstimatorTest, UnknownEffectiveConnectionType) {
std::unique_ptr<base::SimpleTestTickClock> tick_clock(
new base::SimpleTestTickClock());
base::SimpleTestTickClock* tick_clock_ptr = tick_clock.get();
TestEffectiveConnectionTypeObserver observer;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.SetTickClockForTesting(std::move(tick_clock));
estimator.AddEffectiveConnectionTypeObserver(&observer);
tick_clock_ptr->Advance(base::TimeDelta::FromMinutes(60));
size_t expected_effective_connection_type_notifications = 0;
estimator.set_recent_effective_connection_type(
EFFECTIVE_CONNECTION_TYPE_UNKNOWN);
// Run one main frame request to force recomputation of effective connection
// type.
estimator.RunOneRequest();
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
NetworkQualityEstimator::RttObservation rtt_observation(
base::TimeDelta::FromSeconds(5), tick_clock_ptr->NowTicks(),
NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP);
for (size_t i = 0; i < 10; ++i) {
estimator.NotifyObserversOfRTT(rtt_observation);
EXPECT_EQ(expected_effective_connection_type_notifications,
observer.effective_connection_types().size());
}
estimator.set_recent_effective_connection_type(
EFFECTIVE_CONNECTION_TYPE_SLOW_2G);
// Even though there are 10 RTT samples already available, the addition of one
// more RTT sample should trigger recomputation of the effective connection
// type since the last computed effective connection type was unknown.
estimator.NotifyObserversOfRTT(NetworkQualityEstimator::RttObservation(
base::TimeDelta::FromSeconds(5), tick_clock_ptr->NowTicks(),
NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP));
++expected_effective_connection_type_notifications;
EXPECT_EQ(expected_effective_connection_type_notifications,
observer.effective_connection_types().size());
}
// Tests that the effective connection type is computed regularly depending
// on the number of RTT and bandwidth samples.
TEST(NetworkQualityEstimatorTest,
AdaptiveRecomputationEffectiveConnectionType) {
base::HistogramTester histogram_tester;
std::unique_ptr<base::SimpleTestTickClock> tick_clock(
new base::SimpleTestTickClock());
base::SimpleTestTickClock* tick_clock_ptr = tick_clock.get();
TestEffectiveConnectionTypeObserver observer;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.SetTickClockForTesting(std::move(tick_clock));
estimator.SimulateNetworkChange(NetworkChangeNotifier::CONNECTION_WIFI,
"test");
estimator.AddEffectiveConnectionTypeObserver(&observer);
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
EXPECT_EQ(0U, observer.effective_connection_types().size());
estimator.set_recent_effective_connection_type(EFFECTIVE_CONNECTION_TYPE_2G);
tick_clock_ptr->Advance(base::TimeDelta::FromMinutes(60));
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
EXPECT_EQ(1U, observer.effective_connection_types().size());
histogram_tester.ExpectUniqueSample("NQE.MainFrame.EffectiveConnectionType",
EFFECTIVE_CONNECTION_TYPE_2G, 1);
histogram_tester.ExpectUniqueSample(
"NQE.MainFrame.EffectiveConnectionType.WiFi",
EFFECTIVE_CONNECTION_TYPE_2G, 1);
histogram_tester.ExpectUniqueSample("NQE.EstimateAvailable.MainFrame.RTT", 0,
1);
histogram_tester.ExpectUniqueSample(
"NQE.EstimateAvailable.MainFrame.TransportRTT", 0, 1);
histogram_tester.ExpectUniqueSample("NQE.EstimateAvailable.MainFrame.Kbps", 0,
1);
size_t expected_effective_connection_type_notifications = 1;
EXPECT_EQ(expected_effective_connection_type_notifications,
observer.effective_connection_types().size());
EXPECT_EQ(expected_effective_connection_type_notifications,
estimator.rtt_observations_.Size());
// Increase the number of RTT observations. Every time the number of RTT
// observations is more than doubled, effective connection type must be
// recomputed and notified to observers.
for (size_t repetition = 0; repetition < 2; ++repetition) {
// Change the effective connection type so that the observers are
// notified when the effective connection type is recomputed.
if (repetition % 2 == 0) {
estimator.set_recent_effective_connection_type(
EFFECTIVE_CONNECTION_TYPE_SLOW_2G);
} else {
estimator.set_recent_effective_connection_type(
EFFECTIVE_CONNECTION_TYPE_3G);
}
size_t rtt_observations_count = estimator.rtt_observations_.Size() * 0.5;
// Increase the number of RTT observations to more than twice the number
// of current observations. This should trigger recomputation of
// effective connection type.
for (size_t i = 0; i < rtt_observations_count + 1; ++i) {
estimator.rtt_observations_.AddObservation(
NetworkQualityEstimator::RttObservation(
base::TimeDelta::FromSeconds(5), tick_clock_ptr->NowTicks(),
NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP));
estimator.NotifyObserversOfRTT(NetworkQualityEstimator::RttObservation(
base::TimeDelta::FromSeconds(5), tick_clock_ptr->NowTicks(),
NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP));
if (i == rtt_observations_count) {
// Effective connection type must be recomputed since the number of RTT
// samples are now more than twice the number of RTT samples that were
// available when effective connection type was last computed.
++expected_effective_connection_type_notifications;
}
EXPECT_EQ(expected_effective_connection_type_notifications,
observer.effective_connection_types().size());
}
}
}
TEST(NetworkQualityEstimatorTest, TestRttThroughputObservers) {
TestRTTObserver rtt_observer;
TestThroughputObserver throughput_observer;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.AddRTTObserver(&rtt_observer);
estimator.AddThroughputObserver(&throughput_observer);
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
EXPECT_EQ(0U, rtt_observer.observations().size());
EXPECT_EQ(0U, throughput_observer.observations().size());
base::TimeTicks then = base::TimeTicks::Now();
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
std::unique_ptr<URLRequest> request2(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request2->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request2->Start();
base::RunLoop().Run();
// Both RTT and downstream throughput should be updated.
base::TimeDelta rtt;
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
int32_t throughput;
EXPECT_TRUE(estimator.GetRecentDownlinkThroughputKbps(base::TimeTicks(),
&throughput));
EXPECT_EQ(2U, rtt_observer.observations().size());
EXPECT_EQ(2U, throughput_observer.observations().size());
for (const auto& observation : rtt_observer.observations()) {
EXPECT_LE(0, observation.rtt_ms);
EXPECT_LE(0, (observation.timestamp - then).InMilliseconds());
EXPECT_EQ(NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP, observation.source);
}
for (const auto& observation : throughput_observer.observations()) {
EXPECT_LE(0, observation.throughput_kbps);
EXPECT_LE(0, (observation.timestamp - then).InMilliseconds());
EXPECT_EQ(NETWORK_QUALITY_OBSERVATION_SOURCE_HTTP, observation.source);
}
EXPECT_FALSE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
// Verify that observations from TCP and QUIC are passed on to the observers.
base::TimeDelta tcp_rtt(base::TimeDelta::FromMilliseconds(1));
base::TimeDelta quic_rtt(base::TimeDelta::FromMilliseconds(2));
std::unique_ptr<SocketPerformanceWatcher> tcp_watcher =
estimator.GetSocketPerformanceWatcherFactory()
->CreateSocketPerformanceWatcher(
SocketPerformanceWatcherFactory::PROTOCOL_TCP);
std::unique_ptr<SocketPerformanceWatcher> quic_watcher =
estimator.GetSocketPerformanceWatcherFactory()
->CreateSocketPerformanceWatcher(
SocketPerformanceWatcherFactory::PROTOCOL_QUIC);
tcp_watcher->OnUpdatedRTTAvailable(tcp_rtt);
quic_watcher->OnUpdatedRTTAvailable(quic_rtt);
base::RunLoop().RunUntilIdle();
EXPECT_EQ(4U, rtt_observer.observations().size());
EXPECT_EQ(2U, throughput_observer.observations().size());
EXPECT_EQ(tcp_rtt.InMilliseconds(), rtt_observer.observations().at(2).rtt_ms);
EXPECT_EQ(quic_rtt.InMilliseconds(),
rtt_observer.observations().at(3).rtt_ms);
EXPECT_TRUE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
}
// TestTCPSocketRTT requires kernel support for tcp_info struct, and so it is
// enabled only on certain platforms.
#if defined(TCP_INFO) || defined(OS_LINUX)
#define MAYBE_TestTCPSocketRTT TestTCPSocketRTT
#else
#define MAYBE_TestTCPSocketRTT DISABLED_TestTCPSocketRTT
#endif
// Tests that the TCP socket notifies the Network Quality Estimator of TCP RTTs,
// which in turn notifies registered RTT observers.
TEST(NetworkQualityEstimatorTest, MAYBE_TestTCPSocketRTT) {
base::HistogramTester histogram_tester;
TestRTTObserver rtt_observer;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
estimator.AddRTTObserver(&rtt_observer);
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
std::unique_ptr<HttpNetworkSession::Params> params(
new HttpNetworkSession::Params);
// |estimator| should be notified of TCP RTT observations.
params->socket_performance_watcher_factory =
estimator.GetSocketPerformanceWatcherFactory();
context.set_http_network_session_params(std::move(params));
context.Init();
EXPECT_EQ(0U, rtt_observer.observations().size());
base::TimeDelta rtt;
EXPECT_FALSE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_FALSE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
// Send two requests. Verify that the completion of each request generates at
// least one TCP RTT observation.
const size_t num_requests = 2;
for (size_t i = 0; i < num_requests; ++i) {
size_t before_count_tcp_rtt_observations = 0;
for (const auto& observation : rtt_observer.observations()) {
if (observation.source == NETWORK_QUALITY_OBSERVATION_SOURCE_TCP)
++before_count_tcp_rtt_observations;
}
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
size_t after_count_tcp_rtt_observations = 0;
for (const auto& observation : rtt_observer.observations()) {
if (observation.source == NETWORK_QUALITY_OBSERVATION_SOURCE_TCP)
++after_count_tcp_rtt_observations;
}
// At least one notification should be received per socket performance
// watcher.
EXPECT_LE(1U, after_count_tcp_rtt_observations -
before_count_tcp_rtt_observations)
<< i;
}
EXPECT_TRUE(estimator.GetRecentHttpRTT(base::TimeTicks(), &rtt));
EXPECT_TRUE(estimator.GetRecentTransportRTT(base::TimeTicks(), &rtt));
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-1");
histogram_tester.ExpectTotalCount("NQE.TransportRTT.Percentile50.Unknown", 1);
histogram_tester.ExpectBucketCount("NQE.TransportRTT.Percentile50.Unknown",
rtt.InMilliseconds(), 1);
histogram_tester.ExpectTotalCount("NQE.TransportRTT.Percentile10.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.TransportRTT.Percentile50.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.TransportRTT.Percentile90.Unknown", 1);
histogram_tester.ExpectTotalCount("NQE.TransportRTT.Percentile100.Unknown",
1);
// Verify that metrics are logged correctly on main-frame requests.
histogram_tester.ExpectTotalCount("NQE.MainFrame.TransportRTT.Percentile50",
num_requests);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.RTT", 0,
1);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.RTT", 1,
num_requests - 1);
histogram_tester.ExpectUniqueSample(
"NQE.EstimateAvailable.MainFrame.TransportRTT", 1, num_requests);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.Kbps", 0,
1);
histogram_tester.ExpectBucketCount("NQE.EstimateAvailable.MainFrame.Kbps", 1,
num_requests - 1);
histogram_tester.ExpectTotalCount(
"NQE.MainFrame.TransportRTT.Percentile50.Unknown", num_requests);
histogram_tester.ExpectTotalCount("NQE.MainFrame.EffectiveConnectionType",
num_requests);
histogram_tester.ExpectTotalCount(
"NQE.MainFrame.EffectiveConnectionType.Unknown", num_requests);
histogram_tester.ExpectBucketCount(
"NQE.MainFrame.EffectiveConnectionType.Unknown",
EFFECTIVE_CONNECTION_TYPE_UNKNOWN, 1);
}
#if defined(OS_IOS)
// Flaky on iOS when |accuracy_recording_delay| is non-zero.
#define MAYBE_RecordAccuracy DISABLED_RecordAccuracy
#else
#define MAYBE_RecordAccuracy RecordAccuracy
#endif
// Tests if the NQE accuracy metrics are recorded properly.
TEST(NetworkQualityEstimatorTest, MAYBE_RecordAccuracy) {
const int expected_rtt_msec = 500;
const int expected_downstream_throughput_kbps = 2000;
const base::TimeDelta accuracy_recording_delays[] = {
base::TimeDelta::FromSeconds(0), base::TimeDelta::FromSeconds(1),
};
const struct {
base::TimeDelta rtt;
base::TimeDelta recent_rtt;
int32_t downstream_throughput_kbps;
int32_t recent_downstream_throughput_kbps;
EffectiveConnectionType effective_connection_type;
EffectiveConnectionType recent_effective_connection_type;
} tests[] = {
{base::TimeDelta::FromMilliseconds(expected_rtt_msec),
base::TimeDelta::FromMilliseconds(expected_rtt_msec),
expected_downstream_throughput_kbps, expected_downstream_throughput_kbps,
EFFECTIVE_CONNECTION_TYPE_3G, EFFECTIVE_CONNECTION_TYPE_3G},
{
base::TimeDelta::FromMilliseconds(expected_rtt_msec + 1000),
base::TimeDelta::FromMilliseconds(expected_rtt_msec),
expected_downstream_throughput_kbps - 1,
expected_downstream_throughput_kbps, EFFECTIVE_CONNECTION_TYPE_2G,
EFFECTIVE_CONNECTION_TYPE_3G,
},
{
base::TimeDelta::FromMilliseconds(expected_rtt_msec - 400),
base::TimeDelta::FromMilliseconds(expected_rtt_msec),
expected_downstream_throughput_kbps + 1,
expected_downstream_throughput_kbps, EFFECTIVE_CONNECTION_TYPE_4G,
EFFECTIVE_CONNECTION_TYPE_3G,
},
};
for (const auto& accuracy_recording_delay : accuracy_recording_delays) {
for (const auto& test : tests) {
std::unique_ptr<base::SimpleTestTickClock> tick_clock(
new base::SimpleTestTickClock());
base::SimpleTestTickClock* tick_clock_ptr = tick_clock.get();
tick_clock_ptr->Advance(base::TimeDelta::FromSeconds(1));
std::unique_ptr<ExternalEstimateProvider> external_estimate_provider(
new TestExternalEstimateProvider(test.rtt, 0));
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(
variation_params, std::move(external_estimate_provider));
estimator.SetTickClockForTesting(std::move(tick_clock));
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-1");
tick_clock_ptr->Advance(base::TimeDelta::FromSeconds(1));
std::vector<base::TimeDelta> accuracy_recording_intervals;
accuracy_recording_intervals.push_back(accuracy_recording_delay);
estimator.SetAccuracyRecordingIntervals(accuracy_recording_intervals);
// RTT is higher than threshold. Network is slow.
// Network was predicted to be slow and actually was slow.
estimator.set_start_time_null_http_rtt(test.rtt);
estimator.set_recent_http_rtt(test.recent_rtt);
estimator.set_start_time_null_transport_rtt(test.rtt);
estimator.set_recent_transport_rtt(test.recent_rtt);
estimator.set_start_time_null_downlink_throughput_kbps(
test.downstream_throughput_kbps);
estimator.set_recent_downlink_throughput_kbps(
test.recent_downstream_throughput_kbps);
base::HistogramTester histogram_tester;
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
// Start a main-frame request which should cause network quality estimator
// to record accuracy UMA.
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
if (accuracy_recording_delay != base::TimeDelta()) {
tick_clock_ptr->Advance(accuracy_recording_delay);
// Sleep for some time to ensure that the delayed task is posted.
base::PlatformThread::Sleep(accuracy_recording_delay * 2);
base::RunLoop().RunUntilIdle();
}
const int rtt_diff = std::abs(test.rtt.InMilliseconds() -
test.recent_rtt.InMilliseconds());
const int kbps_diff = std::abs(test.downstream_throughput_kbps -
test.recent_downstream_throughput_kbps);
const int ect_diff = std::abs(test.effective_connection_type -
test.recent_effective_connection_type);
const std::string rtt_sign_suffix_with_zero_samples =
test.rtt.InMilliseconds() - test.recent_rtt.InMilliseconds() >= 0
? "Negative"
: "Positive";
const std::string kbps_sign_suffix_with_zero_samples =
test.downstream_throughput_kbps -
test.recent_downstream_throughput_kbps >=
0
? "Negative"
: "Positive";
const std::string rtt_sign_suffix_with_one_sample =
rtt_sign_suffix_with_zero_samples == "Positive" ? "Negative"
: "Positive";
const std::string ect_sign_suffix_with_zero_samples =
test.rtt.InMilliseconds() - test.recent_rtt.InMilliseconds() > 0
? "Positive"
: "Negative";
const std::string kbps_sign_suffix_with_one_sample =
kbps_sign_suffix_with_zero_samples == "Positive" ? "Negative"
: "Positive";
const std::string ect_sign_suffix_with_one_sample =
ect_sign_suffix_with_zero_samples == "Positive" ? "Negative"
: "Positive";
const std::string interval_value =
base::IntToString(accuracy_recording_delay.InSeconds());
histogram_tester.ExpectUniqueSample(
"NQE.Accuracy.DownstreamThroughputKbps.EstimatedObservedDiff." +
kbps_sign_suffix_with_one_sample + "." + interval_value +
".1260_2540",
kbps_diff, 1);
histogram_tester.ExpectTotalCount(
"NQE.Accuracy.DownstreamThroughputKbps.EstimatedObservedDiff." +
kbps_sign_suffix_with_zero_samples + "." + interval_value +
".1260_2540",
0);
histogram_tester.ExpectUniqueSample(
"NQE.Accuracy.EffectiveConnectionType.EstimatedObservedDiff." +
ect_sign_suffix_with_one_sample + "." + interval_value + ".3G",
ect_diff, 1);
histogram_tester.ExpectTotalCount(
"NQE.Accuracy.EffectiveConnectionType.EstimatedObservedDiff." +
ect_sign_suffix_with_zero_samples + "." + interval_value + ".3G",
0);
histogram_tester.ExpectUniqueSample(
"NQE.Accuracy.HttpRTT.EstimatedObservedDiff." +
rtt_sign_suffix_with_one_sample + "." + interval_value +
".300_620",
rtt_diff, 1);
histogram_tester.ExpectTotalCount(
"NQE.Accuracy.HttpRTT.EstimatedObservedDiff." +
rtt_sign_suffix_with_zero_samples + "." + interval_value +
".300_620",
0);
histogram_tester.ExpectUniqueSample(
"NQE.Accuracy.TransportRTT.EstimatedObservedDiff." +
rtt_sign_suffix_with_one_sample + "." + interval_value +
".300_620",
rtt_diff, 1);
histogram_tester.ExpectTotalCount(
"NQE.Accuracy.TransportRTT.EstimatedObservedDiff." +
rtt_sign_suffix_with_zero_samples + "." + interval_value +
".300_620",
0);
histogram_tester.ExpectUniqueSample(
"NQE.ExternalEstimateProvider.RTT.Accuracy.EstimatedObservedDiff." +
rtt_sign_suffix_with_one_sample + "." + interval_value +
".300_620",
rtt_diff, 1);
histogram_tester.ExpectTotalCount(
"NQE.ExternalEstimateProvider.RTT.Accuracy.EstimatedObservedDiff." +
rtt_sign_suffix_with_zero_samples + "." + interval_value +
".300_620",
0);
}
}
}
TEST(NetworkQualityEstimatorTest, TestRecordNetworkIDAvailability) {
base::HistogramTester histogram_tester;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
// The NetworkID is recorded as available on Wi-Fi connection.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-1");
histogram_tester.ExpectUniqueSample("NQE.NetworkIdAvailable", 1, 1);
// The histogram is not recorded on an unknown connection.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN, "");
histogram_tester.ExpectTotalCount("NQE.NetworkIdAvailable", 1);
// The NetworkID is recorded as not being available on a Wi-Fi connection
// with an empty SSID.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "");
histogram_tester.ExpectBucketCount("NQE.NetworkIdAvailable", 0, 1);
histogram_tester.ExpectTotalCount("NQE.NetworkIdAvailable", 2);
// The NetworkID is recorded as being available on a Wi-Fi connection.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_WIFI, "test-1");
histogram_tester.ExpectBucketCount("NQE.NetworkIdAvailable", 1, 2);
histogram_tester.ExpectTotalCount("NQE.NetworkIdAvailable", 3);
// The NetworkID is recorded as being available on a cellular connection.
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_2G, "test-1");
histogram_tester.ExpectBucketCount("NQE.NetworkIdAvailable", 1, 3);
histogram_tester.ExpectTotalCount("NQE.NetworkIdAvailable", 4);
}
// Tests that the correlation histogram is recorded correctly based on
// correlation logging probability set in the variation params.
TEST(NetworkQualityEstimatorTest, CorrelationHistogram) {
// Match the values set in network_quality_estimator.cc.
static const int32_t kTrimBits = 5;
static const int32_t kBitsPerMetric = 7;
const struct {
bool use_transport_rtt;
double rand_double;
double correlation_logging_probability;
base::TimeDelta transport_rtt;
int32_t expected_transport_rtt_milliseconds;
base::TimeDelta http_rtt;
int32_t expected_http_rtt_milliseconds;
int32_t downstream_throughput_kbps;
int32_t expected_downstream_throughput_kbps;
} tests[] = {
{
// Verify that the metric is not recorded if the logging probability
// is set to 0.0.
false, 0.5, 0.0, base::TimeDelta::FromSeconds(1), 1000 >> kTrimBits,
base::TimeDelta::FromSeconds(2), 2000 >> kTrimBits, 3000,
3000 >> kTrimBits,
},
{
// Verify that the metric is not recorded if the logging probability
// is lower than the value returned by the random number generator.
false, 0.3, 0.1, base::TimeDelta::FromSeconds(1), 1000 >> kTrimBits,
base::TimeDelta::FromSeconds(2), 2000 >> kTrimBits, 3000,
3000 >> kTrimBits,
},
{
// Verify that the metric is recorded if the logging probability is
// higher than the value returned by the random number generator.
false, 0.3, 0.4, base::TimeDelta::FromSeconds(1), 1000 >> kTrimBits,
base::TimeDelta::FromSeconds(2), 2000 >> kTrimBits, 3000,
3000 >> kTrimBits,
},
{
// Verify that the metric is recorded if the logging probability is
// set to 1.0.
false, 0.5, 1.0, base::TimeDelta::FromSeconds(1), 1000 >> kTrimBits,
base::TimeDelta::FromSeconds(2), 2000 >> kTrimBits, 3000,
3000 >> kTrimBits,
},
{
// Verify that the metric is recorded if the logging probability is
// set to 1.0.
true, 0.5, 1.0, base::TimeDelta::FromSeconds(1), 1000 >> kTrimBits,
base::TimeDelta::FromSeconds(2), 2000 >> kTrimBits, 3000,
3000 >> kTrimBits,
},
{
// Verify that if the metric is larger than
// 2^(kBitsPerMetric + kTrimBits), it is rounded down to
// (2^(kBitsPerMetric + kTrimBits) - 1) >> kTrimBits.
false, 0.5, 1.0, base::TimeDelta::FromSeconds(10), 4095 >> kTrimBits,
base::TimeDelta::FromSeconds(20), 4095 >> kTrimBits, 30000,
4095 >> kTrimBits,
},
};
for (const auto& test : tests) {
base::HistogramTester histogram_tester;
std::map<std::string, std::string> variation_params;
variation_params["correlation_logging_probability"] =
base::DoubleToString(test.correlation_logging_probability);
if (test.use_transport_rtt) {
variation_params["effective_connection_type_algorithm"] =
"TransportRTTOrDownstreamThroughput";
}
TestNetworkQualityEstimator estimator(variation_params);
estimator.set_start_time_null_transport_rtt(test.transport_rtt);
estimator.set_recent_transport_rtt(test.transport_rtt);
estimator.set_start_time_null_http_rtt(test.http_rtt);
estimator.set_recent_http_rtt(test.http_rtt);
estimator.set_start_time_null_downlink_throughput_kbps(
test.downstream_throughput_kbps);
estimator.set_rand_double(test.rand_double);
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
// Start a main-frame request that should cause network quality estimator to
// record the network quality at the last main frame request.
std::unique_ptr<URLRequest> request_1(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request_1->SetLoadFlags(request_1->load_flags() |
LOAD_MAIN_FRAME_DEPRECATED);
request_1->Start();
base::RunLoop().Run();
histogram_tester.ExpectTotalCount(
"NQE.Correlation.ResourceLoadTime.0Kb_128Kb", 0);
// Start another main-frame request which should cause network quality
// estimator to record the correlation UMA.
std::unique_ptr<URLRequest> request_2(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request_2->Start();
base::RunLoop().Run();
if (test.rand_double >= test.correlation_logging_probability) {
histogram_tester.ExpectTotalCount(
"NQE.Correlation.ResourceLoadTime.0Kb_128Kb", 0);
continue;
}
histogram_tester.ExpectTotalCount(
"NQE.Correlation.ResourceLoadTime.0Kb_128Kb", 1);
std::vector<base::Bucket> buckets = histogram_tester.GetAllSamples(
"NQE.Correlation.ResourceLoadTime.0Kb_128Kb");
// Get the bits at index 0-10 which contain the RTT.
// 128 is 2^kBitsPerMetric.
if (test.use_transport_rtt) {
EXPECT_EQ(test.expected_transport_rtt_milliseconds,
buckets.at(0).min >> kBitsPerMetric >> kBitsPerMetric >>
kBitsPerMetric);
} else {
EXPECT_EQ(test.expected_http_rtt_milliseconds,
buckets.at(0).min >> kBitsPerMetric >> kBitsPerMetric >>
kBitsPerMetric);
}
// Get the bits at index 11-17 which contain the downstream throughput.
EXPECT_EQ(test.expected_downstream_throughput_kbps,
(buckets.at(0).min >> kBitsPerMetric >> kBitsPerMetric) % 128);
// Get the bits at index 18-24 which contain the resource fetch time.
EXPECT_LE(0, (buckets.at(0).min >> kBitsPerMetric) % 128);
// Get the bits at index 25-31 which contain the resource load size.
EXPECT_LE(0, (buckets.at(0).min) % 128);
// Start another main-frame request which is redirected to an HTTPS URL.
// Redirection should not cause any crashes.
std::unique_ptr<URLRequest> request_3(context.CreateRequest(
estimator.GetRedirectURL(), DEFAULT_PRIORITY, &test_delegate));
request_3->Start();
base::RunLoop().Run();
EXPECT_FALSE(request_3->original_url().SchemeIsCryptographic());
EXPECT_TRUE(request_3->url().SchemeIsCryptographic());
EXPECT_TRUE(!request_3->response_info().headers.get() ||
request_3->response_info().headers->response_code() != HTTP_OK);
// Correlation metric should not be logged for redirected requests.
histogram_tester.ExpectTotalCount(
"NQE.Correlation.ResourceLoadTime.0Kb_128Kb", 1);
}
}
class TestNetworkQualitiesCacheObserver
: public nqe::internal::NetworkQualityStore::NetworkQualitiesCacheObserver {
public:
TestNetworkQualitiesCacheObserver()
: network_id_(net::NetworkChangeNotifier::CONNECTION_UNKNOWN,
std::string()),
notification_received_(0) {}
~TestNetworkQualitiesCacheObserver() override {}
void OnChangeInCachedNetworkQuality(
const nqe::internal::NetworkID& network_id,
const nqe::internal::CachedNetworkQuality& cached_network_quality)
override {
network_id_ = network_id;
notification_received_++;
}
size_t get_notification_received_and_reset() {
size_t notification_received = notification_received_;
notification_received_ = 0;
return notification_received;
}
nqe::internal::NetworkID network_id() const { return network_id_; }
private:
nqe::internal::NetworkID network_id_;
size_t notification_received_;
DISALLOW_COPY_AND_ASSIGN(TestNetworkQualitiesCacheObserver);
};
TEST(NetworkQualityEstimatorTest, CacheObserver) {
TestNetworkQualitiesCacheObserver observer;
std::map<std::string, std::string> variation_params;
TestNetworkQualityEstimator estimator(variation_params);
// Add |observer| as a persistent caching observer.
estimator.AddNetworkQualitiesCacheObserver(&observer);
estimator.set_recent_effective_connection_type(EFFECTIVE_CONNECTION_TYPE_3G);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_UNKNOWN, "test3g");
estimator.RunOneRequest();
EXPECT_EQ(1u, observer.get_notification_received_and_reset());
EXPECT_EQ("test3g", observer.network_id().id);
estimator.set_recent_effective_connection_type(EFFECTIVE_CONNECTION_TYPE_2G);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_2G, "test2g");
// One notification should be received for the previous network
// ("test3g") right before the connection change event. The second
// notification should be received for the second network ("test2g").
base::RunLoop().RunUntilIdle();
EXPECT_EQ(2u, observer.get_notification_received_and_reset());
estimator.RunOneRequest();
EXPECT_EQ("test2g", observer.network_id().id);
estimator.set_recent_effective_connection_type(EFFECTIVE_CONNECTION_TYPE_4G);
// Start multiple requests, but there should be only one notification
// received, since the effective connection type does not change.
estimator.RunOneRequest();
estimator.RunOneRequest();
estimator.RunOneRequest();
EXPECT_EQ(1u, observer.get_notification_received_and_reset());
estimator.set_recent_effective_connection_type(EFFECTIVE_CONNECTION_TYPE_2G);
estimator.RunOneRequest();
EXPECT_EQ(1u, observer.get_notification_received_and_reset());
// Remove |observer|, and it should not receive any notifications.
estimator.RemoveNetworkQualitiesCacheObserver(&observer);
estimator.set_recent_effective_connection_type(EFFECTIVE_CONNECTION_TYPE_3G);
estimator.SimulateNetworkChange(
NetworkChangeNotifier::ConnectionType::CONNECTION_2G, "test2g");
EXPECT_EQ(0u, observer.get_notification_received_and_reset());
estimator.RunOneRequest();
EXPECT_EQ(0u, observer.get_notification_received_and_reset());
}
// Tests that the value of the effective connection type can be forced through
// field trial parameters.
TEST(NetworkQualityEstimatorTest,
ForceEffectiveConnectionTypeThroughFieldTrial) {
for (int i = 0; i < EFFECTIVE_CONNECTION_TYPE_LAST; ++i) {
std::map<std::string, std::string> variation_params;
variation_params["force_effective_connection_type"] =
GetNameForEffectiveConnectionType(
static_cast<EffectiveConnectionType>(i));
TestNetworkQualityEstimator estimator(variation_params);
TestEffectiveConnectionTypeObserver observer;
estimator.AddEffectiveConnectionTypeObserver(&observer);
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
EXPECT_EQ(0U, observer.effective_connection_types().size());
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
EXPECT_EQ(i, estimator.GetEffectiveConnectionType());
size_t expected_count = static_cast<EffectiveConnectionType>(i) ==
EFFECTIVE_CONNECTION_TYPE_UNKNOWN
? 0
: 1;
ASSERT_EQ(expected_count, observer.effective_connection_types().size());
if (expected_count == 1) {
EffectiveConnectionType last_notified_type =
observer.effective_connection_types().at(
observer.effective_connection_types().size() - 1);
EXPECT_EQ(i, last_notified_type);
}
}
}
// Test that the typical network qualities are set correctly.
TEST(NetworkQualityEstimatorTest, TypicalNetworkQualities) {
const struct {
bool use_transport_rtt;
} tests[] = {
{
false,
},
{
true,
},
};
for (const auto& test : tests) {
TestNetworkQualitiesCacheObserver observer;
std::map<std::string, std::string> variation_params;
if (test.use_transport_rtt) {
variation_params["effective_connection_type_algorithm"] =
"TransportRTTOrDownstreamThroughput";
}
TestNetworkQualityEstimator estimator(variation_params);
// Typical network quality should not be set for Unknown and Offline.
for (size_t i = EFFECTIVE_CONNECTION_TYPE_UNKNOWN;
i <= EFFECTIVE_CONNECTION_TYPE_OFFLINE; ++i) {
EXPECT_EQ(nqe::internal::InvalidRTT(),
estimator.typical_network_quality_[i].http_rtt());
EXPECT_EQ(nqe::internal::InvalidRTT(),
estimator.typical_network_quality_[i].transport_rtt());
}
// Typical network quality should be set for other effective connection
// types.
for (size_t i = EFFECTIVE_CONNECTION_TYPE_SLOW_2G;
i <= EFFECTIVE_CONNECTION_TYPE_3G; ++i) {
// The typical RTT for an effective connection type should be at least as
// much as the threshold RTT.
EXPECT_NE(nqe::internal::InvalidRTT(),
estimator.typical_network_quality_[i].http_rtt());
EXPECT_GT(estimator.typical_network_quality_[i].http_rtt(),
estimator.connection_thresholds_[i].http_rtt());
EXPECT_NE(nqe::internal::InvalidRTT(),
estimator.typical_network_quality_[i].transport_rtt());
EXPECT_GT(estimator.typical_network_quality_[i].transport_rtt(),
estimator.connection_thresholds_[i].transport_rtt());
// The typical throughput for an effective connection type should not be
// more than the threshold throughput.
if (estimator.connection_thresholds_[i].downstream_throughput_kbps() !=
nqe::internal::kInvalidThroughput) {
EXPECT_LT(
estimator.typical_network_quality_[i].downstream_throughput_kbps(),
estimator.connection_thresholds_[i].downstream_throughput_kbps());
}
}
// The typical network quality of 4G connection should be at least as fast
// as the threshold for 3G connection.
EXPECT_LT(estimator.typical_network_quality_[EFFECTIVE_CONNECTION_TYPE_4G]
.http_rtt(),
estimator.connection_thresholds_[EFFECTIVE_CONNECTION_TYPE_3G]
.http_rtt());
EXPECT_LT(estimator.typical_network_quality_[EFFECTIVE_CONNECTION_TYPE_4G]
.transport_rtt(),
estimator.connection_thresholds_[EFFECTIVE_CONNECTION_TYPE_3G]
.transport_rtt());
if (estimator.connection_thresholds_[EFFECTIVE_CONNECTION_TYPE_3G]
.downstream_throughput_kbps() !=
nqe::internal::kInvalidThroughput) {
EXPECT_GT(estimator.typical_network_quality_[EFFECTIVE_CONNECTION_TYPE_4G]
.downstream_throughput_kbps(),
estimator.connection_thresholds_[EFFECTIVE_CONNECTION_TYPE_3G]
.downstream_throughput_kbps());
}
TestDelegate test_delegate;
TestURLRequestContext context(true);
context.set_network_quality_estimator(&estimator);
context.Init();
for (size_t effective_connection_type = EFFECTIVE_CONNECTION_TYPE_SLOW_2G;
effective_connection_type <= EFFECTIVE_CONNECTION_TYPE_4G;
++effective_connection_type) {
// Set the RTT and throughput values to the typical values for
// |effective_connection_type|. The effective connection type should be
// computed as |effective_connection_type|.
estimator.set_start_time_null_http_rtt(
estimator.typical_network_quality_[effective_connection_type]
.http_rtt());
estimator.set_start_time_null_transport_rtt(
estimator.typical_network_quality_[effective_connection_type]
.transport_rtt());
estimator.set_start_time_null_downlink_throughput_kbps(INT32_MAX);
// Force recomputation of effective connection type by starting a main
// frame request.
std::unique_ptr<URLRequest> request(context.CreateRequest(
estimator.GetEchoURL(), DEFAULT_PRIORITY, &test_delegate));
request->SetLoadFlags(request->load_flags() | LOAD_MAIN_FRAME_DEPRECATED);
request->Start();
base::RunLoop().Run();
EXPECT_EQ(effective_connection_type,
estimator.GetEffectiveConnectionType());
}
}
}
} // namespace net