blob: cf2bb57f64c623a09329ee9eecc257358b3bdd7f [file] [log] [blame]
// Copyright 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/tiling_data.h"
#include <algorithm>
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/vector2d.h"
namespace cc {
static int ComputeNumTiles(int max_texture_size,
int total_size,
int border_texels) {
if (max_texture_size - 2 * border_texels <= 0)
return total_size > 0 && max_texture_size >= total_size ? 1 : 0;
int num_tiles = std::max(1,
1 + (total_size - 1 - 2 * border_texels) /
(max_texture_size - 2 * border_texels));
return total_size > 0 ? num_tiles : 0;
}
TilingData::TilingData()
: border_texels_(0) {
RecomputeNumTiles();
}
TilingData::TilingData(const gfx::Size& max_texture_size,
const gfx::Size& tiling_size,
bool has_border_texels)
: max_texture_size_(max_texture_size),
tiling_size_(tiling_size),
border_texels_(has_border_texels ? 1 : 0) {
RecomputeNumTiles();
}
TilingData::TilingData(const gfx::Size& max_texture_size,
const gfx::Size& tiling_size,
int border_texels)
: max_texture_size_(max_texture_size),
tiling_size_(tiling_size),
border_texels_(border_texels) {
RecomputeNumTiles();
}
void TilingData::SetTilingSize(const gfx::Size& tiling_size) {
tiling_size_ = tiling_size;
RecomputeNumTiles();
}
void TilingData::SetMaxTextureSize(const gfx::Size& max_texture_size) {
max_texture_size_ = max_texture_size;
RecomputeNumTiles();
}
void TilingData::SetHasBorderTexels(bool has_border_texels) {
border_texels_ = has_border_texels ? 1 : 0;
RecomputeNumTiles();
}
void TilingData::SetBorderTexels(int border_texels) {
border_texels_ = border_texels;
RecomputeNumTiles();
}
int TilingData::TileXIndexFromSrcCoord(int src_position) const {
if (num_tiles_x_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0);
int x = (src_position - border_texels_) /
(max_texture_size_.width() - 2 * border_texels_);
return std::min(std::max(x, 0), num_tiles_x_ - 1);
}
int TilingData::TileYIndexFromSrcCoord(int src_position) const {
if (num_tiles_y_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0);
int y = (src_position - border_texels_) /
(max_texture_size_.height() - 2 * border_texels_);
return std::min(std::max(y, 0), num_tiles_y_ - 1);
}
int TilingData::FirstBorderTileXIndexFromSrcCoord(int src_position) const {
if (num_tiles_x_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.width() - 2 * border_texels_;
int x = (src_position - 2 * border_texels_) / inner_tile_size;
return std::min(std::max(x, 0), num_tiles_x_ - 1);
}
int TilingData::FirstBorderTileYIndexFromSrcCoord(int src_position) const {
if (num_tiles_y_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.height() - 2 * border_texels_;
int y = (src_position - 2 * border_texels_) / inner_tile_size;
return std::min(std::max(y, 0), num_tiles_y_ - 1);
}
int TilingData::LastBorderTileXIndexFromSrcCoord(int src_position) const {
if (num_tiles_x_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.width() - 2 * border_texels_;
int x = src_position / inner_tile_size;
return std::min(std::max(x, 0), num_tiles_x_ - 1);
}
int TilingData::LastBorderTileYIndexFromSrcCoord(int src_position) const {
if (num_tiles_y_ <= 1)
return 0;
DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0);
int inner_tile_size = max_texture_size_.height() - 2 * border_texels_;
int y = src_position / inner_tile_size;
return std::min(std::max(y, 0), num_tiles_y_ - 1);
}
gfx::Rect TilingData::ExpandRectIgnoringBordersToTileBounds(
const gfx::Rect& rect) const {
if (rect.IsEmpty() || has_empty_bounds())
return gfx::Rect();
if (rect.x() > tiling_size_.width() || rect.y() > tiling_size_.height())
return gfx::Rect();
int index_x = TileXIndexFromSrcCoord(rect.x());
int index_y = TileYIndexFromSrcCoord(rect.y());
int index_right = TileXIndexFromSrcCoord(rect.right() - 1);
int index_bottom = TileYIndexFromSrcCoord(rect.bottom() - 1);
gfx::Rect rect_top_left(TileBounds(index_x, index_y));
gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom));
return gfx::UnionRects(rect_top_left, rect_bottom_right);
}
gfx::Rect TilingData::ExpandRectToTileBounds(const gfx::Rect& rect) const {
if (rect.IsEmpty() || has_empty_bounds())
return gfx::Rect();
if (rect.x() > tiling_size_.width() || rect.y() > tiling_size_.height())
return gfx::Rect();
int index_x = FirstBorderTileXIndexFromSrcCoord(rect.x());
int index_y = FirstBorderTileYIndexFromSrcCoord(rect.y());
int index_right = LastBorderTileXIndexFromSrcCoord(rect.right() - 1);
int index_bottom = LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1);
gfx::Rect rect_top_left(TileBounds(index_x, index_y));
gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom));
return gfx::UnionRects(rect_top_left, rect_bottom_right);
}
gfx::Rect TilingData::TileBounds(int i, int j) const {
AssertTile(i, j);
int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_;
int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_;
int lo_x = max_texture_size_x * i;
if (i != 0)
lo_x += border_texels_;
int lo_y = max_texture_size_y * j;
if (j != 0)
lo_y += border_texels_;
int hi_x = max_texture_size_x * (i + 1) + border_texels_;
if (i + 1 == num_tiles_x_)
hi_x += border_texels_;
int hi_y = max_texture_size_y * (j + 1) + border_texels_;
if (j + 1 == num_tiles_y_)
hi_y += border_texels_;
hi_x = std::min(hi_x, tiling_size_.width());
hi_y = std::min(hi_y, tiling_size_.height());
int x = lo_x;
int y = lo_y;
int width = hi_x - lo_x;
int height = hi_y - lo_y;
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_GE(width, 0);
DCHECK_GE(height, 0);
DCHECK_LE(x, tiling_size_.width());
DCHECK_LE(y, tiling_size_.height());
return gfx::Rect(x, y, width, height);
}
gfx::Rect TilingData::TileBoundsWithBorder(int i, int j) const {
AssertTile(i, j);
int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_;
int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_;
int lo_x = max_texture_size_x * i;
int lo_y = max_texture_size_y * j;
int hi_x = lo_x + max_texture_size_x + 2 * border_texels_;
int hi_y = lo_y + max_texture_size_y + 2 * border_texels_;
hi_x = std::min(hi_x, tiling_size_.width());
hi_y = std::min(hi_y, tiling_size_.height());
int x = lo_x;
int y = lo_y;
int width = hi_x - lo_x;
int height = hi_y - lo_y;
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_GE(width, 0);
DCHECK_GE(height, 0);
DCHECK_LE(x, tiling_size_.width());
DCHECK_LE(y, tiling_size_.height());
return gfx::Rect(x, y, width, height);
}
int TilingData::TilePositionX(int x_index) const {
DCHECK_GE(x_index, 0);
DCHECK_LT(x_index, num_tiles_x_);
int pos = (max_texture_size_.width() - 2 * border_texels_) * x_index;
if (x_index != 0)
pos += border_texels_;
return pos;
}
int TilingData::TilePositionY(int y_index) const {
DCHECK_GE(y_index, 0);
DCHECK_LT(y_index, num_tiles_y_);
int pos = (max_texture_size_.height() - 2 * border_texels_) * y_index;
if (y_index != 0)
pos += border_texels_;
return pos;
}
int TilingData::TileSizeX(int x_index) const {
DCHECK_GE(x_index, 0);
DCHECK_LT(x_index, num_tiles_x_);
if (!x_index && num_tiles_x_ == 1)
return tiling_size_.width();
if (!x_index && num_tiles_x_ > 1)
return max_texture_size_.width() - border_texels_;
if (x_index < num_tiles_x_ - 1)
return max_texture_size_.width() - 2 * border_texels_;
if (x_index == num_tiles_x_ - 1)
return tiling_size_.width() - TilePositionX(x_index);
NOTREACHED();
return 0;
}
int TilingData::TileSizeY(int y_index) const {
DCHECK_GE(y_index, 0);
DCHECK_LT(y_index, num_tiles_y_);
if (!y_index && num_tiles_y_ == 1)
return tiling_size_.height();
if (!y_index && num_tiles_y_ > 1)
return max_texture_size_.height() - border_texels_;
if (y_index < num_tiles_y_ - 1)
return max_texture_size_.height() - 2 * border_texels_;
if (y_index == num_tiles_y_ - 1)
return tiling_size_.height() - TilePositionY(y_index);
NOTREACHED();
return 0;
}
gfx::Vector2d TilingData::TextureOffset(int x_index, int y_index) const {
int left = (!x_index || num_tiles_x_ == 1) ? 0 : border_texels_;
int top = (!y_index || num_tiles_y_ == 1) ? 0 : border_texels_;
return gfx::Vector2d(left, top);
}
void TilingData::RecomputeNumTiles() {
num_tiles_x_ = ComputeNumTiles(
max_texture_size_.width(), tiling_size_.width(), border_texels_);
num_tiles_y_ = ComputeNumTiles(
max_texture_size_.height(), tiling_size_.height(), border_texels_);
}
TilingData::BaseIterator::BaseIterator() : index_x_(-1), index_y_(-1) {
}
TilingData::Iterator::Iterator() {
done();
}
TilingData::Iterator::Iterator(const TilingData* tiling_data,
const gfx::Rect& consider_rect,
bool include_borders)
: left_(-1), right_(-1), bottom_(-1) {
if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) {
done();
return;
}
gfx::Rect tiling_bounds_rect(tiling_data->tiling_size());
gfx::Rect rect(consider_rect);
rect.Intersect(tiling_bounds_rect);
gfx::Rect top_left_tile;
if (include_borders) {
index_x_ = tiling_data->FirstBorderTileXIndexFromSrcCoord(rect.x());
index_y_ = tiling_data->FirstBorderTileYIndexFromSrcCoord(rect.y());
right_ = tiling_data->LastBorderTileXIndexFromSrcCoord(rect.right() - 1);
bottom_ = tiling_data->LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1);
top_left_tile = tiling_data->TileBoundsWithBorder(index_x_, index_y_);
} else {
index_x_ = tiling_data->TileXIndexFromSrcCoord(rect.x());
index_y_ = tiling_data->TileYIndexFromSrcCoord(rect.y());
right_ = tiling_data->TileXIndexFromSrcCoord(rect.right() - 1);
bottom_ = tiling_data->TileYIndexFromSrcCoord(rect.bottom() - 1);
top_left_tile = tiling_data->TileBounds(index_x_, index_y_);
}
left_ = index_x_;
// Index functions always return valid indices, so explicitly check
// for non-intersecting rects.
if (!top_left_tile.Intersects(rect))
done();
}
TilingData::Iterator& TilingData::Iterator::operator++() {
if (!*this)
return *this;
index_x_++;
if (index_x_ > right_) {
index_x_ = left_;
index_y_++;
if (index_y_ > bottom_)
done();
}
return *this;
}
TilingData::BaseDifferenceIterator::BaseDifferenceIterator() {
done();
}
TilingData::BaseDifferenceIterator::BaseDifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect)
: consider_left_(-1),
consider_top_(-1),
consider_right_(-1),
consider_bottom_(-1),
ignore_left_(-1),
ignore_top_(-1),
ignore_right_(-1),
ignore_bottom_(-1) {
if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) {
done();
return;
}
gfx::Rect tiling_bounds_rect(tiling_data->tiling_size());
gfx::Rect consider(consider_rect);
consider.Intersect(tiling_bounds_rect);
if (consider.IsEmpty()) {
done();
return;
}
consider_left_ = tiling_data->TileXIndexFromSrcCoord(consider.x());
consider_top_ = tiling_data->TileYIndexFromSrcCoord(consider.y());
consider_right_ = tiling_data->TileXIndexFromSrcCoord(consider.right() - 1);
consider_bottom_ = tiling_data->TileYIndexFromSrcCoord(consider.bottom() - 1);
gfx::Rect ignore(ignore_rect);
ignore.Intersect(tiling_bounds_rect);
if (!ignore.IsEmpty()) {
ignore_left_ = tiling_data->TileXIndexFromSrcCoord(ignore.x());
ignore_top_ = tiling_data->TileYIndexFromSrcCoord(ignore.y());
ignore_right_ = tiling_data->TileXIndexFromSrcCoord(ignore.right() - 1);
ignore_bottom_ = tiling_data->TileYIndexFromSrcCoord(ignore.bottom() - 1);
// Clamp ignore indices to consider indices.
ignore_left_ = std::max(ignore_left_, consider_left_);
ignore_top_ = std::max(ignore_top_, consider_top_);
ignore_right_ = std::min(ignore_right_, consider_right_);
ignore_bottom_ = std::min(ignore_bottom_, consider_bottom_);
if (ignore_left_ == consider_left_ && ignore_right_ == consider_right_ &&
ignore_top_ == consider_top_ && ignore_bottom_ == consider_bottom_) {
consider_left_ = consider_top_ = consider_right_ = consider_bottom_ = -1;
done();
return;
}
}
}
bool TilingData::BaseDifferenceIterator::HasConsiderRect() const {
// Consider indices are either all valid or all equal to -1.
DCHECK((0 <= consider_left_ && consider_left_ <= consider_right_ &&
0 <= consider_top_ && consider_top_ <= consider_bottom_) ||
(consider_left_ == -1 && consider_top_ == -1 &&
consider_right_ == -1 && consider_bottom_ == -1));
return consider_left_ != -1;
}
TilingData::DifferenceIterator::DifferenceIterator() {
}
TilingData::DifferenceIterator::DifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect)
: BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) {
if (!HasConsiderRect()) {
done();
return;
}
index_x_ = consider_left_;
index_y_ = consider_top_;
if (in_ignore_rect())
++(*this);
}
TilingData::DifferenceIterator& TilingData::DifferenceIterator::operator++() {
if (!*this)
return *this;
index_x_++;
if (in_ignore_rect())
index_x_ = ignore_right_ + 1;
if (index_x_ > consider_right_) {
index_x_ = consider_left_;
index_y_++;
if (in_ignore_rect()) {
index_x_ = ignore_right_ + 1;
// If the ignore rect spans the whole consider rect horizontally, then
// ignore_right + 1 will be out of bounds.
if (in_ignore_rect() || index_x_ > consider_right_) {
index_y_ = ignore_bottom_ + 1;
index_x_ = consider_left_;
}
}
if (index_y_ > consider_bottom_)
done();
}
return *this;
}
TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator() {
done();
}
TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect,
const gfx::Rect& center_rect)
: BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect),
direction_(RIGHT),
delta_x_(1),
delta_y_(0),
current_step_(0),
horizontal_step_count_(0),
vertical_step_count_(0) {
if (!HasConsiderRect()) {
done();
return;
}
// Determine around left, such that it is between -1 and num_tiles_x.
int around_left = 0;
if (center_rect.x() < 0 || center_rect.IsEmpty())
around_left = -1;
else if (center_rect.x() >= tiling_data->tiling_size().width())
around_left = tiling_data->num_tiles_x();
else
around_left = tiling_data->TileXIndexFromSrcCoord(center_rect.x());
// Determine around top, such that it is between -1 and num_tiles_y.
int around_top = 0;
if (center_rect.y() < 0 || center_rect.IsEmpty())
around_top = -1;
else if (center_rect.y() >= tiling_data->tiling_size().height())
around_top = tiling_data->num_tiles_y();
else
around_top = tiling_data->TileYIndexFromSrcCoord(center_rect.y());
// Determine around right, such that it is between -1 and num_tiles_x.
int right_src_coord = center_rect.right() - 1;
int around_right = 0;
if (right_src_coord < 0 || center_rect.IsEmpty()) {
around_right = -1;
} else if (right_src_coord >= tiling_data->tiling_size().width()) {
around_right = tiling_data->num_tiles_x();
} else {
around_right = tiling_data->TileXIndexFromSrcCoord(right_src_coord);
}
// Determine around bottom, such that it is between -1 and num_tiles_y.
int bottom_src_coord = center_rect.bottom() - 1;
int around_bottom = 0;
if (bottom_src_coord < 0 || center_rect.IsEmpty()) {
around_bottom = -1;
} else if (bottom_src_coord >= tiling_data->tiling_size().height()) {
around_bottom = tiling_data->num_tiles_y();
} else {
around_bottom = tiling_data->TileYIndexFromSrcCoord(bottom_src_coord);
}
vertical_step_count_ = around_bottom - around_top + 1;
horizontal_step_count_ = around_right - around_left + 1;
current_step_ = horizontal_step_count_ - 1;
index_x_ = around_right;
index_y_ = around_bottom;
// The current index is the bottom right of the around rect, which is also
// ignored. So we have to advance.
++(*this);
}
TilingData::SpiralDifferenceIterator& TilingData::SpiralDifferenceIterator::
operator++() {
int cannot_hit_consider_count = 0;
while (cannot_hit_consider_count < 4) {
if (needs_direction_switch())
switch_direction();
index_x_ += delta_x_;
index_y_ += delta_y_;
++current_step_;
if (in_consider_rect()) {
cannot_hit_consider_count = 0;
if (!in_ignore_rect())
break;
// Steps needed to reach the very edge of the ignore rect, while remaining
// inside (so that the continue would take us outside).
int steps_to_edge = 0;
switch (direction_) {
case UP:
steps_to_edge = index_y_ - ignore_top_;
break;
case LEFT:
steps_to_edge = index_x_ - ignore_left_;
break;
case DOWN:
steps_to_edge = ignore_bottom_ - index_y_;
break;
case RIGHT:
steps_to_edge = ignore_right_ - index_x_;
break;
}
// We need to switch directions in |max_steps|.
int max_steps = current_step_count() - current_step_;
int steps_to_take = std::min(steps_to_edge, max_steps);
DCHECK_GE(steps_to_take, 0);
index_x_ += steps_to_take * delta_x_;
index_y_ += steps_to_take * delta_y_;
current_step_ += steps_to_take;
} else {
int max_steps = current_step_count() - current_step_;
int steps_to_take = max_steps;
bool can_hit_consider_rect = false;
switch (direction_) {
case UP:
if (valid_column() && consider_bottom_ < index_y_)
steps_to_take = index_y_ - consider_bottom_ - 1;
can_hit_consider_rect |= consider_right_ >= index_x_;
break;
case LEFT:
if (valid_row() && consider_right_ < index_x_)
steps_to_take = index_x_ - consider_right_ - 1;
can_hit_consider_rect |= consider_top_ <= index_y_;
break;
case DOWN:
if (valid_column() && consider_top_ > index_y_)
steps_to_take = consider_top_ - index_y_ - 1;
can_hit_consider_rect |= consider_left_ <= index_x_;
break;
case RIGHT:
if (valid_row() && consider_left_ > index_x_)
steps_to_take = consider_left_ - index_x_ - 1;
can_hit_consider_rect |= consider_bottom_ >= index_y_;
break;
}
steps_to_take = std::min(steps_to_take, max_steps);
DCHECK_GE(steps_to_take, 0);
index_x_ += steps_to_take * delta_x_;
index_y_ += steps_to_take * delta_y_;
current_step_ += steps_to_take;
if (can_hit_consider_rect)
cannot_hit_consider_count = 0;
else
++cannot_hit_consider_count;
}
}
if (cannot_hit_consider_count >= 4)
done();
return *this;
}
bool TilingData::SpiralDifferenceIterator::needs_direction_switch() const {
return current_step_ >= current_step_count();
}
void TilingData::SpiralDifferenceIterator::switch_direction() {
// Note that delta_x_ and delta_y_ always remain between -1 and 1.
int new_delta_x_ = delta_y_;
delta_y_ = -delta_x_;
delta_x_ = new_delta_x_;
current_step_ = 0;
direction_ = static_cast<Direction>((direction_ + 1) % 4);
if (direction_ == RIGHT || direction_ == LEFT) {
++vertical_step_count_;
++horizontal_step_count_;
}
}
TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator() {
done();
}
TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator(
const TilingData* tiling_data,
const gfx::Rect& consider_rect,
const gfx::Rect& ignore_rect,
const gfx::Rect& center_rect)
: BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect),
around_left_(-1),
around_top_(-1),
around_right_(-1),
around_bottom_(-1),
direction_(LEFT),
delta_x_(-1),
delta_y_(0),
current_step_(0),
horizontal_step_count_(0),
vertical_step_count_(0) {
if (!HasConsiderRect()) {
done();
return;
}
// Determine around left, such that it is between -1 and num_tiles_x.
if (center_rect.x() < 0 || center_rect.IsEmpty())
around_left_ = -1;
else if (center_rect.x() >= tiling_data->tiling_size().width())
around_left_ = tiling_data->num_tiles_x();
else
around_left_ = tiling_data->TileXIndexFromSrcCoord(center_rect.x());
// Determine around top, such that it is between -1 and num_tiles_y.
if (center_rect.y() < 0 || center_rect.IsEmpty())
around_top_ = -1;
else if (center_rect.y() >= tiling_data->tiling_size().height())
around_top_ = tiling_data->num_tiles_y();
else
around_top_ = tiling_data->TileYIndexFromSrcCoord(center_rect.y());
// Determine around right, such that it is between -1 and num_tiles_x.
int right_src_coord = center_rect.right() - 1;
if (right_src_coord < 0 || center_rect.IsEmpty()) {
around_right_ = -1;
} else if (right_src_coord >= tiling_data->tiling_size().width()) {
around_right_ = tiling_data->num_tiles_x();
} else {
around_right_ = tiling_data->TileXIndexFromSrcCoord(right_src_coord);
}
// Determine around bottom, such that it is between -1 and num_tiles_y.
int bottom_src_coord = center_rect.bottom() - 1;
if (bottom_src_coord < 0 || center_rect.IsEmpty()) {
around_bottom_ = -1;
} else if (bottom_src_coord >= tiling_data->tiling_size().height()) {
around_bottom_ = tiling_data->num_tiles_y();
} else {
around_bottom_ = tiling_data->TileYIndexFromSrcCoord(bottom_src_coord);
}
// Figure out the maximum distance from the around edge to consider edge.
int max_distance = 0;
max_distance = std::max(max_distance, around_top_ - consider_top_);
max_distance = std::max(max_distance, around_left_ - consider_left_);
max_distance = std::max(max_distance, consider_bottom_ - around_bottom_);
max_distance = std::max(max_distance, consider_right_ - around_right_);
// The step count is the length of the edge (around_right_ - around_left_ + 1)
// plus twice the max distance to pad (to the right and to the left). This way
// the initial rect is the size proportional to the center, but big enough
// to cover the consider rect.
//
// C = consider rect
// A = around rect
// . = area of the padded around rect
// md = max distance (note in the picture below, there's md written vertically
// as well).
// I = initial starting position
//
// |md| |md|
//
// - ..........
// m ..........
// d ..........
// - CCCCCCC...
// CCCCAAC...
// CCCCAAC...
// - ..........
// m ..........
// d ..........
// - ..........I
vertical_step_count_ = around_bottom_ - around_top_ + 1 + 2 * max_distance;
horizontal_step_count_ = around_right_ - around_left_ + 1 + 2 * max_distance;
// Start with one to the right of the padded around rect.
index_x_ = around_right_ + max_distance + 1;
index_y_ = around_bottom_ + max_distance;
// The current index is outside a valid tile, so advance immediately.
++(*this);
}
TilingData::ReverseSpiralDifferenceIterator&
TilingData::ReverseSpiralDifferenceIterator::
operator++() {
while (!in_around_rect()) {
if (needs_direction_switch())
switch_direction();
index_x_ += delta_x_;
index_y_ += delta_y_;
++current_step_;
if (in_around_rect()) {
break;
} else if (in_consider_rect()) {
// If the tile is in the consider rect but not in ignore rect, then it's a
// valid tile to visit.
if (!in_ignore_rect())
break;
// Steps needed to reach the very edge of the ignore rect, while remaining
// inside it (so that the continue would take us outside).
int steps_to_edge = 0;
switch (direction_) {
case UP:
steps_to_edge = index_y_ - ignore_top_;
break;
case LEFT:
steps_to_edge = index_x_ - ignore_left_;
break;
case DOWN:
steps_to_edge = ignore_bottom_ - index_y_;
break;
case RIGHT:
steps_to_edge = ignore_right_ - index_x_;
break;
}
// We need to switch directions in |max_steps|.
int max_steps = current_step_count() - current_step_;
int steps_to_take = std::min(steps_to_edge, max_steps);
DCHECK_GE(steps_to_take, 0);
index_x_ += steps_to_take * delta_x_;
index_y_ += steps_to_take * delta_y_;
current_step_ += steps_to_take;
} else {
// We're not in the consider rect.
int max_steps = current_step_count() - current_step_;
int steps_to_take = max_steps;
// We might hit the consider rect before needing to switch directions:
// update steps to take.
switch (direction_) {
case UP:
if (valid_column() && consider_bottom_ < index_y_)
steps_to_take = index_y_ - consider_bottom_ - 1;
break;
case LEFT:
if (valid_row() && consider_right_ < index_x_)
steps_to_take = index_x_ - consider_right_ - 1;
break;
case DOWN:
if (valid_column() && consider_top_ > index_y_)
steps_to_take = consider_top_ - index_y_ - 1;
break;
case RIGHT:
if (valid_row() && consider_left_ > index_x_)
steps_to_take = consider_left_ - index_x_ - 1;
break;
}
steps_to_take = std::min(steps_to_take, max_steps);
DCHECK_GE(steps_to_take, 0);
index_x_ += steps_to_take * delta_x_;
index_y_ += steps_to_take * delta_y_;
current_step_ += steps_to_take;
}
}
// Once we enter the around rect, we're done.
if (in_around_rect())
done();
return *this;
}
bool TilingData::ReverseSpiralDifferenceIterator::needs_direction_switch()
const {
return current_step_ >= current_step_count();
}
void TilingData::ReverseSpiralDifferenceIterator::switch_direction() {
// Note that delta_x_ and delta_y_ always remain between -1 and 1.
int new_delta_y_ = delta_x_;
delta_x_ = -delta_y_;
delta_y_ = new_delta_y_;
current_step_ = 0;
direction_ = static_cast<Direction>((direction_ + 1) % 4);
if (direction_ == UP || direction_ == DOWN) {
--vertical_step_count_;
--horizontal_step_count_;
// We should always end up in an around rect at some point.
// Since the direction is now vertical, we have to ensure that we will
// advance.
DCHECK_GE(horizontal_step_count_, 1);
DCHECK_GE(vertical_step_count_, 1);
}
}
} // namespace cc