blob: 6b2d4e7586434b4d4b23851e7ce77927cad39bf8 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include "base/bind.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/files/scoped_temp_dir.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/metrics/statistics_recorder.h"
#include "base/test/histogram_tester.h"
#include "base/trace_event/process_memory_dump.h"
#include "sql/connection.h"
#include "sql/connection_memory_dump_provider.h"
#include "sql/correct_sql_test_base.h"
#include "sql/meta_table.h"
#include "sql/statement.h"
#include "sql/test/error_callback_support.h"
#include "sql/test/scoped_error_expecter.h"
#include "sql/test/test_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/sqlite/sqlite3.h"
#if defined(OS_IOS) && defined(USE_SYSTEM_SQLITE)
#include "base/ios/ios_util.h"
#endif
namespace sql {
namespace test {
// Replaces the database time source with an object that steps forward 1ms on
// each check, and which can be jumped forward an arbitrary amount of time
// programmatically.
class ScopedMockTimeSource {
public:
ScopedMockTimeSource(Connection& db)
: db_(db),
delta_(base::TimeDelta::FromMilliseconds(1)) {
// Save the current source and replace it.
save_.swap(db_.clock_);
db_.clock_.reset(new MockTimeSource(*this));
}
~ScopedMockTimeSource() {
// Put original source back.
db_.clock_.swap(save_);
}
void adjust(const base::TimeDelta& delta) {
current_time_ += delta;
}
private:
class MockTimeSource : public TimeSource {
public:
MockTimeSource(ScopedMockTimeSource& owner)
: owner_(owner) {
}
~MockTimeSource() override {}
base::TimeTicks Now() override {
base::TimeTicks ret(owner_.current_time_);
owner_.current_time_ += owner_.delta_;
return ret;
}
private:
ScopedMockTimeSource& owner_;
DISALLOW_COPY_AND_ASSIGN(MockTimeSource);
};
Connection& db_;
// Saves original source from |db_|.
std::unique_ptr<TimeSource> save_;
// Current time returned by mock.
base::TimeTicks current_time_;
// How far to jump on each Now() call.
base::TimeDelta delta_;
DISALLOW_COPY_AND_ASSIGN(ScopedMockTimeSource);
};
// Allow a test to add a SQLite function in a scoped context.
class ScopedScalarFunction {
public:
ScopedScalarFunction(
sql::Connection& db,
const char* function_name,
int args,
base::Callback<void(sqlite3_context*,int,sqlite3_value**)> cb)
: db_(db.db_), function_name_(function_name), cb_(cb) {
sqlite3_create_function_v2(db_, function_name, args, SQLITE_UTF8,
this, &Run, NULL, NULL, NULL);
}
~ScopedScalarFunction() {
sqlite3_create_function_v2(db_, function_name_, 0, SQLITE_UTF8,
NULL, NULL, NULL, NULL, NULL);
}
private:
static void Run(sqlite3_context* context, int argc, sqlite3_value** argv) {
ScopedScalarFunction* t = static_cast<ScopedScalarFunction*>(
sqlite3_user_data(context));
t->cb_.Run(context, argc, argv);
}
sqlite3* db_;
const char* function_name_;
base::Callback<void(sqlite3_context*,int,sqlite3_value**)> cb_;
DISALLOW_COPY_AND_ASSIGN(ScopedScalarFunction);
};
// Allow a test to add a SQLite commit hook in a scoped context.
class ScopedCommitHook {
public:
ScopedCommitHook(sql::Connection& db,
base::Callback<int(void)> cb)
: db_(db.db_),
cb_(cb) {
sqlite3_commit_hook(db_, &Run, this);
}
~ScopedCommitHook() {
sqlite3_commit_hook(db_, NULL, NULL);
}
private:
static int Run(void* p) {
ScopedCommitHook* t = static_cast<ScopedCommitHook*>(p);
return t->cb_.Run();
}
sqlite3* db_;
base::Callback<int(void)> cb_;
DISALLOW_COPY_AND_ASSIGN(ScopedCommitHook);
};
} // namespace test
namespace {
// Helper to return the count of items in sqlite_master. Return -1 in
// case of error.
int SqliteMasterCount(sql::Connection* db) {
const char* kMasterCount = "SELECT COUNT(*) FROM sqlite_master";
sql::Statement s(db->GetUniqueStatement(kMasterCount));
return s.Step() ? s.ColumnInt(0) : -1;
}
// Track the number of valid references which share the same pointer.
// This is used to allow testing an implicitly use-after-free case by
// explicitly having the ref count live longer than the object.
class RefCounter {
public:
RefCounter(size_t* counter)
: counter_(counter) {
(*counter_)++;
}
RefCounter(const RefCounter& other)
: counter_(other.counter_) {
(*counter_)++;
}
~RefCounter() {
(*counter_)--;
}
private:
size_t* counter_;
DISALLOW_ASSIGN(RefCounter);
};
// Empty callback for implementation of ErrorCallbackSetHelper().
void IgnoreErrorCallback(int error, sql::Statement* stmt) {
}
void ErrorCallbackSetHelper(sql::Connection* db,
size_t* counter,
const RefCounter& r,
int error, sql::Statement* stmt) {
// The ref count should not go to zero when changing the callback.
EXPECT_GT(*counter, 0u);
db->set_error_callback(base::Bind(&IgnoreErrorCallback));
EXPECT_GT(*counter, 0u);
}
void ErrorCallbackResetHelper(sql::Connection* db,
size_t* counter,
const RefCounter& r,
int error, sql::Statement* stmt) {
// The ref count should not go to zero when clearing the callback.
EXPECT_GT(*counter, 0u);
db->reset_error_callback();
EXPECT_GT(*counter, 0u);
}
#if defined(OS_POSIX)
// Set a umask and restore the old mask on destruction. Cribbed from
// shared_memory_unittest.cc. Used by POSIX-only UserPermission test.
class ScopedUmaskSetter {
public:
explicit ScopedUmaskSetter(mode_t target_mask) {
old_umask_ = umask(target_mask);
}
~ScopedUmaskSetter() { umask(old_umask_); }
private:
mode_t old_umask_;
DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedUmaskSetter);
};
#endif
// SQLite function to adjust mock time by |argv[0]| milliseconds.
void sqlite_adjust_millis(sql::test::ScopedMockTimeSource* time_mock,
sqlite3_context* context,
int argc, sqlite3_value** argv) {
int64_t milliseconds = argc > 0 ? sqlite3_value_int64(argv[0]) : 1000;
time_mock->adjust(base::TimeDelta::FromMilliseconds(milliseconds));
sqlite3_result_int64(context, milliseconds);
}
// Adjust mock time by |milliseconds| on commit.
int adjust_commit_hook(sql::test::ScopedMockTimeSource* time_mock,
int64_t milliseconds) {
time_mock->adjust(base::TimeDelta::FromMilliseconds(milliseconds));
return SQLITE_OK;
}
const char kCommitTime[] = "Sqlite.CommitTime.Test";
const char kAutoCommitTime[] = "Sqlite.AutoCommitTime.Test";
const char kUpdateTime[] = "Sqlite.UpdateTime.Test";
const char kQueryTime[] = "Sqlite.QueryTime.Test";
} // namespace
class SQLConnectionTest : public sql::SQLTestBase {
public:
void SetUp() override {
// Any macro histograms which fire before the recorder is initialized cannot
// be tested. So this needs to be ahead of Open().
base::StatisticsRecorder::Initialize();
SQLTestBase::SetUp();
}
// Handle errors by blowing away the database.
void RazeErrorCallback(int expected_error, int error, sql::Statement* stmt) {
// Nothing here needs extended errors at this time.
EXPECT_EQ(expected_error, expected_error&0xff);
EXPECT_EQ(expected_error, error&0xff);
db().RazeAndClose();
}
};
TEST_F(SQLConnectionTest, Execute) {
// Valid statement should return true.
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
EXPECT_EQ(SQLITE_OK, db().GetErrorCode());
// Invalid statement should fail.
ASSERT_EQ(SQLITE_ERROR,
db().ExecuteAndReturnErrorCode("CREATE TAB foo (a, b"));
EXPECT_EQ(SQLITE_ERROR, db().GetErrorCode());
}
TEST_F(SQLConnectionTest, ExecuteWithErrorCode) {
ASSERT_EQ(SQLITE_OK,
db().ExecuteAndReturnErrorCode("CREATE TABLE foo (a, b)"));
ASSERT_EQ(SQLITE_ERROR,
db().ExecuteAndReturnErrorCode("CREATE TABLE TABLE"));
ASSERT_EQ(SQLITE_ERROR,
db().ExecuteAndReturnErrorCode(
"INSERT INTO foo(a, b) VALUES (1, 2, 3, 4)"));
}
TEST_F(SQLConnectionTest, CachedStatement) {
sql::StatementID id1("foo", 12);
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
ASSERT_TRUE(db().Execute("INSERT INTO foo(a, b) VALUES (12, 13)"));
// Create a new cached statement.
{
sql::Statement s(db().GetCachedStatement(id1, "SELECT a FROM foo"));
ASSERT_TRUE(s.is_valid());
ASSERT_TRUE(s.Step());
EXPECT_EQ(12, s.ColumnInt(0));
}
// The statement should be cached still.
EXPECT_TRUE(db().HasCachedStatement(id1));
{
// Get the same statement using different SQL. This should ignore our
// SQL and use the cached one (so it will be valid).
sql::Statement s(db().GetCachedStatement(id1, "something invalid("));
ASSERT_TRUE(s.is_valid());
ASSERT_TRUE(s.Step());
EXPECT_EQ(12, s.ColumnInt(0));
}
// Make sure other statements aren't marked as cached.
EXPECT_FALSE(db().HasCachedStatement(SQL_FROM_HERE));
}
TEST_F(SQLConnectionTest, IsSQLValidTest) {
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
ASSERT_TRUE(db().IsSQLValid("SELECT a FROM foo"));
ASSERT_FALSE(db().IsSQLValid("SELECT no_exist FROM foo"));
}
TEST_F(SQLConnectionTest, DoesStuffExist) {
// Test DoesTableExist.
EXPECT_FALSE(db().DoesTableExist("foo"));
ASSERT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
ASSERT_TRUE(db().Execute("CREATE INDEX foo_a ON foo (a)"));
EXPECT_TRUE(db().DoesTableExist("foo"));
EXPECT_TRUE(db().DoesIndexExist("foo_a"));
// Test DoesColumnExist.
EXPECT_FALSE(db().DoesColumnExist("foo", "bar"));
EXPECT_TRUE(db().DoesColumnExist("foo", "a"));
// Testing for a column on a nonexistent table.
EXPECT_FALSE(db().DoesColumnExist("bar", "b"));
// Names are not case sensitive.
EXPECT_TRUE(db().DoesTableExist("FOO"));
EXPECT_TRUE(db().DoesColumnExist("FOO", "A"));
}
TEST_F(SQLConnectionTest, GetLastInsertRowId) {
ASSERT_TRUE(db().Execute("CREATE TABLE foo (id INTEGER PRIMARY KEY, value)"));
ASSERT_TRUE(db().Execute("INSERT INTO foo (value) VALUES (12)"));
// Last insert row ID should be valid.
int64_t row = db().GetLastInsertRowId();
EXPECT_LT(0, row);
// It should be the primary key of the row we just inserted.
sql::Statement s(db().GetUniqueStatement("SELECT value FROM foo WHERE id=?"));
s.BindInt64(0, row);
ASSERT_TRUE(s.Step());
EXPECT_EQ(12, s.ColumnInt(0));
}
TEST_F(SQLConnectionTest, Rollback) {
ASSERT_TRUE(db().BeginTransaction());
ASSERT_TRUE(db().BeginTransaction());
EXPECT_EQ(2, db().transaction_nesting());
db().RollbackTransaction();
EXPECT_FALSE(db().CommitTransaction());
EXPECT_TRUE(db().BeginTransaction());
}
// Test the scoped error expecter by attempting to insert a duplicate
// value into an index.
TEST_F(SQLConnectionTest, ScopedErrorExpecter) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER UNIQUE)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CONSTRAINT);
ASSERT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
}
// Test that clients of GetUntrackedStatement() can test corruption-handling
// with ScopedErrorExpecter.
TEST_F(SQLConnectionTest, ScopedIgnoreUntracked) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER UNIQUE)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_FALSE(db().DoesTableExist("bar"));
ASSERT_TRUE(db().DoesTableExist("foo"));
ASSERT_TRUE(db().DoesColumnExist("foo", "id"));
db().Close();
// Corrupt the database so that nothing works, including PRAGMAs.
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
ASSERT_FALSE(db().DoesTableExist("bar"));
ASSERT_FALSE(db().DoesTableExist("foo"));
ASSERT_FALSE(db().DoesColumnExist("foo", "id"));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
}
TEST_F(SQLConnectionTest, ErrorCallback) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER UNIQUE)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
int error = SQLITE_OK;
{
sql::ScopedErrorCallback sec(
&db(), base::Bind(&sql::CaptureErrorCallback, &error));
EXPECT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
// Later versions of SQLite throw SQLITE_CONSTRAINT_UNIQUE. The specific
// sub-error isn't really important.
EXPECT_EQ(SQLITE_CONSTRAINT, (error&0xff));
}
// Callback is no longer in force due to reset.
{
error = SQLITE_OK;
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CONSTRAINT);
ASSERT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
ASSERT_TRUE(expecter.SawExpectedErrors());
EXPECT_EQ(SQLITE_OK, error);
}
// base::Bind() can curry arguments to be passed by const reference
// to the callback function. If the callback function calls
// re/set_error_callback(), the storage for those arguments can be
// deleted while the callback function is still executing.
//
// RefCounter() counts how many objects are live using an external
// count. The same counter is passed to the callback, so that it
// can check directly even if the RefCounter object is no longer
// live.
{
size_t count = 0;
sql::ScopedErrorCallback sec(
&db(), base::Bind(&ErrorCallbackSetHelper,
&db(), &count, RefCounter(&count)));
EXPECT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
}
// Same test, but reset_error_callback() case.
{
size_t count = 0;
sql::ScopedErrorCallback sec(
&db(), base::Bind(&ErrorCallbackResetHelper,
&db(), &count, RefCounter(&count)));
EXPECT_FALSE(db().Execute("INSERT INTO foo (id) VALUES (12)"));
}
}
// Test that sql::Connection::Raze() results in a database without the
// tables from the original database.
TEST_F(SQLConnectionTest, Raze) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute("INSERT INTO foo (value) VALUES (12)"));
int pragma_auto_vacuum = 0;
{
sql::Statement s(db().GetUniqueStatement("PRAGMA auto_vacuum"));
ASSERT_TRUE(s.Step());
pragma_auto_vacuum = s.ColumnInt(0);
ASSERT_TRUE(pragma_auto_vacuum == 0 || pragma_auto_vacuum == 1);
}
// If auto_vacuum is set, there's an extra page to maintain a freelist.
const int kExpectedPageCount = 2 + pragma_auto_vacuum;
{
sql::Statement s(db().GetUniqueStatement("PRAGMA page_count"));
ASSERT_TRUE(s.Step());
EXPECT_EQ(kExpectedPageCount, s.ColumnInt(0));
}
{
sql::Statement s(db().GetUniqueStatement("SELECT * FROM sqlite_master"));
ASSERT_TRUE(s.Step());
EXPECT_EQ("table", s.ColumnString(0));
EXPECT_EQ("foo", s.ColumnString(1));
EXPECT_EQ("foo", s.ColumnString(2));
// Table "foo" is stored in the last page of the file.
EXPECT_EQ(kExpectedPageCount, s.ColumnInt(3));
EXPECT_EQ(kCreateSql, s.ColumnString(4));
}
ASSERT_TRUE(db().Raze());
{
sql::Statement s(db().GetUniqueStatement("PRAGMA page_count"));
ASSERT_TRUE(s.Step());
EXPECT_EQ(1, s.ColumnInt(0));
}
ASSERT_EQ(0, SqliteMasterCount(&db()));
{
sql::Statement s(db().GetUniqueStatement("PRAGMA auto_vacuum"));
ASSERT_TRUE(s.Step());
// The new database has the same auto_vacuum as a fresh database.
EXPECT_EQ(pragma_auto_vacuum, s.ColumnInt(0));
}
}
// Test that Raze() maintains page_size.
TEST_F(SQLConnectionTest, RazePageSize) {
// Fetch the default page size and double it for use in this test.
// Scoped to release statement before Close().
int default_page_size = 0;
{
sql::Statement s(db().GetUniqueStatement("PRAGMA page_size"));
ASSERT_TRUE(s.Step());
default_page_size = s.ColumnInt(0);
}
ASSERT_GT(default_page_size, 0);
const int kPageSize = 2 * default_page_size;
// Re-open the database to allow setting the page size.
db().Close();
db().set_page_size(kPageSize);
ASSERT_TRUE(db().Open(db_path()));
// page_size should match the indicated value.
sql::Statement s(db().GetUniqueStatement("PRAGMA page_size"));
ASSERT_TRUE(s.Step());
ASSERT_EQ(kPageSize, s.ColumnInt(0));
// After raze, page_size should still match the indicated value.
ASSERT_TRUE(db().Raze());
s.Reset(true);
ASSERT_TRUE(s.Step());
ASSERT_EQ(kPageSize, s.ColumnInt(0));
}
// Test that Raze() results are seen in other connections.
TEST_F(SQLConnectionTest, RazeMultiple) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
sql::Connection other_db;
ASSERT_TRUE(other_db.Open(db_path()));
// Check that the second connection sees the table.
ASSERT_EQ(1, SqliteMasterCount(&other_db));
ASSERT_TRUE(db().Raze());
// The second connection sees the updated database.
ASSERT_EQ(0, SqliteMasterCount(&other_db));
}
// TODO(erg): Enable this in the next patch once I add locking.
#if !defined(MOJO_APPTEST_IMPL)
TEST_F(SQLConnectionTest, RazeLocked) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
// Open a transaction and write some data in a second connection.
// This will acquire a PENDING or EXCLUSIVE transaction, which will
// cause the raze to fail.
sql::Connection other_db;
ASSERT_TRUE(other_db.Open(db_path()));
ASSERT_TRUE(other_db.BeginTransaction());
const char* kInsertSql = "INSERT INTO foo VALUES (1, 'data')";
ASSERT_TRUE(other_db.Execute(kInsertSql));
ASSERT_FALSE(db().Raze());
// Works after COMMIT.
ASSERT_TRUE(other_db.CommitTransaction());
ASSERT_TRUE(db().Raze());
// Re-create the database.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kInsertSql));
// An unfinished read transaction in the other connection also
// blocks raze.
const char *kQuery = "SELECT COUNT(*) FROM foo";
sql::Statement s(other_db.GetUniqueStatement(kQuery));
ASSERT_TRUE(s.Step());
ASSERT_FALSE(db().Raze());
// Complete the statement unlocks the database.
ASSERT_FALSE(s.Step());
ASSERT_TRUE(db().Raze());
}
#endif
// Verify that Raze() can handle an empty file. SQLite should treat
// this as an empty database.
TEST_F(SQLConnectionTest, RazeEmptyDB) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
db().Close();
TruncateDatabase();
ASSERT_TRUE(db().Open(db_path()));
ASSERT_TRUE(db().Raze());
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Verify that Raze() can handle a file of junk.
TEST_F(SQLConnectionTest, RazeNOTADB) {
db().Close();
sql::Connection::Delete(db_path());
ASSERT_FALSE(GetPathExists(db_path()));
WriteJunkToDatabase(SQLTestBase::TYPE_OVERWRITE_AND_TRUNCATE);
ASSERT_TRUE(GetPathExists(db_path()));
// SQLite will successfully open the handle, but fail when running PRAGMA
// statements that access the database.
{
sql::test::ScopedErrorExpecter expecter;
// Earlier versions of Chromium compiled against SQLite 3.6.7.3, which
// returned SQLITE_IOERR_SHORT_READ in this case. Some platforms may still
// compile against an earlier SQLite via USE_SYSTEM_SQLITE.
if (expecter.SQLiteLibVersionNumber() < 3008005) {
expecter.ExpectError(SQLITE_IOERR_SHORT_READ);
} else {
expecter.ExpectError(SQLITE_NOTADB);
}
EXPECT_TRUE(db().Open(db_path()));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
EXPECT_TRUE(db().Raze());
db().Close();
// Now empty, the open should open an empty database.
EXPECT_TRUE(db().Open(db_path()));
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Verify that Raze() can handle a database overwritten with garbage.
TEST_F(SQLConnectionTest, RazeNOTADB2) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_EQ(1, SqliteMasterCount(&db()));
db().Close();
WriteJunkToDatabase(SQLTestBase::TYPE_OVERWRITE);
// SQLite will successfully open the handle, but will fail with
// SQLITE_NOTADB on pragma statemenets which attempt to read the
// corrupted header.
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_NOTADB);
EXPECT_TRUE(db().Open(db_path()));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
EXPECT_TRUE(db().Raze());
db().Close();
// Now empty, the open should succeed with an empty database.
EXPECT_TRUE(db().Open(db_path()));
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Test that a callback from Open() can raze the database. This is
// essential for cases where the Open() can fail entirely, so the
// Raze() cannot happen later. Additionally test that when the
// callback does this during Open(), the open is retried and succeeds.
TEST_F(SQLConnectionTest, RazeCallbackReopen) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_EQ(1, SqliteMasterCount(&db()));
db().Close();
// Corrupt the database so that nothing works, including PRAGMAs.
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
// Open() will succeed, even though the PRAGMA calls within will
// fail with SQLITE_CORRUPT, as will this PRAGMA.
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
ASSERT_FALSE(db().Execute("PRAGMA auto_vacuum"));
db().Close();
ASSERT_TRUE(expecter.SawExpectedErrors());
}
db().set_error_callback(base::Bind(&SQLConnectionTest::RazeErrorCallback,
base::Unretained(this),
SQLITE_CORRUPT));
// When the PRAGMA calls in Open() raise SQLITE_CORRUPT, the error
// callback will call RazeAndClose(). Open() will then fail and be
// retried. The second Open() on the empty database will succeed
// cleanly.
ASSERT_TRUE(db().Open(db_path()));
ASSERT_TRUE(db().Execute("PRAGMA auto_vacuum"));
EXPECT_EQ(0, SqliteMasterCount(&db()));
}
// Basic test of RazeAndClose() operation.
TEST_F(SQLConnectionTest, RazeAndClose) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
const char* kPopulateSql = "INSERT INTO foo (value) VALUES (12)";
// Test that RazeAndClose() closes the database, and that the
// database is empty when re-opened.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kPopulateSql));
ASSERT_TRUE(db().RazeAndClose());
ASSERT_FALSE(db().is_open());
db().Close();
ASSERT_TRUE(db().Open(db_path()));
ASSERT_EQ(0, SqliteMasterCount(&db()));
// Test that RazeAndClose() can break transactions.
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kPopulateSql));
ASSERT_TRUE(db().BeginTransaction());
ASSERT_TRUE(db().RazeAndClose());
ASSERT_FALSE(db().is_open());
ASSERT_FALSE(db().CommitTransaction());
db().Close();
ASSERT_TRUE(db().Open(db_path()));
ASSERT_EQ(0, SqliteMasterCount(&db()));
}
// Test that various operations fail without crashing after
// RazeAndClose().
TEST_F(SQLConnectionTest, RazeAndCloseDiagnostics) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
const char* kPopulateSql = "INSERT INTO foo (value) VALUES (12)";
const char* kSimpleSql = "SELECT 1";
ASSERT_TRUE(db().Execute(kCreateSql));
ASSERT_TRUE(db().Execute(kPopulateSql));
// Test baseline expectations.
db().Preload();
ASSERT_TRUE(db().DoesTableExist("foo"));
ASSERT_TRUE(db().IsSQLValid(kSimpleSql));
ASSERT_EQ(SQLITE_OK, db().ExecuteAndReturnErrorCode(kSimpleSql));
ASSERT_TRUE(db().Execute(kSimpleSql));
ASSERT_TRUE(db().is_open());
{
sql::Statement s(db().GetUniqueStatement(kSimpleSql));
ASSERT_TRUE(s.Step());
}
{
sql::Statement s(db().GetCachedStatement(SQL_FROM_HERE, kSimpleSql));
ASSERT_TRUE(s.Step());
}
ASSERT_TRUE(db().BeginTransaction());
ASSERT_TRUE(db().CommitTransaction());
ASSERT_TRUE(db().BeginTransaction());
db().RollbackTransaction();
ASSERT_TRUE(db().RazeAndClose());
// At this point, they should all fail, but not crash.
db().Preload();
ASSERT_FALSE(db().DoesTableExist("foo"));
ASSERT_FALSE(db().IsSQLValid(kSimpleSql));
ASSERT_EQ(SQLITE_ERROR, db().ExecuteAndReturnErrorCode(kSimpleSql));
ASSERT_FALSE(db().Execute(kSimpleSql));
ASSERT_FALSE(db().is_open());
{
sql::Statement s(db().GetUniqueStatement(kSimpleSql));
ASSERT_FALSE(s.Step());
}
{
sql::Statement s(db().GetCachedStatement(SQL_FROM_HERE, kSimpleSql));
ASSERT_FALSE(s.Step());
}
ASSERT_FALSE(db().BeginTransaction());
ASSERT_FALSE(db().CommitTransaction());
ASSERT_FALSE(db().BeginTransaction());
db().RollbackTransaction();
// Close normally to reset the poisoned flag.
db().Close();
// DEATH tests not supported on Android or iOS.
#if !defined(OS_ANDROID) && !defined(OS_IOS)
// Once the real Close() has been called, various calls enforce API
// usage by becoming fatal in debug mode. Since DEATH tests are
// expensive, just test one of them.
if (DLOG_IS_ON(FATAL)) {
ASSERT_DEATH({
db().IsSQLValid(kSimpleSql);
}, "Illegal use of connection without a db");
}
#endif
}
// TODO(shess): Spin up a background thread to hold other_db, to more
// closely match real life. That would also allow testing
// RazeWithTimeout().
#if defined(OS_ANDROID)
TEST_F(SQLConnectionTest, SetTempDirForSQL) {
sql::MetaTable meta_table;
// Below call needs a temporary directory in sqlite3
// On Android, it can pass only when the temporary directory is set.
// Otherwise, sqlite3 doesn't find the correct directory to store
// temporary files and will report the error 'unable to open
// database file'.
ASSERT_TRUE(meta_table.Init(&db(), 4, 4));
}
#endif
TEST_F(SQLConnectionTest, Delete) {
EXPECT_TRUE(db().Execute("CREATE TABLE x (x)"));
db().Close();
// Should have both a main database file and a journal file because
// of journal_mode TRUNCATE.
base::FilePath journal(db_path().value() + FILE_PATH_LITERAL("-journal"));
ASSERT_TRUE(GetPathExists(db_path()));
ASSERT_TRUE(GetPathExists(journal));
sql::Connection::Delete(db_path());
EXPECT_FALSE(GetPathExists(db_path()));
EXPECT_FALSE(GetPathExists(journal));
}
// This test manually sets on disk permissions; this doesn't apply to the mojo
// fork.
#if defined(OS_POSIX) && !defined(MOJO_APPTEST_IMPL)
// Test that set_restrict_to_user() trims database permissions so that
// only the owner (and root) can read.
TEST_F(SQLConnectionTest, UserPermission) {
// If the bots all had a restrictive umask setting such that
// databases are always created with only the owner able to read
// them, then the code could break without breaking the tests.
// Temporarily provide a more permissive umask.
db().Close();
sql::Connection::Delete(db_path());
ASSERT_FALSE(GetPathExists(db_path()));
ScopedUmaskSetter permissive_umask(S_IWGRP | S_IWOTH);
ASSERT_TRUE(db().Open(db_path()));
// Cause the journal file to be created. If the default
// journal_mode is changed back to DELETE, then parts of this test
// will need to be updated.
EXPECT_TRUE(db().Execute("CREATE TABLE x (x)"));
base::FilePath journal(db_path().value() + FILE_PATH_LITERAL("-journal"));
int mode;
// Given a permissive umask, the database is created with permissive
// read access for the database and journal.
ASSERT_TRUE(GetPathExists(db_path()));
ASSERT_TRUE(GetPathExists(journal));
mode = base::FILE_PERMISSION_MASK;
EXPECT_TRUE(base::GetPosixFilePermissions(db_path(), &mode));
ASSERT_NE((mode & base::FILE_PERMISSION_USER_MASK), mode);
mode = base::FILE_PERMISSION_MASK;
EXPECT_TRUE(base::GetPosixFilePermissions(journal, &mode));
ASSERT_NE((mode & base::FILE_PERMISSION_USER_MASK), mode);
// Re-open with restricted permissions and verify that the modes
// changed for both the main database and the journal.
db().Close();
db().set_restrict_to_user();
ASSERT_TRUE(db().Open(db_path()));
ASSERT_TRUE(GetPathExists(db_path()));
ASSERT_TRUE(GetPathExists(journal));
mode = base::FILE_PERMISSION_MASK;
EXPECT_TRUE(base::GetPosixFilePermissions(db_path(), &mode));
ASSERT_EQ((mode & base::FILE_PERMISSION_USER_MASK), mode);
mode = base::FILE_PERMISSION_MASK;
EXPECT_TRUE(base::GetPosixFilePermissions(journal, &mode));
ASSERT_EQ((mode & base::FILE_PERMISSION_USER_MASK), mode);
// Delete and re-create the database, the restriction should still apply.
db().Close();
sql::Connection::Delete(db_path());
ASSERT_TRUE(db().Open(db_path()));
ASSERT_TRUE(GetPathExists(db_path()));
ASSERT_FALSE(GetPathExists(journal));
mode = base::FILE_PERMISSION_MASK;
EXPECT_TRUE(base::GetPosixFilePermissions(db_path(), &mode));
ASSERT_EQ((mode & base::FILE_PERMISSION_USER_MASK), mode);
// Verify that journal creation inherits the restriction.
EXPECT_TRUE(db().Execute("CREATE TABLE x (x)"));
ASSERT_TRUE(GetPathExists(journal));
mode = base::FILE_PERMISSION_MASK;
EXPECT_TRUE(base::GetPosixFilePermissions(journal, &mode));
ASSERT_EQ((mode & base::FILE_PERMISSION_USER_MASK), mode);
}
#endif // defined(OS_POSIX)
// Test that errors start happening once Poison() is called.
TEST_F(SQLConnectionTest, Poison) {
EXPECT_TRUE(db().Execute("CREATE TABLE x (x)"));
// Before the Poison() call, things generally work.
EXPECT_TRUE(db().IsSQLValid("INSERT INTO x VALUES ('x')"));
EXPECT_TRUE(db().Execute("INSERT INTO x VALUES ('x')"));
{
sql::Statement s(db().GetUniqueStatement("SELECT COUNT(*) FROM x"));
ASSERT_TRUE(s.is_valid());
ASSERT_TRUE(s.Step());
}
// Get a statement which is valid before and will exist across Poison().
sql::Statement valid_statement(
db().GetUniqueStatement("SELECT COUNT(*) FROM sqlite_master"));
ASSERT_TRUE(valid_statement.is_valid());
ASSERT_TRUE(valid_statement.Step());
valid_statement.Reset(true);
db().Poison();
// After the Poison() call, things fail.
EXPECT_FALSE(db().IsSQLValid("INSERT INTO x VALUES ('x')"));
EXPECT_FALSE(db().Execute("INSERT INTO x VALUES ('x')"));
{
sql::Statement s(db().GetUniqueStatement("SELECT COUNT(*) FROM x"));
ASSERT_FALSE(s.is_valid());
ASSERT_FALSE(s.Step());
}
// The existing statement has become invalid.
ASSERT_FALSE(valid_statement.is_valid());
ASSERT_FALSE(valid_statement.Step());
// Test that poisoning the database during a transaction works (with errors).
// RazeErrorCallback() poisons the database, the extra COMMIT causes
// CommitTransaction() to throw an error while commiting.
db().set_error_callback(base::Bind(&SQLConnectionTest::RazeErrorCallback,
base::Unretained(this),
SQLITE_ERROR));
db().Close();
ASSERT_TRUE(db().Open(db_path()));
EXPECT_TRUE(db().BeginTransaction());
EXPECT_TRUE(db().Execute("INSERT INTO x VALUES ('x')"));
EXPECT_TRUE(db().Execute("COMMIT"));
EXPECT_FALSE(db().CommitTransaction());
}
// Test attaching and detaching databases from the connection.
TEST_F(SQLConnectionTest, Attach) {
EXPECT_TRUE(db().Execute("CREATE TABLE foo (a, b)"));
// Create a database to attach to.
base::FilePath attach_path =
db_path().DirName().AppendASCII("SQLConnectionAttach.db");
const char kAttachmentPoint[] = "other";
{
sql::Connection other_db;
ASSERT_TRUE(other_db.Open(attach_path));
EXPECT_TRUE(other_db.Execute("CREATE TABLE bar (a, b)"));
EXPECT_TRUE(other_db.Execute("INSERT INTO bar VALUES ('hello', 'world')"));
}
// Cannot see the attached database, yet.
EXPECT_FALSE(db().IsSQLValid("SELECT count(*) from other.bar"));
// Attach fails in a transaction.
EXPECT_TRUE(db().BeginTransaction());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_ERROR);
EXPECT_FALSE(db().AttachDatabase(attach_path, kAttachmentPoint));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
// Attach succeeds when the transaction is closed.
db().RollbackTransaction();
EXPECT_TRUE(db().AttachDatabase(attach_path, kAttachmentPoint));
EXPECT_TRUE(db().IsSQLValid("SELECT count(*) from other.bar"));
// Queries can touch both databases.
EXPECT_TRUE(db().Execute("INSERT INTO foo SELECT a, b FROM other.bar"));
{
sql::Statement s(db().GetUniqueStatement("SELECT COUNT(*) FROM foo"));
ASSERT_TRUE(s.Step());
EXPECT_EQ(1, s.ColumnInt(0));
}
// Detach also fails in a transaction.
EXPECT_TRUE(db().BeginTransaction());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_ERROR);
EXPECT_FALSE(db().DetachDatabase(kAttachmentPoint));
EXPECT_TRUE(db().IsSQLValid("SELECT count(*) from other.bar"));
ASSERT_TRUE(expecter.SawExpectedErrors());
}
// Detach succeeds outside of a transaction.
db().RollbackTransaction();
EXPECT_TRUE(db().DetachDatabase(kAttachmentPoint));
EXPECT_FALSE(db().IsSQLValid("SELECT count(*) from other.bar"));
}
TEST_F(SQLConnectionTest, Basic_QuickIntegrityCheck) {
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().QuickIntegrityCheck());
db().Close();
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
EXPECT_FALSE(db().QuickIntegrityCheck());
ASSERT_TRUE(expecter.SawExpectedErrors());
}
}
TEST_F(SQLConnectionTest, Basic_FullIntegrityCheck) {
const std::string kOk("ok");
std::vector<std::string> messages;
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
ASSERT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().FullIntegrityCheck(&messages));
EXPECT_EQ(1u, messages.size());
EXPECT_EQ(kOk, messages[0]);
db().Close();
ASSERT_TRUE(CorruptSizeInHeaderOfDB());
{
sql::test::ScopedErrorExpecter expecter;
expecter.ExpectError(SQLITE_CORRUPT);
ASSERT_TRUE(db().Open(db_path()));
EXPECT_TRUE(db().FullIntegrityCheck(&messages));
EXPECT_LT(1u, messages.size());
EXPECT_NE(kOk, messages[0]);
ASSERT_TRUE(expecter.SawExpectedErrors());
}
// TODO(shess): CorruptTableOrIndex could be used to produce a
// file that would pass the quick check and fail the full check.
}
// Test Sqlite.Stats histogram for execute-oriented calls.
TEST_F(SQLConnectionTest, EventsExecute) {
// Re-open with histogram tag.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
// Open() uses Execute() extensively, don't track those calls.
base::HistogramTester tester;
const char kHistogramName[] = "Sqlite.Stats.Test";
const char kGlobalHistogramName[] = "Sqlite.Stats";
ASSERT_TRUE(db().BeginTransaction());
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (10, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (11, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (12, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (13, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (14, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (15, 'text');"
"INSERT INTO foo VALUES (16, 'text');"
"INSERT INTO foo VALUES (17, 'text');"
"INSERT INTO foo VALUES (18, 'text');"
"INSERT INTO foo VALUES (19, 'text')"));
ASSERT_TRUE(db().CommitTransaction());
ASSERT_TRUE(db().BeginTransaction());
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (20, 'text')"));
db().RollbackTransaction();
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (20, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (21, 'text')"));
// The create, 5 inserts, multi-statement insert, rolled-back insert, 2
// inserts outside transaction.
tester.ExpectBucketCount(kHistogramName, sql::Connection::EVENT_EXECUTE, 10);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_EXECUTE, 10);
// All of the executes, with the multi-statement inserts broken out, plus one
// for each begin, commit, and rollback.
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_RUN, 18);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_RUN, 18);
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_ROWS, 0);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_ROWS, 0);
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_SUCCESS, 18);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_SUCCESS, 18);
// The 2 inserts outside the transaction.
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_CHANGES_AUTOCOMMIT, 2);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_CHANGES_AUTOCOMMIT, 2);
// 11 inserts inside transactions.
tester.ExpectBucketCount(kHistogramName, sql::Connection::EVENT_CHANGES, 11);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_CHANGES, 11);
tester.ExpectBucketCount(kHistogramName, sql::Connection::EVENT_BEGIN, 2);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_BEGIN, 2);
tester.ExpectBucketCount(kHistogramName, sql::Connection::EVENT_COMMIT, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_COMMIT, 1);
tester.ExpectBucketCount(kHistogramName, sql::Connection::EVENT_ROLLBACK, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_ROLLBACK, 1);
}
// Test Sqlite.Stats histogram for prepared statements.
TEST_F(SQLConnectionTest, EventsStatement) {
// Re-open with histogram tag.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
const char kHistogramName[] = "Sqlite.Stats.Test";
const char kGlobalHistogramName[] = "Sqlite.Stats";
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (10, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (11, 'text')"));
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (12, 'text')"));
{
base::HistogramTester tester;
{
sql::Statement s(db().GetUniqueStatement("SELECT value FROM foo"));
while (s.Step()) {
}
}
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_RUN, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_RUN, 1);
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_ROWS, 3);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_ROWS, 3);
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_SUCCESS, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_SUCCESS, 1);
}
{
base::HistogramTester tester;
{
sql::Statement s(db().GetUniqueStatement(
"SELECT value FROM foo WHERE id > 10"));
while (s.Step()) {
}
}
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_RUN, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_RUN, 1);
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_ROWS, 2);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_ROWS, 2);
tester.ExpectBucketCount(kHistogramName,
sql::Connection::EVENT_STATEMENT_SUCCESS, 1);
tester.ExpectBucketCount(kGlobalHistogramName,
sql::Connection::EVENT_STATEMENT_SUCCESS, 1);
}
}
// Read-only query allocates time to QueryTime, but not others.
TEST_F(SQLConnectionTest, TimeQuery) {
// Re-open with histogram tag. Use an in-memory database to minimize variance
// due to filesystem.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().OpenInMemory());
sql::test::ScopedMockTimeSource time_mock(db());
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
// Function to inject pauses into statements.
sql::test::ScopedScalarFunction scoper(
db(), "milliadjust", 1, base::Bind(&sqlite_adjust_millis, &time_mock));
base::HistogramTester tester;
EXPECT_TRUE(db().Execute("SELECT milliadjust(10)"));
std::unique_ptr<base::HistogramSamples> samples(
tester.GetHistogramSamplesSinceCreation(kQueryTime));
ASSERT_TRUE(samples);
// 10 for the adjust, 1 for the measurement.
EXPECT_EQ(11, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kUpdateTime);
EXPECT_EQ(0, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kCommitTime);
EXPECT_EQ(0, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kAutoCommitTime);
EXPECT_EQ(0, samples->sum());
}
// Autocommit update allocates time to QueryTime, UpdateTime, and
// AutoCommitTime.
TEST_F(SQLConnectionTest, TimeUpdateAutocommit) {
// Re-open with histogram tag. Use an in-memory database to minimize variance
// due to filesystem.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().OpenInMemory());
sql::test::ScopedMockTimeSource time_mock(db());
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
// Function to inject pauses into statements.
sql::test::ScopedScalarFunction scoper(
db(), "milliadjust", 1, base::Bind(&sqlite_adjust_millis, &time_mock));
base::HistogramTester tester;
EXPECT_TRUE(db().Execute("INSERT INTO foo VALUES (10, milliadjust(10))"));
std::unique_ptr<base::HistogramSamples> samples(
tester.GetHistogramSamplesSinceCreation(kQueryTime));
ASSERT_TRUE(samples);
// 10 for the adjust, 1 for the measurement.
EXPECT_EQ(11, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kUpdateTime);
ASSERT_TRUE(samples);
// 10 for the adjust, 1 for the measurement.
EXPECT_EQ(11, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kCommitTime);
EXPECT_EQ(0, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kAutoCommitTime);
ASSERT_TRUE(samples);
// 10 for the adjust, 1 for the measurement.
EXPECT_EQ(11, samples->sum());
}
// Update with explicit transaction allocates time to QueryTime, UpdateTime, and
// CommitTime.
TEST_F(SQLConnectionTest, TimeUpdateTransaction) {
// Re-open with histogram tag. Use an in-memory database to minimize variance
// due to filesystem.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().OpenInMemory());
sql::test::ScopedMockTimeSource time_mock(db());
const char* kCreateSql = "CREATE TABLE foo (id INTEGER PRIMARY KEY, value)";
EXPECT_TRUE(db().Execute(kCreateSql));
// Function to inject pauses into statements.
sql::test::ScopedScalarFunction scoper(
db(), "milliadjust", 1, base::Bind(&sqlite_adjust_millis, &time_mock));
base::HistogramTester tester;
{
// Make the commit slow.
sql::test::ScopedCommitHook scoped_hook(
db(), base::Bind(adjust_commit_hook, &time_mock, 100));
ASSERT_TRUE(db().BeginTransaction());
EXPECT_TRUE(db().Execute(
"INSERT INTO foo VALUES (11, milliadjust(10))"));
EXPECT_TRUE(db().Execute(
"UPDATE foo SET value = milliadjust(10) WHERE id = 11"));
EXPECT_TRUE(db().CommitTransaction());
}
std::unique_ptr<base::HistogramSamples> samples(
tester.GetHistogramSamplesSinceCreation(kQueryTime));
ASSERT_TRUE(samples);
// 10 for insert adjust, 10 for update adjust, 100 for commit adjust, 1 for
// measuring each of BEGIN, INSERT, UPDATE, and COMMIT.
EXPECT_EQ(124, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kUpdateTime);
ASSERT_TRUE(samples);
// 10 for insert adjust, 10 for update adjust, 100 for commit adjust, 1 for
// measuring each of INSERT, UPDATE, and COMMIT.
EXPECT_EQ(123, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kCommitTime);
ASSERT_TRUE(samples);
// 100 for commit adjust, 1 for measuring COMMIT.
EXPECT_EQ(101, samples->sum());
samples = tester.GetHistogramSamplesSinceCreation(kAutoCommitTime);
EXPECT_EQ(0, samples->sum());
}
TEST_F(SQLConnectionTest, OnMemoryDump) {
base::trace_event::MemoryDumpArgs args = {
base::trace_event::MemoryDumpLevelOfDetail::DETAILED};
base::trace_event::ProcessMemoryDump pmd(nullptr, args);
ASSERT_TRUE(db().memory_dump_provider_->OnMemoryDump(args, &pmd));
EXPECT_GE(pmd.allocator_dumps().size(), 1u);
}
// Test that the functions to collect diagnostic data run to completion, without
// worrying too much about what they generate (since that will change).
TEST_F(SQLConnectionTest, CollectDiagnosticInfo) {
// NOTE(shess): Mojo doesn't support everything CollectCorruptionInfo() uses,
// but it's not really clear if adding support would be useful.
#if !defined(MOJO_APPTEST_IMPL)
const std::string corruption_info = db().CollectCorruptionInfo();
EXPECT_NE(std::string::npos, corruption_info.find("SQLITE_CORRUPT"));
EXPECT_NE(std::string::npos, corruption_info.find("integrity_check"));
#endif
// A statement to see in the results.
const char* kSimpleSql = "SELECT 'mountain'";
Statement s(db().GetCachedStatement(SQL_FROM_HERE, kSimpleSql));
// Error includes the statement.
const std::string readonly_info = db().CollectErrorInfo(SQLITE_READONLY, &s);
EXPECT_NE(std::string::npos, readonly_info.find(kSimpleSql));
// Some other error doesn't include the statment.
// TODO(shess): This is weak.
const std::string full_info = db().CollectErrorInfo(SQLITE_FULL, NULL);
EXPECT_EQ(std::string::npos, full_info.find(kSimpleSql));
// A table to see in the SQLITE_ERROR results.
EXPECT_TRUE(db().Execute("CREATE TABLE volcano (x)"));
// Version info to see in the SQLITE_ERROR results.
sql::MetaTable meta_table;
ASSERT_TRUE(meta_table.Init(&db(), 4, 4));
const std::string error_info = db().CollectErrorInfo(SQLITE_ERROR, &s);
EXPECT_NE(std::string::npos, error_info.find(kSimpleSql));
EXPECT_NE(std::string::npos, error_info.find("volcano"));
EXPECT_NE(std::string::npos, error_info.find("version: 4"));
}
#if !defined(MOJO_APPTEST_IMPL)
TEST_F(SQLConnectionTest, RegisterIntentToUpload) {
base::FilePath breadcrumb_path(
db_path().DirName().Append(FILE_PATH_LITERAL("sqlite-diag")));
// No stale diagnostic store.
ASSERT_TRUE(!base::PathExists(breadcrumb_path));
// The histogram tag is required to enable diagnostic features.
EXPECT_FALSE(db().RegisterIntentToUpload());
EXPECT_TRUE(!base::PathExists(breadcrumb_path));
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
// Should signal upload only once.
EXPECT_TRUE(db().RegisterIntentToUpload());
EXPECT_TRUE(base::PathExists(breadcrumb_path));
EXPECT_FALSE(db().RegisterIntentToUpload());
// Changing the histogram tag should allow new upload to succeed.
db().Close();
db().set_histogram_tag("NewTest");
ASSERT_TRUE(db().Open(db_path()));
EXPECT_TRUE(db().RegisterIntentToUpload());
EXPECT_FALSE(db().RegisterIntentToUpload());
// Old tag is still prevented.
db().Close();
db().set_histogram_tag("Test");
ASSERT_TRUE(db().Open(db_path()));
EXPECT_FALSE(db().RegisterIntentToUpload());
}
#endif // !defined(MOJO_APPTEST_IMPL)
// Test that a fresh database has mmap enabled by default, if mmap'ed I/O is
// enabled by SQLite.
TEST_F(SQLConnectionTest, MmapInitiallyEnabled) {
{
sql::Statement s(db().GetUniqueStatement("PRAGMA mmap_size"));
// SQLite doesn't have mmap support (perhaps an early iOS release).
if (!s.Step())
return;
// If mmap I/O is not on, attempt to turn it on. If that succeeds, then
// Open() should have turned it on. If mmap support is disabled, 0 is
// returned. If the VFS does not understand SQLITE_FCNTL_MMAP_SIZE (for
// instance MojoVFS), -1 is returned.
if (s.ColumnInt(0) <= 0) {
ASSERT_TRUE(db().Execute("PRAGMA mmap_size = 1048576"));
s.Reset(true);
ASSERT_TRUE(s.Step());
EXPECT_LE(s.ColumnInt(0), 0);
}
}
// Test that explicit disable prevents mmap'ed I/O.
db().Close();
sql::Connection::Delete(db_path());
db().set_mmap_disabled();
ASSERT_TRUE(db().Open(db_path()));
{
sql::Statement s(db().GetUniqueStatement("PRAGMA mmap_size"));
ASSERT_TRUE(s.Step());
EXPECT_LE(s.ColumnInt(0), 0);
}
}
TEST_F(SQLConnectionTest, GetAppropriateMmapSize) {
#if defined(OS_IOS) && defined(USE_SYSTEM_SQLITE)
// Mmap is not supported on iOS9.
if (!base::ios::IsRunningOnIOS10OrLater()) {
ASSERT_EQ(0UL, db().GetAppropriateMmapSize());
return;
}
#endif
const size_t kMmapAlot = 25 * 1024 * 1024;
int64_t mmap_status = MetaTable::kMmapFailure;
// If there is no meta table (as for a fresh database), assume that everything
// should be mapped, and the status of the meta table is not affected.
ASSERT_TRUE(!db().DoesTableExist("meta"));
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_TRUE(!db().DoesTableExist("meta"));
// When the meta table is first created, it sets up to map everything.
MetaTable().Init(&db(), 1, 1);
ASSERT_TRUE(db().DoesTableExist("meta"));
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_TRUE(MetaTable::GetMmapStatus(&db(), &mmap_status));
ASSERT_EQ(MetaTable::kMmapSuccess, mmap_status);
// Failure status maps nothing.
ASSERT_TRUE(db().Execute("REPLACE INTO meta VALUES ('mmap_status', -2)"));
ASSERT_EQ(0UL, db().GetAppropriateMmapSize());
// Re-initializing the meta table does not re-create the key if the table
// already exists.
ASSERT_TRUE(db().Execute("DELETE FROM meta WHERE key = 'mmap_status'"));
MetaTable().Init(&db(), 1, 1);
ASSERT_EQ(MetaTable::kMmapSuccess, mmap_status);
ASSERT_TRUE(MetaTable::GetMmapStatus(&db(), &mmap_status));
ASSERT_EQ(0, mmap_status);
// With no key, map everything and create the key.
// TODO(shess): This really should be "maps everything after validating it",
// but that is more complicated to structure.
ASSERT_GT(db().GetAppropriateMmapSize(), kMmapAlot);
ASSERT_TRUE(MetaTable::GetMmapStatus(&db(), &mmap_status));
ASSERT_EQ(MetaTable::kMmapSuccess, mmap_status);
}
// To prevent invalid SQL from accidentally shipping to production, prepared
// statements which fail to compile with SQLITE_ERROR call DLOG(FATAL). This
// case cannot be suppressed with an error callback.
TEST_F(SQLConnectionTest, CompileError) {
// DEATH tests not supported on Android or iOS.
#if !defined(OS_ANDROID) && !defined(OS_IOS)
if (DLOG_IS_ON(FATAL)) {
db().set_error_callback(base::Bind(&IgnoreErrorCallback));
ASSERT_DEATH({
db().GetUniqueStatement("SELECT x");
}, "SQL compile error no such column: x");
}
#endif
}
} // namespace sql