blob: 446bdf55438abf767ec8a12cc6b11a8e444e8f9a [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/math_util.h"
#include <stdint.h>
#include <cmath>
#include "cc/test/geometry_test_utils.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/transform.h"
namespace cc {
namespace {
TEST(MathUtilTest, ProjectionOfPerpendicularPlane) {
// In this case, the m33() element of the transform becomes zero, which could
// cause a divide-by-zero when projecting points/quads.
gfx::Transform transform;
transform.MakeIdentity();
transform.matrix().set(2, 2, 0);
gfx::RectF rect = gfx::RectF(0, 0, 1, 1);
gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect);
EXPECT_EQ(0, projected_rect.x());
EXPECT_EQ(0, projected_rect.y());
EXPECT_TRUE(projected_rect.IsEmpty());
}
TEST(MathUtilTest, ProjectionOfAlmostPerpendicularPlane) {
// In this case, the m33() element of the transform becomes almost zero, which
// could cause a divide-by-zero when projecting points/quads.
gfx::Transform transform;
// The transform is from an actual test page:
// [ +1.0000 +0.0000 -1.0000 +3144132.0000
// +0.0000 +1.0000 +0.0000 +0.0000
// +16331238407143424.0000 +0.0000 -0.0000 +51346917453137000267776.0000
// +0.0000 +0.0000 +0.0000 +1.0000 ]
transform.MakeIdentity();
transform.matrix().set(0, 2, static_cast<SkMScalar>(-1));
transform.matrix().set(0, 3, static_cast<SkMScalar>(3144132.0));
transform.matrix().set(2, 0, static_cast<SkMScalar>(16331238407143424.0));
transform.matrix().set(2, 2, static_cast<SkMScalar>(-1e-33));
transform.matrix().set(2, 3,
static_cast<SkMScalar>(51346917453137000267776.0));
gfx::RectF rect = gfx::RectF(0, 0, 1, 1);
gfx::RectF projected_rect = MathUtil::ProjectClippedRect(transform, rect);
EXPECT_EQ(0, projected_rect.x());
EXPECT_EQ(0, projected_rect.y());
EXPECT_TRUE(projected_rect.IsEmpty()) << projected_rect.ToString();
}
TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityY) {
HomogeneousCoordinate h1(100, 10, 0, 1);
HomogeneousCoordinate h2(10, 10, 0, 1);
HomogeneousCoordinate h3(-10, -1, 0, -1);
HomogeneousCoordinate h4(-100, -1, 0, -1);
// The bounds of the enclosing clipped rect should be 100 to 10 for x
// and 10 to infinity for y. However, if there is a bug where the result
// is set so big as to destroy the precision of ymin, we can't deal well
// with the resulting rect.
gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4);
EXPECT_FALSE(result.IsEmpty());
EXPECT_TRUE(result.Contains(50.0f, 50.0f));
EXPECT_TRUE(result.Contains(10.1f, 10.1f));
EXPECT_TRUE(result.Contains(50.0f, 50000.0f));
EXPECT_FALSE(result.Contains(100.1f, 50.0f));
EXPECT_FALSE(result.Contains(9.9f, 50.0f));
EXPECT_FALSE(result.Contains(50.0f, 9.9f));
}
TEST(MathUtilTest, EnclosingClippedRectHandlesNegativeInfinityX) {
HomogeneousCoordinate h1(100, 10, 0, 1);
HomogeneousCoordinate h2(-110, -10, 0, -1);
HomogeneousCoordinate h3(-110, -100, 0, -1);
HomogeneousCoordinate h4(100, 100, 0, 1);
// The bounds of the enclosing clipped rect should be 100 to -infinity for x
// and 10 to 100 for y. However, if there is a bug where the result
// is set so big as to destroy the precision of ymin, we can't deal well
// with the resulting rect.
gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4);
EXPECT_FALSE(result.IsEmpty());
EXPECT_TRUE(result.Contains(50.0f, 50.0f));
EXPECT_TRUE(result.Contains(10.1f, 10.1f));
EXPECT_TRUE(result.Contains(0.0f, 99.9f));
EXPECT_FALSE(result.Contains(100.1f, 50.0f));
EXPECT_FALSE(result.Contains(50.0f, 100.1f));
EXPECT_FALSE(result.Contains(50.0f, 9.9f));
}
TEST(MathUtilTest, EnclosingClippedRectHandlesInfinityXY) {
HomogeneousCoordinate h1(10, 10, 0, 1);
HomogeneousCoordinate h2(0, 0, 0, -1);
HomogeneousCoordinate h3(20, -10, 0, 1);
HomogeneousCoordinate h4(10, -10, 0, 1);
// The bounds of the enclosing clipped rect should be 10 to infinity for x
// and -infinity to infinity for y.
// It would be quite easy for this result to not include anything useful.
gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4);
// Notes: (A) In the mapped shape, (B) In the enclosing rect, but not the
// mapped shape, (C) In the mapped shape, but clipped.
EXPECT_FALSE(result.IsEmpty());
EXPECT_TRUE(result.Contains(10.0f, 10.0f)); // Note (A)
EXPECT_TRUE(result.Contains(10.11f, 10.1f)); // Note (A)
EXPECT_TRUE(result.Contains(10.1f, 10.11f)); // Note (B)
EXPECT_TRUE(result.Contains(1000.1f, 1000.2f)); // Note (B)
EXPECT_TRUE(result.Contains(20.0f, -10.0f)); // Note (A)
EXPECT_TRUE(result.Contains(20.1f, -10.0f)); // Note (A)
EXPECT_TRUE(result.Contains(20.0f, -10.1f)); // Note (B)
EXPECT_TRUE(result.Contains(10.0f, -10.0f)); // Note (A)
EXPECT_TRUE(result.Contains(10.0f, -10.1f)); // Note (B)
EXPECT_FALSE(result.Contains(0.0f, 0.0f)); // Note (C)
EXPECT_FALSE(result.Contains(0.0f, -9.9f)); // Note (C)
}
TEST(MathUtilTest, EnclosingClippedRectUsesCorrectInitialBounds) {
HomogeneousCoordinate h1(-100, -100, 0, 1);
HomogeneousCoordinate h2(-10, -10, 0, 1);
HomogeneousCoordinate h3(10, 10, 0, -1);
HomogeneousCoordinate h4(100, 100, 0, -1);
// The bounds of the enclosing clipped rect should be -100 to -10 for both x
// and y. However, if there is a bug where the initial xmin/xmax/ymin/ymax are
// initialized to numeric_limits<float>::min() (which is zero, not -flt_max)
// then the enclosing clipped rect will be computed incorrectly.
gfx::RectF result = MathUtil::ComputeEnclosingClippedRect(h1, h2, h3, h4);
// Due to floating point math in ComputeClippedPointForEdge this result
// is fairly imprecise. 0.15f was empirically determined.
EXPECT_RECT_NEAR(
gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)), result, 0.15f);
}
TEST(MathUtilTest, EnclosingRectOfVerticesUsesCorrectInitialBounds) {
gfx::PointF vertices[3];
int num_vertices = 3;
vertices[0] = gfx::PointF(-10, -100);
vertices[1] = gfx::PointF(-100, -10);
vertices[2] = gfx::PointF(-30, -30);
// The bounds of the enclosing rect should be -100 to -10 for both x and y.
// However, if there is a bug where the initial xmin/xmax/ymin/ymax are
// initialized to numeric_limits<float>::min() (which is zero, not -flt_max)
// then the enclosing clipped rect will be computed incorrectly.
gfx::RectF result =
MathUtil::ComputeEnclosingRectOfVertices(vertices, num_vertices);
EXPECT_FLOAT_RECT_EQ(gfx::RectF(gfx::PointF(-100, -100), gfx::SizeF(90, 90)),
result);
}
TEST(MathUtilTest, SmallestAngleBetweenVectors) {
gfx::Vector2dF x(1, 0);
gfx::Vector2dF y(0, 1);
gfx::Vector2dF test_vector(0.5, 0.5);
// Orthogonal vectors are at an angle of 90 degress.
EXPECT_EQ(90, MathUtil::SmallestAngleBetweenVectors(x, y));
// A vector makes a zero angle with itself.
EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(x, x));
EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(y, y));
EXPECT_EQ(0, MathUtil::SmallestAngleBetweenVectors(test_vector, test_vector));
// Parallel but reversed vectors are at 180 degrees.
EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(x, -x));
EXPECT_FLOAT_EQ(180, MathUtil::SmallestAngleBetweenVectors(y, -y));
EXPECT_FLOAT_EQ(
180, MathUtil::SmallestAngleBetweenVectors(test_vector, -test_vector));
// The test vector is at a known angle.
EXPECT_FLOAT_EQ(
45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, x)));
EXPECT_FLOAT_EQ(
45, std::floor(MathUtil::SmallestAngleBetweenVectors(test_vector, y)));
}
TEST(MathUtilTest, VectorProjection) {
gfx::Vector2dF x(1, 0);
gfx::Vector2dF y(0, 1);
gfx::Vector2dF test_vector(0.3f, 0.7f);
// Orthogonal vectors project to a zero vector.
EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(x, y));
EXPECT_VECTOR_EQ(gfx::Vector2dF(0, 0), MathUtil::ProjectVector(y, x));
// Projecting a vector onto the orthonormal basis gives the corresponding
// component of the vector.
EXPECT_VECTOR_EQ(gfx::Vector2dF(test_vector.x(), 0),
MathUtil::ProjectVector(test_vector, x));
EXPECT_VECTOR_EQ(gfx::Vector2dF(0, test_vector.y()),
MathUtil::ProjectVector(test_vector, y));
// Finally check than an arbitrary vector projected to another one gives a
// vector parallel to the second vector.
gfx::Vector2dF target_vector(0.5, 0.2f);
gfx::Vector2dF projected_vector =
MathUtil::ProjectVector(test_vector, target_vector);
EXPECT_EQ(projected_vector.x() / target_vector.x(),
projected_vector.y() / target_vector.y());
}
TEST(MathUtilTest, MapEnclosedRectWith2dAxisAlignedTransform) {
gfx::Rect input(1, 2, 3, 4);
gfx::Rect output;
gfx::Transform transform;
// Identity.
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(input, output);
// Integer translate.
transform.Translate(2.0, 3.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(gfx::Rect(3, 5, 3, 4), output);
// Non-integer translate.
transform.Translate(0.5, 0.5);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(gfx::Rect(4, 6, 2, 3), output);
// Scale.
transform = gfx::Transform();
transform.Scale(2.0, 3.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(gfx::Rect(2, 6, 6, 12), output);
// Rotate Z.
transform = gfx::Transform();
transform.Translate(1.0, 2.0);
transform.RotateAboutZAxis(90.0);
transform.Translate(-1.0, -2.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(gfx::Rect(-3, 2, 4, 3), output);
// Rotate X.
transform = gfx::Transform();
transform.RotateAboutXAxis(90.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_TRUE(output.IsEmpty());
transform = gfx::Transform();
transform.RotateAboutXAxis(180.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(gfx::Rect(1, -6, 3, 4), output);
// Rotate Y.
transform = gfx::Transform();
transform.RotateAboutYAxis(90.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_TRUE(output.IsEmpty());
transform = gfx::Transform();
transform.RotateAboutYAxis(180.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(gfx::Rect(-4, 2, 3, 4), output);
// Translate Z.
transform = gfx::Transform();
transform.ApplyPerspectiveDepth(10.0);
transform.Translate3d(0.0, 0.0, 5.0);
output =
MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(transform, input);
EXPECT_EQ(gfx::Rect(2, 4, 6, 8), output);
}
TEST(MathUtilTest, MapEnclosingRectWithLargeTransforms) {
gfx::Rect input(1, 2, 100, 200);
gfx::Rect output;
gfx::Transform large_x_scale;
large_x_scale.Scale(SkDoubleToMScalar(1e37), 1.0);
gfx::Transform infinite_x_scale;
infinite_x_scale = large_x_scale * large_x_scale;
gfx::Transform large_y_scale;
large_y_scale.Scale(1.0, SkDoubleToMScalar(1e37));
gfx::Transform infinite_y_scale;
infinite_y_scale = large_y_scale * large_y_scale;
gfx::Transform rotation;
rotation.RotateAboutYAxis(170.0);
int max_int = std::numeric_limits<int>::max();
output = MathUtil::MapEnclosingClippedRect(large_x_scale, input);
EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output);
output = MathUtil::MapEnclosingClippedRect(large_x_scale * rotation, input);
EXPECT_EQ(gfx::Rect(), output);
output = MathUtil::MapEnclosingClippedRect(infinite_x_scale, input);
EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output);
output =
MathUtil::MapEnclosingClippedRect(infinite_x_scale * rotation, input);
EXPECT_EQ(gfx::Rect(), output);
output = MathUtil::MapEnclosingClippedRect(large_y_scale, input);
EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output);
output = MathUtil::MapEnclosingClippedRect(large_y_scale * rotation, input);
EXPECT_EQ(gfx::Rect(-100, max_int, 100, 0), output);
output = MathUtil::MapEnclosingClippedRect(infinite_y_scale, input);
EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output);
output =
MathUtil::MapEnclosingClippedRect(infinite_y_scale * rotation, input);
EXPECT_EQ(gfx::Rect(), output);
}
TEST(MathUtilTest, ProjectEnclosingRectWithLargeTransforms) {
gfx::Rect input(1, 2, 100, 200);
gfx::Rect output;
gfx::Transform large_x_scale;
large_x_scale.Scale(SkDoubleToMScalar(1e37), 1.0);
gfx::Transform infinite_x_scale;
infinite_x_scale = large_x_scale * large_x_scale;
gfx::Transform large_y_scale;
large_y_scale.Scale(1.0, SkDoubleToMScalar(1e37));
gfx::Transform infinite_y_scale;
infinite_y_scale = large_y_scale * large_y_scale;
gfx::Transform rotation;
rotation.RotateAboutYAxis(170.0);
int max_int = std::numeric_limits<int>::max();
output = MathUtil::ProjectEnclosingClippedRect(large_x_scale, input);
EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output);
output =
MathUtil::ProjectEnclosingClippedRect(large_x_scale * rotation, input);
EXPECT_EQ(gfx::Rect(), output);
output = MathUtil::ProjectEnclosingClippedRect(infinite_x_scale, input);
EXPECT_EQ(gfx::Rect(max_int, 2, 0, 200), output);
output =
MathUtil::ProjectEnclosingClippedRect(infinite_x_scale * rotation, input);
EXPECT_EQ(gfx::Rect(), output);
output = MathUtil::ProjectEnclosingClippedRect(large_y_scale, input);
EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output);
output =
MathUtil::ProjectEnclosingClippedRect(large_y_scale * rotation, input);
EXPECT_EQ(gfx::Rect(-103, max_int, 102, 0), output);
output = MathUtil::ProjectEnclosingClippedRect(infinite_y_scale, input);
EXPECT_EQ(gfx::Rect(1, max_int, 100, 0), output);
output =
MathUtil::ProjectEnclosingClippedRect(infinite_y_scale * rotation, input);
EXPECT_EQ(gfx::Rect(), output);
}
TEST(MathUtilTest, RoundUp) {
for (int multiplier = 1; multiplier <= 10; ++multiplier) {
// Try attempts in descending order, so that we can
// determine the correct value before it's needed.
int correct;
for (int attempt = 5 * multiplier; attempt >= -5 * multiplier; --attempt) {
if ((attempt % multiplier) == 0)
correct = attempt;
EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier))
<< "attempt=" << attempt << " multiplier=" << multiplier;
}
}
for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) {
// Try attempts in descending order, so that we can
// determine the correct value before it's needed.
unsigned correct;
for (unsigned attempt = 5 * multiplier; attempt > 0; --attempt) {
if ((attempt % multiplier) == 0)
correct = attempt;
EXPECT_EQ(correct, MathUtil::UncheckedRoundUp(attempt, multiplier))
<< "attempt=" << attempt << " multiplier=" << multiplier;
}
EXPECT_EQ(0u, MathUtil::UncheckedRoundUp(0u, multiplier))
<< "attempt=0 multiplier=" << multiplier;
}
}
TEST(MathUtilTest, RoundUpOverflow) {
// Rounding up 123 by 50 is 150, which overflows int8_t, but fits in uint8_t.
EXPECT_FALSE(MathUtil::VerifyRoundup<int8_t>(123, 50));
EXPECT_TRUE(MathUtil::VerifyRoundup<uint8_t>(123, 50));
}
TEST(MathUtilTest, RoundDown) {
for (int multiplier = 1; multiplier <= 10; ++multiplier) {
// Try attempts in ascending order, so that we can
// determine the correct value before it's needed.
int correct;
for (int attempt = -5 * multiplier; attempt <= 5 * multiplier; ++attempt) {
if ((attempt % multiplier) == 0)
correct = attempt;
EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier))
<< "attempt=" << attempt << " multiplier=" << multiplier;
}
}
for (unsigned multiplier = 1; multiplier <= 10; ++multiplier) {
// Try attempts in ascending order, so that we can
// determine the correct value before it's needed.
unsigned correct;
for (unsigned attempt = 0; attempt <= 5 * multiplier; ++attempt) {
if ((attempt % multiplier) == 0)
correct = attempt;
EXPECT_EQ(correct, MathUtil::UncheckedRoundDown(attempt, multiplier))
<< "attempt=" << attempt << " multiplier=" << multiplier;
}
}
}
TEST(MathUtilTest, RoundDownUnderflow) {
// Rounding down -123 by 50 is -150, which underflows int8_t, but fits in
// int16_t.
EXPECT_FALSE(MathUtil::VerifyRoundDown<int8_t>(-123, 50));
EXPECT_TRUE(MathUtil::VerifyRoundDown<int16_t>(-123, 50));
}
} // namespace
} // namespace cc