| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/quads/draw_polygon.h" |
| |
| #include <stddef.h> |
| |
| #include <vector> |
| |
| #include "base/memory/ptr_util.h" |
| #include "cc/output/bsp_compare_result.h" |
| #include "cc/quads/draw_quad.h" |
| |
| namespace { |
| // This threshold controls how "thick" a plane is. If a point's distance is |
| // <= |split_threshold|, then it is considered on the plane for the purpose of |
| // polygon splitting. |
| static const float split_threshold = 0.05f; |
| |
| static const float normalized_threshold = 0.001f; |
| |
| void PointInterpolate(const gfx::Point3F& from, |
| const gfx::Point3F& to, |
| double delta, |
| gfx::Point3F* out) { |
| out->SetPoint(from.x() + (to.x() - from.x()) * delta, |
| from.y() + (to.y() - from.y()) * delta, |
| from.z() + (to.z() - from.z()) * delta); |
| } |
| } // namespace |
| |
| namespace cc { |
| |
| DrawPolygon::DrawPolygon() { |
| } |
| |
| DrawPolygon::DrawPolygon(const DrawQuad* original, |
| const std::vector<gfx::Point3F>& in_points, |
| const gfx::Vector3dF& normal, |
| int draw_order_index) |
| : order_index_(draw_order_index), original_ref_(original), is_split_(true) { |
| for (size_t i = 0; i < in_points.size(); i++) { |
| points_.push_back(in_points[i]); |
| } |
| normal_ = normal; |
| DCHECK_LE((ConstructNormal(), (normal_ - normal).Length()), |
| normalized_threshold); |
| } |
| |
| // This takes the original DrawQuad that this polygon should be based on, |
| // a visible content rect to make the 4 corner points from, and a transformation |
| // to move it and its normal into screen space. |
| DrawPolygon::DrawPolygon(const DrawQuad* original_ref, |
| const gfx::RectF& visible_layer_rect, |
| const gfx::Transform& transform, |
| int draw_order_index) |
| : normal_(0.0f, 0.0f, 1.0f), |
| order_index_(draw_order_index), |
| original_ref_(original_ref), |
| is_split_(false) { |
| gfx::Point3F points[8]; |
| int num_vertices_in_clipped_quad; |
| gfx::QuadF send_quad(visible_layer_rect); |
| |
| // Doing this mapping here is very important, since we can't just transform |
| // the points without clipping and not run into strange geometry issues when |
| // crossing w = 0. At this point, in the constructor, we know that we're |
| // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d |
| // function instead of writing a generic polygon version of it. |
| MathUtil::MapClippedQuad3d( |
| transform, send_quad, points, &num_vertices_in_clipped_quad); |
| for (int i = 0; i < num_vertices_in_clipped_quad; i++) { |
| points_.push_back(points[i]); |
| } |
| transform.TransformVector(&normal_); |
| ConstructNormal(); |
| } |
| |
| DrawPolygon::~DrawPolygon() { |
| } |
| |
| std::unique_ptr<DrawPolygon> DrawPolygon::CreateCopy() { |
| std::unique_ptr<DrawPolygon> new_polygon(new DrawPolygon()); |
| new_polygon->order_index_ = order_index_; |
| new_polygon->original_ref_ = original_ref_; |
| new_polygon->points_.reserve(points_.size()); |
| new_polygon->points_ = points_; |
| new_polygon->normal_.set_x(normal_.x()); |
| new_polygon->normal_.set_y(normal_.y()); |
| new_polygon->normal_.set_z(normal_.z()); |
| return new_polygon; |
| } |
| |
| // |
| // If this were to be more generally used and expected to be applicable |
| // replacing this with Newell's algorithm (or an improvement thereof) |
| // would be preferable, but usually this is coming in from a rectangle |
| // that has been transformed to screen space and clipped. |
| // Averaging a few near diagonal cross products is pretty good in that case. |
| // |
| void DrawPolygon::ConstructNormal() { |
| gfx::Vector3dF new_normal(0.0f, 0.0f, 0.0f); |
| int delta = points_.size() / 2; |
| for (size_t i = 1; i + delta < points_.size(); i++) { |
| new_normal += |
| CrossProduct(points_[i] - points_[0], points_[i + delta] - points_[0]); |
| } |
| float normal_magnitude = new_normal.Length(); |
| // Here we constrain the new normal to point in the same sense as the old one. |
| // This allows us to handle winding-reversing transforms better. |
| if (gfx::DotProduct(normal_, new_normal) < 0.0) { |
| normal_magnitude *= -1.0; |
| } |
| if (normal_magnitude != 0 && normal_magnitude != 1) { |
| new_normal.Scale(1.0f / normal_magnitude); |
| } |
| normal_ = new_normal; |
| } |
| |
| #if defined(OS_WIN) |
| // |
| // Allows the unittest to invoke this for the more general constructor. |
| // |
| void DrawPolygon::RecomputeNormalForTesting() { |
| ConstructNormal(); |
| } |
| #endif |
| |
| float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { |
| return gfx::DotProduct(point - points_[0], normal_); |
| } |
| |
| // This function is separate from ApplyTransform because it is often unnecessary |
| // to transform the normal with the rest of the polygon. |
| // When drawing these polygons, it is necessary to move them back into layer |
| // space before sending them to OpenGL, which requires using ApplyTransform, |
| // but normal information is no longer needed after sorting. |
| void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { |
| // Now we use the inverse transpose of |transform| to transform the normal. |
| gfx::Transform inverse_transform; |
| bool inverted = transform.GetInverse(&inverse_transform); |
| DCHECK(inverted); |
| if (!inverted) |
| return; |
| inverse_transform.Transpose(); |
| |
| gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); |
| inverse_transform.TransformPoint(&new_normal); |
| // Make sure our normal is still normalized. |
| normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); |
| float normal_magnitude = normal_.Length(); |
| if (normal_magnitude != 0 && normal_magnitude != 1) { |
| normal_.Scale(1.0f / normal_magnitude); |
| } |
| } |
| |
| void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { |
| for (size_t i = 0; i < points_.size(); i++) { |
| transform.TransformPoint(&points_[i]); |
| } |
| } |
| |
| // TransformToScreenSpace assumes we're moving a layer from its layer space |
| // into 3D screen space, which for sorting purposes requires the normal to |
| // be transformed along with the vertices. |
| void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) { |
| ApplyTransform(transform); |
| transform.TransformVector(&normal_); |
| ConstructNormal(); |
| } |
| |
| // In the case of TransformToLayerSpace, we assume that we are giving the |
| // inverse transformation back to the polygon to move it back into layer space |
| // but we can ignore the costly process of applying the inverse to the normal |
| // since we know the normal will just reset to its original state. |
| void DrawPolygon::TransformToLayerSpace( |
| const gfx::Transform& inverse_transform) { |
| ApplyTransform(inverse_transform); |
| normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f); |
| } |
| |
| // Split |polygon| based upon |this|, leaving the results in |front| and |back|. |
| // If |polygon| is not split by |this|, then move it to either |front| or |back| |
| // depending on its orientation relative to |this|. Sets |is_coplanar| to true |
| // if |polygon| is actually coplanar with |this| (in which case whether it is |
| // front facing or back facing is determined by the dot products of normals, and |
| // document order). |
| void DrawPolygon::SplitPolygon(std::unique_ptr<DrawPolygon> polygon, |
| std::unique_ptr<DrawPolygon>* front, |
| std::unique_ptr<DrawPolygon>* back, |
| bool* is_coplanar) const { |
| DCHECK_GE(normalized_threshold, std::abs(normal_.LengthSquared() - 1.0f)); |
| |
| const size_t num_points = polygon->points_.size(); |
| const auto next = [num_points](size_t i) { return (i + 1) % num_points; }; |
| const auto prev = [num_points](size_t i) { |
| return (i + num_points - 1) % num_points; |
| }; |
| |
| std::vector<float> vertex_distance; |
| size_t pos_count = 0; |
| size_t neg_count = 0; |
| |
| // Compute plane distances for each vertex of polygon. |
| vertex_distance.resize(num_points); |
| for (size_t i = 0; i < num_points; i++) { |
| vertex_distance[i] = SignedPointDistance(polygon->points_[i]); |
| if (vertex_distance[i] < -split_threshold) { |
| ++neg_count; |
| } else if (vertex_distance[i] > split_threshold) { |
| ++pos_count; |
| } else { |
| vertex_distance[i] = 0.0; |
| } |
| } |
| |
| // Handle non-splitting cases. |
| if (!pos_count && !neg_count) { |
| double dot = gfx::DotProduct(normal_, polygon->normal_); |
| if ((dot >= 0.0f && polygon->order_index_ >= order_index_) || |
| (dot <= 0.0f && polygon->order_index_ <= order_index_)) { |
| *back = std::move(polygon); |
| } else { |
| *front = std::move(polygon); |
| } |
| *is_coplanar = true; |
| return; |
| } |
| |
| *is_coplanar = false; |
| if (!neg_count) { |
| *front = std::move(polygon); |
| return; |
| } else if (!pos_count) { |
| *back = std::move(polygon); |
| return; |
| } |
| |
| // There should be at most two points that are considered to be on the thick |
| // plane. If this is not the case, then the polygon is not convex. |
| DCHECK_LE(num_points - pos_count - neg_count, 2u); |
| |
| // Handle splitting case. |
| size_t front_begin; |
| size_t back_begin; |
| size_t pre_front_begin; |
| size_t pre_back_begin; |
| |
| // Find the first vertex that is part of the front split polygon. |
| front_begin = std::find_if(vertex_distance.begin(), vertex_distance.end(), |
| [](float val) { return val > 0.0; }) - |
| vertex_distance.begin(); |
| while (vertex_distance[pre_front_begin = prev(front_begin)] > 0.0) |
| front_begin = pre_front_begin; |
| |
| // Find the first vertex that is part of the back split polygon. |
| back_begin = std::find_if(vertex_distance.begin(), vertex_distance.end(), |
| [](float val) { return val < 0.0; }) - |
| vertex_distance.begin(); |
| while (vertex_distance[pre_back_begin = prev(back_begin)] < 0.0) |
| back_begin = pre_back_begin; |
| |
| DCHECK(vertex_distance[front_begin] > 0.0); |
| DCHECK(vertex_distance[pre_front_begin] <= 0.0); |
| DCHECK(vertex_distance[back_begin] < 0.0); |
| DCHECK(vertex_distance[pre_back_begin] >= 0.0); |
| |
| gfx::Point3F pre_pos_intersection; |
| gfx::Point3F pre_neg_intersection; |
| |
| // Compute the intersection points. N.B.: If the "pre" vertex is on |
| // the thick plane, then the intersection will be at the same point, because |
| // we set vertex_distance to 0 in this case. |
| PointInterpolate( |
| polygon->points_[pre_front_begin], polygon->points_[front_begin], |
| -vertex_distance[pre_front_begin] / |
| gfx::DotProduct(normal_, polygon->points_[front_begin] - |
| polygon->points_[pre_front_begin]), |
| &pre_pos_intersection); |
| PointInterpolate( |
| polygon->points_[pre_back_begin], polygon->points_[back_begin], |
| -vertex_distance[pre_back_begin] / |
| gfx::DotProduct(normal_, polygon->points_[back_begin] - |
| polygon->points_[pre_back_begin]), |
| &pre_neg_intersection); |
| |
| // Build the front and back polygons. |
| std::vector<gfx::Point3F> out_points; |
| |
| out_points.push_back(pre_pos_intersection); |
| do { |
| out_points.push_back(polygon->points_[front_begin]); |
| front_begin = next(front_begin); |
| } while (vertex_distance[front_begin] > 0.0); |
| out_points.push_back(pre_neg_intersection); |
| *front = |
| base::MakeUnique<DrawPolygon>(polygon->original_ref_, out_points, |
| polygon->normal_, polygon->order_index_); |
| |
| out_points.clear(); |
| |
| out_points.push_back(pre_neg_intersection); |
| do { |
| out_points.push_back(polygon->points_[back_begin]); |
| back_begin = next(back_begin); |
| } while (vertex_distance[back_begin] < 0.0); |
| out_points.push_back(pre_pos_intersection); |
| *back = |
| base::MakeUnique<DrawPolygon>(polygon->original_ref_, out_points, |
| polygon->normal_, polygon->order_index_); |
| |
| DCHECK_GE((*front)->points().size(), 3u); |
| DCHECK_GE((*back)->points().size(), 3u); |
| } |
| |
| // This algorithm takes the first vertex in the polygon and uses that as a |
| // pivot point to fan out and create quads from the rest of the vertices. |
| // |offset| starts off as the second vertex, and then |op1| and |op2| indicate |
| // offset+1 and offset+2 respectively. |
| // After the first quad is created, the first vertex in the next quad is the |
| // same as all the rest, the pivot point. The second vertex in the next quad is |
| // the old |op2|, the last vertex added to the previous quad. This continues |
| // until all points are exhausted. |
| // The special case here is where there are only 3 points remaining, in which |
| // case we use the same values for vertex 3 and 4 to make a degenerate quad |
| // that represents a triangle. |
| void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { |
| if (points_.size() <= 2) |
| return; |
| |
| gfx::PointF first(points_[0].x(), points_[0].y()); |
| size_t offset = 1; |
| while (offset < points_.size() - 1) { |
| size_t op1 = offset + 1; |
| size_t op2 = offset + 2; |
| if (op2 >= points_.size()) { |
| // It's going to be a degenerate triangle. |
| op2 = op1; |
| } |
| quads->push_back( |
| gfx::QuadF(first, |
| gfx::PointF(points_[offset].x(), points_[offset].y()), |
| gfx::PointF(points_[op1].x(), points_[op1].y()), |
| gfx::PointF(points_[op2].x(), points_[op2].y()))); |
| offset = op2; |
| } |
| } |
| |
| } // namespace cc |