| // Copyright 2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/base/tiling_data.h" |
| |
| #include <algorithm> |
| |
| #include "ui/gfx/geometry/rect.h" |
| #include "ui/gfx/geometry/vector2d.h" |
| |
| namespace cc { |
| |
| static int ComputeNumTiles(int max_texture_size, |
| int total_size, |
| int border_texels) { |
| if (max_texture_size - 2 * border_texels <= 0) |
| return total_size > 0 && max_texture_size >= total_size ? 1 : 0; |
| |
| int num_tiles = std::max(1, |
| 1 + (total_size - 1 - 2 * border_texels) / |
| (max_texture_size - 2 * border_texels)); |
| return total_size > 0 ? num_tiles : 0; |
| } |
| |
| TilingData::TilingData() |
| : border_texels_(0) { |
| RecomputeNumTiles(); |
| } |
| |
| TilingData::TilingData(const gfx::Size& max_texture_size, |
| const gfx::Size& tiling_size, |
| bool has_border_texels) |
| : max_texture_size_(max_texture_size), |
| tiling_size_(tiling_size), |
| border_texels_(has_border_texels ? 1 : 0) { |
| RecomputeNumTiles(); |
| } |
| |
| TilingData::TilingData(const gfx::Size& max_texture_size, |
| const gfx::Size& tiling_size, |
| int border_texels) |
| : max_texture_size_(max_texture_size), |
| tiling_size_(tiling_size), |
| border_texels_(border_texels) { |
| RecomputeNumTiles(); |
| } |
| |
| void TilingData::SetTilingSize(const gfx::Size& tiling_size) { |
| tiling_size_ = tiling_size; |
| RecomputeNumTiles(); |
| } |
| |
| void TilingData::SetMaxTextureSize(const gfx::Size& max_texture_size) { |
| max_texture_size_ = max_texture_size; |
| RecomputeNumTiles(); |
| } |
| |
| void TilingData::SetHasBorderTexels(bool has_border_texels) { |
| border_texels_ = has_border_texels ? 1 : 0; |
| RecomputeNumTiles(); |
| } |
| |
| void TilingData::SetBorderTexels(int border_texels) { |
| border_texels_ = border_texels; |
| RecomputeNumTiles(); |
| } |
| |
| int TilingData::TileXIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_x_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); |
| int x = (src_position - border_texels_) / |
| (max_texture_size_.width() - 2 * border_texels_); |
| return std::min(std::max(x, 0), num_tiles_x_ - 1); |
| } |
| |
| int TilingData::TileYIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_y_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); |
| int y = (src_position - border_texels_) / |
| (max_texture_size_.height() - 2 * border_texels_); |
| return std::min(std::max(y, 0), num_tiles_y_ - 1); |
| } |
| |
| int TilingData::FirstBorderTileXIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_x_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.width() - 2 * border_texels_; |
| int x = (src_position - 2 * border_texels_) / inner_tile_size; |
| return std::min(std::max(x, 0), num_tiles_x_ - 1); |
| } |
| |
| int TilingData::FirstBorderTileYIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_y_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.height() - 2 * border_texels_; |
| int y = (src_position - 2 * border_texels_) / inner_tile_size; |
| return std::min(std::max(y, 0), num_tiles_y_ - 1); |
| } |
| |
| int TilingData::LastBorderTileXIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_x_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.width() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.width() - 2 * border_texels_; |
| int x = src_position / inner_tile_size; |
| return std::min(std::max(x, 0), num_tiles_x_ - 1); |
| } |
| |
| int TilingData::LastBorderTileYIndexFromSrcCoord(int src_position) const { |
| if (num_tiles_y_ <= 1) |
| return 0; |
| |
| DCHECK_GT(max_texture_size_.height() - 2 * border_texels_, 0); |
| int inner_tile_size = max_texture_size_.height() - 2 * border_texels_; |
| int y = src_position / inner_tile_size; |
| return std::min(std::max(y, 0), num_tiles_y_ - 1); |
| } |
| |
| gfx::Rect TilingData::ExpandRectIgnoringBordersToTileBounds( |
| const gfx::Rect& rect) const { |
| if (rect.IsEmpty() || has_empty_bounds()) |
| return gfx::Rect(); |
| if (rect.x() > tiling_size_.width() || rect.y() > tiling_size_.height()) |
| return gfx::Rect(); |
| int index_x = TileXIndexFromSrcCoord(rect.x()); |
| int index_y = TileYIndexFromSrcCoord(rect.y()); |
| int index_right = TileXIndexFromSrcCoord(rect.right() - 1); |
| int index_bottom = TileYIndexFromSrcCoord(rect.bottom() - 1); |
| |
| gfx::Rect rect_top_left(TileBounds(index_x, index_y)); |
| gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom)); |
| |
| return gfx::UnionRects(rect_top_left, rect_bottom_right); |
| } |
| |
| gfx::Rect TilingData::ExpandRectToTileBounds(const gfx::Rect& rect) const { |
| if (rect.IsEmpty() || has_empty_bounds()) |
| return gfx::Rect(); |
| if (rect.x() > tiling_size_.width() || rect.y() > tiling_size_.height()) |
| return gfx::Rect(); |
| int index_x = FirstBorderTileXIndexFromSrcCoord(rect.x()); |
| int index_y = FirstBorderTileYIndexFromSrcCoord(rect.y()); |
| int index_right = LastBorderTileXIndexFromSrcCoord(rect.right() - 1); |
| int index_bottom = LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1); |
| |
| gfx::Rect rect_top_left(TileBounds(index_x, index_y)); |
| gfx::Rect rect_bottom_right(TileBounds(index_right, index_bottom)); |
| |
| return gfx::UnionRects(rect_top_left, rect_bottom_right); |
| } |
| |
| gfx::Rect TilingData::TileBounds(int i, int j) const { |
| AssertTile(i, j); |
| int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_; |
| int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_; |
| |
| int lo_x = max_texture_size_x * i; |
| if (i != 0) |
| lo_x += border_texels_; |
| |
| int lo_y = max_texture_size_y * j; |
| if (j != 0) |
| lo_y += border_texels_; |
| |
| int hi_x = max_texture_size_x * (i + 1) + border_texels_; |
| if (i + 1 == num_tiles_x_) |
| hi_x += border_texels_; |
| |
| int hi_y = max_texture_size_y * (j + 1) + border_texels_; |
| if (j + 1 == num_tiles_y_) |
| hi_y += border_texels_; |
| |
| hi_x = std::min(hi_x, tiling_size_.width()); |
| hi_y = std::min(hi_y, tiling_size_.height()); |
| |
| int x = lo_x; |
| int y = lo_y; |
| int width = hi_x - lo_x; |
| int height = hi_y - lo_y; |
| DCHECK_GE(x, 0); |
| DCHECK_GE(y, 0); |
| DCHECK_GE(width, 0); |
| DCHECK_GE(height, 0); |
| DCHECK_LE(x, tiling_size_.width()); |
| DCHECK_LE(y, tiling_size_.height()); |
| return gfx::Rect(x, y, width, height); |
| } |
| |
| gfx::Rect TilingData::TileBoundsWithBorder(int i, int j) const { |
| AssertTile(i, j); |
| int max_texture_size_x = max_texture_size_.width() - 2 * border_texels_; |
| int max_texture_size_y = max_texture_size_.height() - 2 * border_texels_; |
| |
| int lo_x = max_texture_size_x * i; |
| int lo_y = max_texture_size_y * j; |
| |
| int hi_x = lo_x + max_texture_size_x + 2 * border_texels_; |
| int hi_y = lo_y + max_texture_size_y + 2 * border_texels_; |
| |
| hi_x = std::min(hi_x, tiling_size_.width()); |
| hi_y = std::min(hi_y, tiling_size_.height()); |
| |
| int x = lo_x; |
| int y = lo_y; |
| int width = hi_x - lo_x; |
| int height = hi_y - lo_y; |
| DCHECK_GE(x, 0); |
| DCHECK_GE(y, 0); |
| DCHECK_GE(width, 0); |
| DCHECK_GE(height, 0); |
| DCHECK_LE(x, tiling_size_.width()); |
| DCHECK_LE(y, tiling_size_.height()); |
| return gfx::Rect(x, y, width, height); |
| } |
| |
| int TilingData::TilePositionX(int x_index) const { |
| DCHECK_GE(x_index, 0); |
| DCHECK_LT(x_index, num_tiles_x_); |
| |
| int pos = (max_texture_size_.width() - 2 * border_texels_) * x_index; |
| if (x_index != 0) |
| pos += border_texels_; |
| |
| return pos; |
| } |
| |
| int TilingData::TilePositionY(int y_index) const { |
| DCHECK_GE(y_index, 0); |
| DCHECK_LT(y_index, num_tiles_y_); |
| |
| int pos = (max_texture_size_.height() - 2 * border_texels_) * y_index; |
| if (y_index != 0) |
| pos += border_texels_; |
| |
| return pos; |
| } |
| |
| int TilingData::TileSizeX(int x_index) const { |
| DCHECK_GE(x_index, 0); |
| DCHECK_LT(x_index, num_tiles_x_); |
| |
| if (!x_index && num_tiles_x_ == 1) |
| return tiling_size_.width(); |
| if (!x_index && num_tiles_x_ > 1) |
| return max_texture_size_.width() - border_texels_; |
| if (x_index < num_tiles_x_ - 1) |
| return max_texture_size_.width() - 2 * border_texels_; |
| if (x_index == num_tiles_x_ - 1) |
| return tiling_size_.width() - TilePositionX(x_index); |
| |
| NOTREACHED(); |
| return 0; |
| } |
| |
| int TilingData::TileSizeY(int y_index) const { |
| DCHECK_GE(y_index, 0); |
| DCHECK_LT(y_index, num_tiles_y_); |
| |
| if (!y_index && num_tiles_y_ == 1) |
| return tiling_size_.height(); |
| if (!y_index && num_tiles_y_ > 1) |
| return max_texture_size_.height() - border_texels_; |
| if (y_index < num_tiles_y_ - 1) |
| return max_texture_size_.height() - 2 * border_texels_; |
| if (y_index == num_tiles_y_ - 1) |
| return tiling_size_.height() - TilePositionY(y_index); |
| |
| NOTREACHED(); |
| return 0; |
| } |
| |
| gfx::Vector2d TilingData::TextureOffset(int x_index, int y_index) const { |
| int left = (!x_index || num_tiles_x_ == 1) ? 0 : border_texels_; |
| int top = (!y_index || num_tiles_y_ == 1) ? 0 : border_texels_; |
| |
| return gfx::Vector2d(left, top); |
| } |
| |
| void TilingData::RecomputeNumTiles() { |
| num_tiles_x_ = ComputeNumTiles( |
| max_texture_size_.width(), tiling_size_.width(), border_texels_); |
| num_tiles_y_ = ComputeNumTiles( |
| max_texture_size_.height(), tiling_size_.height(), border_texels_); |
| } |
| |
| TilingData::BaseIterator::BaseIterator() : index_x_(-1), index_y_(-1) { |
| } |
| |
| TilingData::Iterator::Iterator() { |
| done(); |
| } |
| |
| TilingData::Iterator::Iterator(const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| bool include_borders) |
| : left_(-1), right_(-1), bottom_(-1) { |
| if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) { |
| done(); |
| return; |
| } |
| |
| gfx::Rect tiling_bounds_rect(tiling_data->tiling_size()); |
| gfx::Rect rect(consider_rect); |
| rect.Intersect(tiling_bounds_rect); |
| |
| gfx::Rect top_left_tile; |
| if (include_borders) { |
| index_x_ = tiling_data->FirstBorderTileXIndexFromSrcCoord(rect.x()); |
| index_y_ = tiling_data->FirstBorderTileYIndexFromSrcCoord(rect.y()); |
| right_ = tiling_data->LastBorderTileXIndexFromSrcCoord(rect.right() - 1); |
| bottom_ = tiling_data->LastBorderTileYIndexFromSrcCoord(rect.bottom() - 1); |
| top_left_tile = tiling_data->TileBoundsWithBorder(index_x_, index_y_); |
| } else { |
| index_x_ = tiling_data->TileXIndexFromSrcCoord(rect.x()); |
| index_y_ = tiling_data->TileYIndexFromSrcCoord(rect.y()); |
| right_ = tiling_data->TileXIndexFromSrcCoord(rect.right() - 1); |
| bottom_ = tiling_data->TileYIndexFromSrcCoord(rect.bottom() - 1); |
| top_left_tile = tiling_data->TileBounds(index_x_, index_y_); |
| } |
| left_ = index_x_; |
| |
| // Index functions always return valid indices, so explicitly check |
| // for non-intersecting rects. |
| if (!top_left_tile.Intersects(rect)) |
| done(); |
| } |
| |
| TilingData::Iterator& TilingData::Iterator::operator++() { |
| if (!*this) |
| return *this; |
| |
| index_x_++; |
| if (index_x_ > right_) { |
| index_x_ = left_; |
| index_y_++; |
| if (index_y_ > bottom_) |
| done(); |
| } |
| |
| return *this; |
| } |
| |
| TilingData::BaseDifferenceIterator::BaseDifferenceIterator() { |
| done(); |
| } |
| |
| TilingData::BaseDifferenceIterator::BaseDifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect) |
| : consider_left_(-1), |
| consider_top_(-1), |
| consider_right_(-1), |
| consider_bottom_(-1), |
| ignore_left_(-1), |
| ignore_top_(-1), |
| ignore_right_(-1), |
| ignore_bottom_(-1) { |
| if (tiling_data->num_tiles_x() <= 0 || tiling_data->num_tiles_y() <= 0) { |
| done(); |
| return; |
| } |
| |
| gfx::Rect tiling_bounds_rect(tiling_data->tiling_size()); |
| gfx::Rect consider(consider_rect); |
| consider.Intersect(tiling_bounds_rect); |
| |
| if (consider.IsEmpty()) { |
| done(); |
| return; |
| } |
| |
| consider_left_ = tiling_data->TileXIndexFromSrcCoord(consider.x()); |
| consider_top_ = tiling_data->TileYIndexFromSrcCoord(consider.y()); |
| consider_right_ = tiling_data->TileXIndexFromSrcCoord(consider.right() - 1); |
| consider_bottom_ = tiling_data->TileYIndexFromSrcCoord(consider.bottom() - 1); |
| |
| gfx::Rect ignore(ignore_rect); |
| ignore.Intersect(tiling_bounds_rect); |
| |
| if (!ignore.IsEmpty()) { |
| ignore_left_ = tiling_data->TileXIndexFromSrcCoord(ignore.x()); |
| ignore_top_ = tiling_data->TileYIndexFromSrcCoord(ignore.y()); |
| ignore_right_ = tiling_data->TileXIndexFromSrcCoord(ignore.right() - 1); |
| ignore_bottom_ = tiling_data->TileYIndexFromSrcCoord(ignore.bottom() - 1); |
| |
| // Clamp ignore indices to consider indices. |
| ignore_left_ = std::max(ignore_left_, consider_left_); |
| ignore_top_ = std::max(ignore_top_, consider_top_); |
| ignore_right_ = std::min(ignore_right_, consider_right_); |
| ignore_bottom_ = std::min(ignore_bottom_, consider_bottom_); |
| |
| if (ignore_left_ == consider_left_ && ignore_right_ == consider_right_ && |
| ignore_top_ == consider_top_ && ignore_bottom_ == consider_bottom_) { |
| consider_left_ = consider_top_ = consider_right_ = consider_bottom_ = -1; |
| done(); |
| return; |
| } |
| } |
| } |
| |
| bool TilingData::BaseDifferenceIterator::HasConsiderRect() const { |
| // Consider indices are either all valid or all equal to -1. |
| DCHECK((0 <= consider_left_ && consider_left_ <= consider_right_ && |
| 0 <= consider_top_ && consider_top_ <= consider_bottom_) || |
| (consider_left_ == -1 && consider_top_ == -1 && |
| consider_right_ == -1 && consider_bottom_ == -1)); |
| return consider_left_ != -1; |
| } |
| |
| TilingData::DifferenceIterator::DifferenceIterator() { |
| } |
| |
| TilingData::DifferenceIterator::DifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect) |
| : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect) { |
| if (!HasConsiderRect()) { |
| done(); |
| return; |
| } |
| |
| index_x_ = consider_left_; |
| index_y_ = consider_top_; |
| |
| if (in_ignore_rect()) |
| ++(*this); |
| } |
| |
| TilingData::DifferenceIterator& TilingData::DifferenceIterator::operator++() { |
| if (!*this) |
| return *this; |
| |
| index_x_++; |
| if (in_ignore_rect()) |
| index_x_ = ignore_right_ + 1; |
| |
| if (index_x_ > consider_right_) { |
| index_x_ = consider_left_; |
| index_y_++; |
| |
| if (in_ignore_rect()) { |
| index_x_ = ignore_right_ + 1; |
| // If the ignore rect spans the whole consider rect horizontally, then |
| // ignore_right + 1 will be out of bounds. |
| if (in_ignore_rect() || index_x_ > consider_right_) { |
| index_y_ = ignore_bottom_ + 1; |
| index_x_ = consider_left_; |
| } |
| } |
| |
| if (index_y_ > consider_bottom_) |
| done(); |
| } |
| |
| return *this; |
| } |
| |
| TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator() { |
| done(); |
| } |
| |
| TilingData::SpiralDifferenceIterator::SpiralDifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect, |
| const gfx::Rect& center_rect) |
| : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect), |
| direction_(RIGHT), |
| delta_x_(1), |
| delta_y_(0), |
| current_step_(0), |
| horizontal_step_count_(0), |
| vertical_step_count_(0) { |
| if (!HasConsiderRect()) { |
| done(); |
| return; |
| } |
| |
| // Determine around left, such that it is between -1 and num_tiles_x. |
| int around_left = 0; |
| if (center_rect.x() < 0 || center_rect.IsEmpty()) |
| around_left = -1; |
| else if (center_rect.x() >= tiling_data->tiling_size().width()) |
| around_left = tiling_data->num_tiles_x(); |
| else |
| around_left = tiling_data->TileXIndexFromSrcCoord(center_rect.x()); |
| |
| // Determine around top, such that it is between -1 and num_tiles_y. |
| int around_top = 0; |
| if (center_rect.y() < 0 || center_rect.IsEmpty()) |
| around_top = -1; |
| else if (center_rect.y() >= tiling_data->tiling_size().height()) |
| around_top = tiling_data->num_tiles_y(); |
| else |
| around_top = tiling_data->TileYIndexFromSrcCoord(center_rect.y()); |
| |
| // Determine around right, such that it is between -1 and num_tiles_x. |
| int right_src_coord = center_rect.right() - 1; |
| int around_right = 0; |
| if (right_src_coord < 0 || center_rect.IsEmpty()) { |
| around_right = -1; |
| } else if (right_src_coord >= tiling_data->tiling_size().width()) { |
| around_right = tiling_data->num_tiles_x(); |
| } else { |
| around_right = tiling_data->TileXIndexFromSrcCoord(right_src_coord); |
| } |
| |
| // Determine around bottom, such that it is between -1 and num_tiles_y. |
| int bottom_src_coord = center_rect.bottom() - 1; |
| int around_bottom = 0; |
| if (bottom_src_coord < 0 || center_rect.IsEmpty()) { |
| around_bottom = -1; |
| } else if (bottom_src_coord >= tiling_data->tiling_size().height()) { |
| around_bottom = tiling_data->num_tiles_y(); |
| } else { |
| around_bottom = tiling_data->TileYIndexFromSrcCoord(bottom_src_coord); |
| } |
| |
| vertical_step_count_ = around_bottom - around_top + 1; |
| horizontal_step_count_ = around_right - around_left + 1; |
| current_step_ = horizontal_step_count_ - 1; |
| |
| index_x_ = around_right; |
| index_y_ = around_bottom; |
| |
| // The current index is the bottom right of the around rect, which is also |
| // ignored. So we have to advance. |
| ++(*this); |
| } |
| |
| TilingData::SpiralDifferenceIterator& TilingData::SpiralDifferenceIterator:: |
| operator++() { |
| int cannot_hit_consider_count = 0; |
| while (cannot_hit_consider_count < 4) { |
| if (needs_direction_switch()) |
| switch_direction(); |
| |
| index_x_ += delta_x_; |
| index_y_ += delta_y_; |
| ++current_step_; |
| |
| if (in_consider_rect()) { |
| cannot_hit_consider_count = 0; |
| |
| if (!in_ignore_rect()) |
| break; |
| |
| // Steps needed to reach the very edge of the ignore rect, while remaining |
| // inside (so that the continue would take us outside). |
| int steps_to_edge = 0; |
| switch (direction_) { |
| case UP: |
| steps_to_edge = index_y_ - ignore_top_; |
| break; |
| case LEFT: |
| steps_to_edge = index_x_ - ignore_left_; |
| break; |
| case DOWN: |
| steps_to_edge = ignore_bottom_ - index_y_; |
| break; |
| case RIGHT: |
| steps_to_edge = ignore_right_ - index_x_; |
| break; |
| } |
| |
| // We need to switch directions in |max_steps|. |
| int max_steps = current_step_count() - current_step_; |
| |
| int steps_to_take = std::min(steps_to_edge, max_steps); |
| DCHECK_GE(steps_to_take, 0); |
| |
| index_x_ += steps_to_take * delta_x_; |
| index_y_ += steps_to_take * delta_y_; |
| current_step_ += steps_to_take; |
| } else { |
| int max_steps = current_step_count() - current_step_; |
| int steps_to_take = max_steps; |
| bool can_hit_consider_rect = false; |
| switch (direction_) { |
| case UP: |
| if (valid_column() && consider_bottom_ < index_y_) |
| steps_to_take = index_y_ - consider_bottom_ - 1; |
| can_hit_consider_rect |= consider_right_ >= index_x_; |
| break; |
| case LEFT: |
| if (valid_row() && consider_right_ < index_x_) |
| steps_to_take = index_x_ - consider_right_ - 1; |
| can_hit_consider_rect |= consider_top_ <= index_y_; |
| break; |
| case DOWN: |
| if (valid_column() && consider_top_ > index_y_) |
| steps_to_take = consider_top_ - index_y_ - 1; |
| can_hit_consider_rect |= consider_left_ <= index_x_; |
| break; |
| case RIGHT: |
| if (valid_row() && consider_left_ > index_x_) |
| steps_to_take = consider_left_ - index_x_ - 1; |
| can_hit_consider_rect |= consider_bottom_ >= index_y_; |
| break; |
| } |
| steps_to_take = std::min(steps_to_take, max_steps); |
| DCHECK_GE(steps_to_take, 0); |
| |
| index_x_ += steps_to_take * delta_x_; |
| index_y_ += steps_to_take * delta_y_; |
| current_step_ += steps_to_take; |
| |
| if (can_hit_consider_rect) |
| cannot_hit_consider_count = 0; |
| else |
| ++cannot_hit_consider_count; |
| } |
| } |
| |
| if (cannot_hit_consider_count >= 4) |
| done(); |
| return *this; |
| } |
| |
| bool TilingData::SpiralDifferenceIterator::needs_direction_switch() const { |
| return current_step_ >= current_step_count(); |
| } |
| |
| void TilingData::SpiralDifferenceIterator::switch_direction() { |
| // Note that delta_x_ and delta_y_ always remain between -1 and 1. |
| int new_delta_x_ = delta_y_; |
| delta_y_ = -delta_x_; |
| delta_x_ = new_delta_x_; |
| |
| current_step_ = 0; |
| direction_ = static_cast<Direction>((direction_ + 1) % 4); |
| |
| if (direction_ == RIGHT || direction_ == LEFT) { |
| ++vertical_step_count_; |
| ++horizontal_step_count_; |
| } |
| } |
| |
| TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator() { |
| done(); |
| } |
| |
| TilingData::ReverseSpiralDifferenceIterator::ReverseSpiralDifferenceIterator( |
| const TilingData* tiling_data, |
| const gfx::Rect& consider_rect, |
| const gfx::Rect& ignore_rect, |
| const gfx::Rect& center_rect) |
| : BaseDifferenceIterator(tiling_data, consider_rect, ignore_rect), |
| around_left_(-1), |
| around_top_(-1), |
| around_right_(-1), |
| around_bottom_(-1), |
| direction_(LEFT), |
| delta_x_(-1), |
| delta_y_(0), |
| current_step_(0), |
| horizontal_step_count_(0), |
| vertical_step_count_(0) { |
| if (!HasConsiderRect()) { |
| done(); |
| return; |
| } |
| |
| // Determine around left, such that it is between -1 and num_tiles_x. |
| if (center_rect.x() < 0 || center_rect.IsEmpty()) |
| around_left_ = -1; |
| else if (center_rect.x() >= tiling_data->tiling_size().width()) |
| around_left_ = tiling_data->num_tiles_x(); |
| else |
| around_left_ = tiling_data->TileXIndexFromSrcCoord(center_rect.x()); |
| |
| // Determine around top, such that it is between -1 and num_tiles_y. |
| if (center_rect.y() < 0 || center_rect.IsEmpty()) |
| around_top_ = -1; |
| else if (center_rect.y() >= tiling_data->tiling_size().height()) |
| around_top_ = tiling_data->num_tiles_y(); |
| else |
| around_top_ = tiling_data->TileYIndexFromSrcCoord(center_rect.y()); |
| |
| // Determine around right, such that it is between -1 and num_tiles_x. |
| int right_src_coord = center_rect.right() - 1; |
| if (right_src_coord < 0 || center_rect.IsEmpty()) { |
| around_right_ = -1; |
| } else if (right_src_coord >= tiling_data->tiling_size().width()) { |
| around_right_ = tiling_data->num_tiles_x(); |
| } else { |
| around_right_ = tiling_data->TileXIndexFromSrcCoord(right_src_coord); |
| } |
| |
| // Determine around bottom, such that it is between -1 and num_tiles_y. |
| int bottom_src_coord = center_rect.bottom() - 1; |
| if (bottom_src_coord < 0 || center_rect.IsEmpty()) { |
| around_bottom_ = -1; |
| } else if (bottom_src_coord >= tiling_data->tiling_size().height()) { |
| around_bottom_ = tiling_data->num_tiles_y(); |
| } else { |
| around_bottom_ = tiling_data->TileYIndexFromSrcCoord(bottom_src_coord); |
| } |
| |
| // Figure out the maximum distance from the around edge to consider edge. |
| int max_distance = 0; |
| max_distance = std::max(max_distance, around_top_ - consider_top_); |
| max_distance = std::max(max_distance, around_left_ - consider_left_); |
| max_distance = std::max(max_distance, consider_bottom_ - around_bottom_); |
| max_distance = std::max(max_distance, consider_right_ - around_right_); |
| |
| // The step count is the length of the edge (around_right_ - around_left_ + 1) |
| // plus twice the max distance to pad (to the right and to the left). This way |
| // the initial rect is the size proportional to the center, but big enough |
| // to cover the consider rect. |
| // |
| // C = consider rect |
| // A = around rect |
| // . = area of the padded around rect |
| // md = max distance (note in the picture below, there's md written vertically |
| // as well). |
| // I = initial starting position |
| // |
| // |md| |md| |
| // |
| // - .......... |
| // m .......... |
| // d .......... |
| // - CCCCCCC... |
| // CCCCAAC... |
| // CCCCAAC... |
| // - .......... |
| // m .......... |
| // d .......... |
| // - ..........I |
| vertical_step_count_ = around_bottom_ - around_top_ + 1 + 2 * max_distance; |
| horizontal_step_count_ = around_right_ - around_left_ + 1 + 2 * max_distance; |
| |
| // Start with one to the right of the padded around rect. |
| index_x_ = around_right_ + max_distance + 1; |
| index_y_ = around_bottom_ + max_distance; |
| |
| // The current index is outside a valid tile, so advance immediately. |
| ++(*this); |
| } |
| |
| TilingData::ReverseSpiralDifferenceIterator& |
| TilingData::ReverseSpiralDifferenceIterator:: |
| operator++() { |
| while (!in_around_rect()) { |
| if (needs_direction_switch()) |
| switch_direction(); |
| |
| index_x_ += delta_x_; |
| index_y_ += delta_y_; |
| ++current_step_; |
| |
| if (in_around_rect()) { |
| break; |
| } else if (in_consider_rect()) { |
| // If the tile is in the consider rect but not in ignore rect, then it's a |
| // valid tile to visit. |
| if (!in_ignore_rect()) |
| break; |
| |
| // Steps needed to reach the very edge of the ignore rect, while remaining |
| // inside it (so that the continue would take us outside). |
| int steps_to_edge = 0; |
| switch (direction_) { |
| case UP: |
| steps_to_edge = index_y_ - ignore_top_; |
| break; |
| case LEFT: |
| steps_to_edge = index_x_ - ignore_left_; |
| break; |
| case DOWN: |
| steps_to_edge = ignore_bottom_ - index_y_; |
| break; |
| case RIGHT: |
| steps_to_edge = ignore_right_ - index_x_; |
| break; |
| } |
| |
| // We need to switch directions in |max_steps|. |
| int max_steps = current_step_count() - current_step_; |
| |
| int steps_to_take = std::min(steps_to_edge, max_steps); |
| DCHECK_GE(steps_to_take, 0); |
| |
| index_x_ += steps_to_take * delta_x_; |
| index_y_ += steps_to_take * delta_y_; |
| current_step_ += steps_to_take; |
| } else { |
| // We're not in the consider rect. |
| |
| int max_steps = current_step_count() - current_step_; |
| int steps_to_take = max_steps; |
| |
| // We might hit the consider rect before needing to switch directions: |
| // update steps to take. |
| switch (direction_) { |
| case UP: |
| if (valid_column() && consider_bottom_ < index_y_) |
| steps_to_take = index_y_ - consider_bottom_ - 1; |
| break; |
| case LEFT: |
| if (valid_row() && consider_right_ < index_x_) |
| steps_to_take = index_x_ - consider_right_ - 1; |
| break; |
| case DOWN: |
| if (valid_column() && consider_top_ > index_y_) |
| steps_to_take = consider_top_ - index_y_ - 1; |
| break; |
| case RIGHT: |
| if (valid_row() && consider_left_ > index_x_) |
| steps_to_take = consider_left_ - index_x_ - 1; |
| break; |
| } |
| steps_to_take = std::min(steps_to_take, max_steps); |
| DCHECK_GE(steps_to_take, 0); |
| |
| index_x_ += steps_to_take * delta_x_; |
| index_y_ += steps_to_take * delta_y_; |
| current_step_ += steps_to_take; |
| } |
| } |
| |
| // Once we enter the around rect, we're done. |
| if (in_around_rect()) |
| done(); |
| return *this; |
| } |
| |
| bool TilingData::ReverseSpiralDifferenceIterator::needs_direction_switch() |
| const { |
| return current_step_ >= current_step_count(); |
| } |
| |
| void TilingData::ReverseSpiralDifferenceIterator::switch_direction() { |
| // Note that delta_x_ and delta_y_ always remain between -1 and 1. |
| int new_delta_y_ = delta_x_; |
| delta_x_ = -delta_y_; |
| delta_y_ = new_delta_y_; |
| |
| current_step_ = 0; |
| direction_ = static_cast<Direction>((direction_ + 1) % 4); |
| |
| if (direction_ == UP || direction_ == DOWN) { |
| --vertical_step_count_; |
| --horizontal_step_count_; |
| |
| // We should always end up in an around rect at some point. |
| // Since the direction is now vertical, we have to ensure that we will |
| // advance. |
| DCHECK_GE(horizontal_step_count_, 1); |
| DCHECK_GE(vertical_step_count_, 1); |
| } |
| } |
| |
| } // namespace cc |