| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "sql/recovery.h" |
| |
| #include <stddef.h> |
| |
| #include <memory> |
| #include <string> |
| #include <utility> |
| |
| #include "base/bind.h" |
| #include "base/files/file_path.h" |
| #include "base/files/file_util.h" |
| #include "base/files/scoped_temp_dir.h" |
| #include "base/path_service.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "sql/connection.h" |
| #include "sql/meta_table.h" |
| #include "sql/statement.h" |
| #include "sql/test/paths.h" |
| #include "sql/test/scoped_error_expecter.h" |
| #include "sql/test/sql_test_base.h" |
| #include "sql/test/test_helpers.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "third_party/sqlite/sqlite3.h" |
| |
| namespace { |
| |
| // Execute |sql|, and stringify the results with |column_sep| between |
| // columns and |row_sep| between rows. |
| // TODO(shess): Promote this to a central testing helper. |
| std::string ExecuteWithResults(sql::Connection* db, |
| const char* sql, |
| const char* column_sep, |
| const char* row_sep) { |
| sql::Statement s(db->GetUniqueStatement(sql)); |
| std::string ret; |
| while (s.Step()) { |
| if (!ret.empty()) |
| ret += row_sep; |
| for (int i = 0; i < s.ColumnCount(); ++i) { |
| if (i > 0) |
| ret += column_sep; |
| if (s.ColumnType(i) == sql::COLUMN_TYPE_NULL) { |
| ret += "<null>"; |
| } else if (s.ColumnType(i) == sql::COLUMN_TYPE_BLOB) { |
| ret += "<x'"; |
| ret += base::HexEncode(s.ColumnBlob(i), s.ColumnByteLength(i)); |
| ret += "'>"; |
| } else { |
| ret += s.ColumnString(i); |
| } |
| } |
| } |
| return ret; |
| } |
| |
| // Dump consistent human-readable representation of the database |
| // schema. For tables or indices, this will contain the sql command |
| // to create the table or index. For certain automatic SQLite |
| // structures with no sql, the name is used. |
| std::string GetSchema(sql::Connection* db) { |
| const char kSql[] = |
| "SELECT COALESCE(sql, name) FROM sqlite_master ORDER BY 1"; |
| return ExecuteWithResults(db, kSql, "|", "\n"); |
| } |
| |
| using SQLRecoveryTest = sql::SQLTestBase; |
| |
| // Baseline sql::Recovery test covering the different ways to dispose of the |
| // scoped pointer received from sql::Recovery::Begin(). |
| TEST_F(SQLRecoveryTest, RecoverBasic) { |
| const char kCreateSql[] = "CREATE TABLE x (t TEXT)"; |
| const char kInsertSql[] = "INSERT INTO x VALUES ('This is a test')"; |
| const char kAltInsertSql[] = "INSERT INTO x VALUES ('That was a test')"; |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| ASSERT_TRUE(db().Execute(kInsertSql)); |
| ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db())); |
| |
| // If the Recovery handle goes out of scope without being |
| // Recovered(), the database is razed. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery.get()); |
| } |
| EXPECT_FALSE(db().is_open()); |
| ASSERT_TRUE(Reopen()); |
| EXPECT_TRUE(db().is_open()); |
| ASSERT_EQ("", GetSchema(&db())); |
| |
| // Recreate the database. |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| ASSERT_TRUE(db().Execute(kInsertSql)); |
| ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db())); |
| |
| // Unrecoverable() also razes. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery.get()); |
| sql::Recovery::Unrecoverable(std::move(recovery)); |
| |
| // TODO(shess): Test that calls to recover.db() start failing. |
| } |
| EXPECT_FALSE(db().is_open()); |
| ASSERT_TRUE(Reopen()); |
| EXPECT_TRUE(db().is_open()); |
| ASSERT_EQ("", GetSchema(&db())); |
| |
| // Attempting to recover a previously-recovered handle fails early. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery.get()); |
| recovery.reset(); |
| |
| recovery = sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_FALSE(recovery.get()); |
| } |
| ASSERT_TRUE(Reopen()); |
| |
| // Recreate the database. |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| ASSERT_TRUE(db().Execute(kInsertSql)); |
| ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db())); |
| |
| // Unrecovered table to distinguish from recovered database. |
| ASSERT_TRUE(db().Execute("CREATE TABLE y (c INTEGER)")); |
| ASSERT_NE("CREATE TABLE x (t TEXT)", GetSchema(&db())); |
| |
| // Recovered() replaces the original with the "recovered" version. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery.get()); |
| |
| // Create the new version of the table. |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| |
| // Insert different data to distinguish from original database. |
| ASSERT_TRUE(recovery->db()->Execute(kAltInsertSql)); |
| |
| // Successfully recovered. |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| EXPECT_FALSE(db().is_open()); |
| ASSERT_TRUE(Reopen()); |
| EXPECT_TRUE(db().is_open()); |
| ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db())); |
| |
| const char* kXSql = "SELECT * FROM x ORDER BY 1"; |
| ASSERT_EQ("That was a test", |
| ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| |
| // Reset the database contents. |
| ASSERT_TRUE(db().Execute("DELETE FROM x")); |
| ASSERT_TRUE(db().Execute(kInsertSql)); |
| |
| // Rollback() discards recovery progress and leaves the database as it was. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery.get()); |
| |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| ASSERT_TRUE(recovery->db()->Execute(kAltInsertSql)); |
| |
| sql::Recovery::Rollback(std::move(recovery)); |
| } |
| EXPECT_FALSE(db().is_open()); |
| ASSERT_TRUE(Reopen()); |
| EXPECT_TRUE(db().is_open()); |
| ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db())); |
| |
| ASSERT_EQ("This is a test", |
| ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| } |
| |
| // Test operation of the virtual table used by sql::Recovery. |
| TEST_F(SQLRecoveryTest, VirtualTable) { |
| const char kCreateSql[] = "CREATE TABLE x (t TEXT)"; |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('This is a test')")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('That was a test')")); |
| |
| // Successfully recover the database. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| |
| // Tables to recover original DB, now at [corrupt]. |
| const char kRecoveryCreateSql[] = |
| "CREATE VIRTUAL TABLE temp.recover_x using recover(" |
| " corrupt.x," |
| " t TEXT STRICT" |
| ")"; |
| ASSERT_TRUE(recovery->db()->Execute(kRecoveryCreateSql)); |
| |
| // Re-create the original schema. |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| |
| // Copy the data from the recovery tables to the new database. |
| const char kRecoveryCopySql[] = |
| "INSERT INTO x SELECT t FROM recover_x"; |
| ASSERT_TRUE(recovery->db()->Execute(kRecoveryCopySql)); |
| |
| // Successfully recovered. |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // Since the database was not corrupt, the entire schema and all |
| // data should be recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ("CREATE TABLE x (t TEXT)", GetSchema(&db())); |
| |
| const char* kXSql = "SELECT * FROM x ORDER BY 1"; |
| ASSERT_EQ("That was a test\nThis is a test", |
| ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| } |
| |
| void RecoveryCallback(sql::Connection* db, const base::FilePath& db_path, |
| const char* create_table, const char* create_index, |
| int* record_error, int error, sql::Statement* stmt) { |
| *record_error = error; |
| |
| // Clear the error callback to prevent reentrancy. |
| db->reset_error_callback(); |
| |
| std::unique_ptr<sql::Recovery> recovery = sql::Recovery::Begin(db, db_path); |
| ASSERT_TRUE(recovery.get()); |
| |
| ASSERT_TRUE(recovery->db()->Execute(create_table)); |
| ASSERT_TRUE(recovery->db()->Execute(create_index)); |
| |
| size_t rows = 0; |
| ASSERT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // Build a database, corrupt it by making an index reference to |
| // deleted row, then recover when a query selects that row. |
| TEST_F(SQLRecoveryTest, RecoverCorruptIndex) { |
| const char kCreateTable[] = "CREATE TABLE x (id INTEGER, v INTEGER)"; |
| const char kCreateIndex[] = "CREATE UNIQUE INDEX x_id ON x (id)"; |
| ASSERT_TRUE(db().Execute(kCreateTable)); |
| ASSERT_TRUE(db().Execute(kCreateIndex)); |
| |
| // Insert a bit of data. |
| { |
| ASSERT_TRUE(db().BeginTransaction()); |
| |
| const char kInsertSql[] = "INSERT INTO x (id, v) VALUES (?, ?)"; |
| sql::Statement s(db().GetUniqueStatement(kInsertSql)); |
| for (int i = 0; i < 10; ++i) { |
| s.Reset(true); |
| s.BindInt(0, i); |
| s.BindInt(1, i); |
| EXPECT_FALSE(s.Step()); |
| EXPECT_TRUE(s.Succeeded()); |
| } |
| |
| ASSERT_TRUE(db().CommitTransaction()); |
| } |
| db().Close(); |
| |
| // Delete a row from the table, while leaving the index entry which |
| // references it. |
| const char kDeleteSql[] = "DELETE FROM x WHERE id = 0"; |
| ASSERT_TRUE(sql::test::CorruptTableOrIndex(db_path(), "x_id", kDeleteSql)); |
| |
| ASSERT_TRUE(Reopen()); |
| |
| int error = SQLITE_OK; |
| db().set_error_callback(base::Bind(&RecoveryCallback, &db(), db_path(), |
| kCreateTable, kCreateIndex, &error)); |
| |
| // This works before the callback is called. |
| const char kTrivialSql[] = "SELECT COUNT(*) FROM sqlite_master"; |
| EXPECT_TRUE(db().IsSQLValid(kTrivialSql)); |
| |
| // TODO(shess): Could this be delete? Anything which fails should work. |
| const char kSelectSql[] = "SELECT v FROM x WHERE id = 0"; |
| ASSERT_FALSE(db().Execute(kSelectSql)); |
| EXPECT_EQ(SQLITE_CORRUPT, error); |
| |
| // Database handle has been poisoned. |
| EXPECT_FALSE(db().IsSQLValid(kTrivialSql)); |
| |
| ASSERT_TRUE(Reopen()); |
| |
| // The recovered table should reflect the deletion. |
| const char kSelectAllSql[] = "SELECT v FROM x ORDER BY id"; |
| EXPECT_EQ("1,2,3,4,5,6,7,8,9", |
| ExecuteWithResults(&db(), kSelectAllSql, "|", ",")); |
| |
| // The failing statement should now succeed, with no results. |
| EXPECT_EQ("", ExecuteWithResults(&db(), kSelectSql, "|", ",")); |
| } |
| |
| // Build a database, corrupt it by making a table contain a row not |
| // referenced by the index, then recover the database. |
| TEST_F(SQLRecoveryTest, RecoverCorruptTable) { |
| const char kCreateTable[] = "CREATE TABLE x (id INTEGER, v INTEGER)"; |
| const char kCreateIndex[] = "CREATE UNIQUE INDEX x_id ON x (id)"; |
| ASSERT_TRUE(db().Execute(kCreateTable)); |
| ASSERT_TRUE(db().Execute(kCreateIndex)); |
| |
| // Insert a bit of data. |
| { |
| ASSERT_TRUE(db().BeginTransaction()); |
| |
| const char kInsertSql[] = "INSERT INTO x (id, v) VALUES (?, ?)"; |
| sql::Statement s(db().GetUniqueStatement(kInsertSql)); |
| for (int i = 0; i < 10; ++i) { |
| s.Reset(true); |
| s.BindInt(0, i); |
| s.BindInt(1, i); |
| EXPECT_FALSE(s.Step()); |
| EXPECT_TRUE(s.Succeeded()); |
| } |
| |
| ASSERT_TRUE(db().CommitTransaction()); |
| } |
| db().Close(); |
| |
| // Delete a row from the index while leaving a table entry. |
| const char kDeleteSql[] = "DELETE FROM x WHERE id = 0"; |
| ASSERT_TRUE(sql::test::CorruptTableOrIndex(db_path(), "x", kDeleteSql)); |
| |
| ASSERT_TRUE(Reopen()); |
| |
| int error = SQLITE_OK; |
| db().set_error_callback(base::Bind(&RecoveryCallback, &db(), db_path(), |
| kCreateTable, kCreateIndex, &error)); |
| |
| // Index shows one less than originally inserted. |
| const char kCountSql[] = "SELECT COUNT (*) FROM x"; |
| EXPECT_EQ("9", ExecuteWithResults(&db(), kCountSql, "|", ",")); |
| |
| // A full table scan shows all of the original data. Using column [v] to |
| // force use of the table rather than the index. |
| const char kDistinctSql[] = "SELECT DISTINCT COUNT (v) FROM x"; |
| EXPECT_EQ("10", ExecuteWithResults(&db(), kDistinctSql, "|", ",")); |
| |
| // Insert id 0 again. Since it is not in the index, the insert |
| // succeeds, but results in a duplicate value in the table. |
| const char kInsertSql[] = "INSERT INTO x (id, v) VALUES (0, 100)"; |
| ASSERT_TRUE(db().Execute(kInsertSql)); |
| |
| // Duplication is visible. |
| EXPECT_EQ("10", ExecuteWithResults(&db(), kCountSql, "|", ",")); |
| EXPECT_EQ("11", ExecuteWithResults(&db(), kDistinctSql, "|", ",")); |
| |
| // This works before the callback is called. |
| const char kTrivialSql[] = "SELECT COUNT(*) FROM sqlite_master"; |
| EXPECT_TRUE(db().IsSQLValid(kTrivialSql)); |
| |
| // TODO(shess): Figure out a statement which causes SQLite to notice the |
| // corruption. SELECT doesn't see errors because missing index values aren't |
| // visible. UPDATE or DELETE against v=0 don't see errors, even though the |
| // index item is missing. I suspect SQLite only deletes the key in these |
| // cases, but doesn't verify that one or more keys were deleted. |
| ASSERT_FALSE(db().Execute("INSERT INTO x (id, v) VALUES (0, 101)")); |
| EXPECT_EQ(SQLITE_CONSTRAINT_UNIQUE, error); |
| |
| // Database handle has been poisoned. |
| EXPECT_FALSE(db().IsSQLValid(kTrivialSql)); |
| |
| ASSERT_TRUE(Reopen()); |
| |
| // The recovered table has consistency between the index and the table. |
| EXPECT_EQ("10", ExecuteWithResults(&db(), kCountSql, "|", ",")); |
| EXPECT_EQ("10", ExecuteWithResults(&db(), kDistinctSql, "|", ",")); |
| |
| // Only one of the values is retained. |
| const char kSelectSql[] = "SELECT v FROM x WHERE id = 0"; |
| const std::string results = ExecuteWithResults(&db(), kSelectSql, "|", ","); |
| EXPECT_TRUE(results=="100" || results=="0") << "Actual results: " << results; |
| } |
| |
| TEST_F(SQLRecoveryTest, Meta) { |
| const int kVersion = 3; |
| const int kCompatibleVersion = 2; |
| |
| { |
| sql::MetaTable meta; |
| EXPECT_TRUE(meta.Init(&db(), kVersion, kCompatibleVersion)); |
| EXPECT_EQ(kVersion, meta.GetVersionNumber()); |
| } |
| |
| // Test expected case where everything works. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| EXPECT_TRUE(recovery->SetupMeta()); |
| int version = 0; |
| EXPECT_TRUE(recovery->GetMetaVersionNumber(&version)); |
| EXPECT_EQ(kVersion, version); |
| |
| sql::Recovery::Rollback(std::move(recovery)); |
| } |
| ASSERT_TRUE(Reopen()); // Handle was poisoned. |
| |
| // Test version row missing. |
| EXPECT_TRUE(db().Execute("DELETE FROM meta WHERE key = 'version'")); |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| EXPECT_TRUE(recovery->SetupMeta()); |
| int version = 0; |
| EXPECT_FALSE(recovery->GetMetaVersionNumber(&version)); |
| EXPECT_EQ(0, version); |
| |
| sql::Recovery::Rollback(std::move(recovery)); |
| } |
| ASSERT_TRUE(Reopen()); // Handle was poisoned. |
| |
| // Test meta table missing. |
| EXPECT_TRUE(db().Execute("DROP TABLE meta")); |
| { |
| sql::test::ScopedErrorExpecter expecter; |
| expecter.ExpectError(SQLITE_CORRUPT); // From virtual table. |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| EXPECT_FALSE(recovery->SetupMeta()); |
| ASSERT_TRUE(expecter.SawExpectedErrors()); |
| } |
| } |
| |
| // Baseline AutoRecoverTable() test. |
| TEST_F(SQLRecoveryTest, AutoRecoverTable) { |
| // BIGINT and VARCHAR to test type affinity. |
| const char kCreateSql[] = "CREATE TABLE x (id BIGINT, t TEXT, v VARCHAR)"; |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (11, 'This is', 'a test')")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (5, 'That was', 'a test')")); |
| |
| // Save aside a copy of the original schema and data. |
| const std::string orig_schema(GetSchema(&db())); |
| const char kXSql[] = "SELECT * FROM x ORDER BY 1"; |
| const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| |
| // Create a lame-duck table which will not be propagated by recovery to |
| // detect that the recovery code actually ran. |
| ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)")); |
| ASSERT_NE(orig_schema, GetSchema(&db())); |
| |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| |
| // Save a copy of the temp db's schema before recovering the table. |
| const char kTempSchemaSql[] = "SELECT name, sql FROM sqlite_temp_master"; |
| const std::string temp_schema( |
| ExecuteWithResults(recovery->db(), kTempSchemaSql, "|", "\n")); |
| |
| size_t rows = 0; |
| EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| EXPECT_EQ(2u, rows); |
| |
| // Test that any additional temp tables were cleaned up. |
| EXPECT_EQ(temp_schema, |
| ExecuteWithResults(recovery->db(), kTempSchemaSql, "|", "\n")); |
| |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // Since the database was not corrupt, the entire schema and all |
| // data should be recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ(orig_schema, GetSchema(&db())); |
| ASSERT_EQ(orig_data, ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| |
| // Recovery fails if the target table doesn't exist. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| |
| // TODO(shess): Should this failure implicitly lead to Raze()? |
| size_t rows = 0; |
| EXPECT_FALSE(recovery->AutoRecoverTable("y", &rows)); |
| |
| sql::Recovery::Unrecoverable(std::move(recovery)); |
| } |
| } |
| |
| // Test that default values correctly replace nulls. The recovery |
| // virtual table reads directly from the database, so DEFAULT is not |
| // interpretted at that level. |
| TEST_F(SQLRecoveryTest, AutoRecoverTableWithDefault) { |
| ASSERT_TRUE(db().Execute("CREATE TABLE x (id INTEGER)")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (5)")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (15)")); |
| |
| // ALTER effectively leaves the new columns NULL in the first two |
| // rows. The row with 17 will get the default injected at insert |
| // time, while the row with 42 will get the actual value provided. |
| // Embedded "'" to make sure default-handling continues to be quoted |
| // correctly. |
| ASSERT_TRUE(db().Execute("ALTER TABLE x ADD COLUMN t TEXT DEFAULT 'a''a'")); |
| ASSERT_TRUE(db().Execute("ALTER TABLE x ADD COLUMN b BLOB DEFAULT x'AA55'")); |
| ASSERT_TRUE(db().Execute("ALTER TABLE x ADD COLUMN i INT DEFAULT 93")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x (id) VALUES (17)")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (42, 'b', x'1234', 12)")); |
| |
| // Save aside a copy of the original schema and data. |
| const std::string orig_schema(GetSchema(&db())); |
| const char kXSql[] = "SELECT * FROM x ORDER BY 1"; |
| const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| |
| // Create a lame-duck table which will not be propagated by recovery to |
| // detect that the recovery code actually ran. |
| ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)")); |
| ASSERT_NE(orig_schema, GetSchema(&db())); |
| |
| // Mechanically adjust the stored schema and data to allow detecting |
| // where the default value is coming from. The target table is just |
| // like the original with the default for [t] changed, to signal |
| // defaults coming from the recovery system. The two %5 rows should |
| // get the target-table default for [t], while the others should get |
| // the source-table default. |
| std::string final_schema(orig_schema); |
| std::string final_data(orig_data); |
| size_t pos; |
| while ((pos = final_schema.find("'a''a'")) != std::string::npos) { |
| final_schema.replace(pos, 6, "'c''c'"); |
| } |
| while ((pos = final_data.find("5|a'a")) != std::string::npos) { |
| final_data.replace(pos, 5, "5|c'c"); |
| } |
| |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| // Different default to detect which table provides the default. |
| ASSERT_TRUE(recovery->db()->Execute(final_schema.c_str())); |
| |
| size_t rows = 0; |
| EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| EXPECT_EQ(4u, rows); |
| |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // Since the database was not corrupt, the entire schema and all |
| // data should be recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ(final_schema, GetSchema(&db())); |
| ASSERT_EQ(final_data, ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| } |
| |
| // Test that rows with NULL in a NOT NULL column are filtered |
| // correctly. In the wild, this would probably happen due to |
| // corruption, but here it is simulated by recovering a table which |
| // allowed nulls into a table which does not. |
| TEST_F(SQLRecoveryTest, AutoRecoverTableNullFilter) { |
| const char kOrigSchema[] = "CREATE TABLE x (id INTEGER, t TEXT)"; |
| const char kFinalSchema[] = "CREATE TABLE x (id INTEGER, t TEXT NOT NULL)"; |
| |
| ASSERT_TRUE(db().Execute(kOrigSchema)); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (5, null)")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (15, 'this is a test')")); |
| |
| // Create a lame-duck table which will not be propagated by recovery to |
| // detect that the recovery code actually ran. |
| ASSERT_EQ(kOrigSchema, GetSchema(&db())); |
| ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)")); |
| ASSERT_NE(kOrigSchema, GetSchema(&db())); |
| |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery->db()->Execute(kFinalSchema)); |
| |
| size_t rows = 0; |
| EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| EXPECT_EQ(1u, rows); |
| |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // The schema should be the same, but only one row of data should |
| // have been recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ(kFinalSchema, GetSchema(&db())); |
| const char kXSql[] = "SELECT * FROM x ORDER BY 1"; |
| ASSERT_EQ("15|this is a test", ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| } |
| |
| // Test AutoRecoverTable with a ROWID alias. |
| TEST_F(SQLRecoveryTest, AutoRecoverTableWithRowid) { |
| // The rowid alias is almost always the first column, intentionally |
| // put it later. |
| const char kCreateSql[] = |
| "CREATE TABLE x (t TEXT, id INTEGER PRIMARY KEY NOT NULL)"; |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('This is a test', null)")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES ('That was a test', null)")); |
| |
| // Save aside a copy of the original schema and data. |
| const std::string orig_schema(GetSchema(&db())); |
| const char kXSql[] = "SELECT * FROM x ORDER BY 1"; |
| const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| |
| // Create a lame-duck table which will not be propagated by recovery to |
| // detect that the recovery code actually ran. |
| ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)")); |
| ASSERT_NE(orig_schema, GetSchema(&db())); |
| |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| |
| size_t rows = 0; |
| EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| EXPECT_EQ(2u, rows); |
| |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // Since the database was not corrupt, the entire schema and all |
| // data should be recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ(orig_schema, GetSchema(&db())); |
| ASSERT_EQ(orig_data, ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| } |
| |
| // Test that a compound primary key doesn't fire the ROWID code. |
| TEST_F(SQLRecoveryTest, AutoRecoverTableWithCompoundKey) { |
| const char kCreateSql[] = |
| "CREATE TABLE x (" |
| "id INTEGER NOT NULL," |
| "id2 TEXT NOT NULL," |
| "t TEXT," |
| "PRIMARY KEY (id, id2)" |
| ")"; |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| |
| // NOTE(shess): Do not accidentally use [id] 1, 2, 3, as those will |
| // be the ROWID values. |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (1, 'a', 'This is a test')")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (1, 'b', 'That was a test')")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (2, 'a', 'Another test')")); |
| |
| // Save aside a copy of the original schema and data. |
| const std::string orig_schema(GetSchema(&db())); |
| const char kXSql[] = "SELECT * FROM x ORDER BY 1"; |
| const std::string orig_data(ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| |
| // Create a lame-duck table which will not be propagated by recovery to |
| // detect that the recovery code actually ran. |
| ASSERT_TRUE(db().Execute("CREATE TABLE y (c TEXT)")); |
| ASSERT_NE(orig_schema, GetSchema(&db())); |
| |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| |
| size_t rows = 0; |
| EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| EXPECT_EQ(3u, rows); |
| |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // Since the database was not corrupt, the entire schema and all |
| // data should be recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ(orig_schema, GetSchema(&db())); |
| ASSERT_EQ(orig_data, ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| } |
| |
| // Test recovering from a table with fewer columns than the target. |
| TEST_F(SQLRecoveryTest, AutoRecoverTableMissingColumns) { |
| const char kCreateSql[] = "CREATE TABLE x (id INTEGER PRIMARY KEY, t0 TEXT)"; |
| const char kAlterSql[] = "ALTER TABLE x ADD COLUMN t1 TEXT DEFAULT 't'"; |
| ASSERT_TRUE(db().Execute(kCreateSql)); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (1, 'This is')")); |
| ASSERT_TRUE(db().Execute("INSERT INTO x VALUES (2, 'That was')")); |
| |
| // Generate the expected info by faking a table to match what recovery will |
| // create. |
| const std::string orig_schema(GetSchema(&db())); |
| const char kXSql[] = "SELECT * FROM x ORDER BY 1"; |
| std::string expected_schema; |
| std::string expected_data; |
| { |
| ASSERT_TRUE(db().BeginTransaction()); |
| ASSERT_TRUE(db().Execute(kAlterSql)); |
| |
| expected_schema = GetSchema(&db()); |
| expected_data = ExecuteWithResults(&db(), kXSql, "|", "\n"); |
| |
| db().RollbackTransaction(); |
| } |
| |
| // Following tests are pointless if the rollback didn't work. |
| ASSERT_EQ(orig_schema, GetSchema(&db())); |
| |
| // Recover the previous version of the table into the altered version. |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| ASSERT_TRUE(recovery->db()->Execute(kAlterSql)); |
| size_t rows = 0; |
| EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| EXPECT_EQ(2u, rows); |
| ASSERT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| |
| // Since the database was not corrupt, the entire schema and all |
| // data should be recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ(expected_schema, GetSchema(&db())); |
| ASSERT_EQ(expected_data, ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| } |
| |
| // Recover a golden file where an interior page has been manually modified so |
| // that the number of cells is greater than will fit on a single page. This |
| // case happened in <http://crbug.com/387868>. |
| TEST_F(SQLRecoveryTest, Bug387868) { |
| base::FilePath golden_path; |
| ASSERT_TRUE(PathService::Get(sql::test::DIR_TEST_DATA, &golden_path)); |
| golden_path = golden_path.AppendASCII("recovery_387868"); |
| db().Close(); |
| ASSERT_TRUE(base::CopyFile(golden_path, db_path())); |
| ASSERT_TRUE(Reopen()); |
| |
| { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery.get()); |
| |
| // Create the new version of the table. |
| const char kCreateSql[] = |
| "CREATE TABLE x (id INTEGER PRIMARY KEY, t0 TEXT)"; |
| ASSERT_TRUE(recovery->db()->Execute(kCreateSql)); |
| |
| size_t rows = 0; |
| EXPECT_TRUE(recovery->AutoRecoverTable("x", &rows)); |
| EXPECT_EQ(43u, rows); |
| |
| // Successfully recovered. |
| EXPECT_TRUE(sql::Recovery::Recovered(std::move(recovery))); |
| } |
| } |
| |
| // Memory-mapped I/O interacts poorly with I/O errors. Make sure the recovery |
| // database doesn't accidentally enable it. |
| TEST_F(SQLRecoveryTest, NoMmap) { |
| std::unique_ptr<sql::Recovery> recovery = |
| sql::Recovery::Begin(&db(), db_path()); |
| ASSERT_TRUE(recovery.get()); |
| |
| // In the current implementation, the PRAGMA successfully runs with no result |
| // rows. Running with a single result of |0| is also acceptable. |
| sql::Statement s(recovery->db()->GetUniqueStatement("PRAGMA mmap_size")); |
| EXPECT_TRUE(!s.Step() || !s.ColumnInt64(0)); |
| } |
| |
| TEST_F(SQLRecoveryTest, RecoverDatabase) { |
| // As a side effect, AUTOINCREMENT creates the sqlite_sequence table for |
| // RecoverDatabase() to handle. |
| ASSERT_TRUE(db().Execute( |
| "CREATE TABLE x (id INTEGER PRIMARY KEY AUTOINCREMENT, v TEXT)")); |
| EXPECT_TRUE(db().Execute("INSERT INTO x (v) VALUES ('turtle')")); |
| EXPECT_TRUE(db().Execute("INSERT INTO x (v) VALUES ('truck')")); |
| EXPECT_TRUE(db().Execute("INSERT INTO x (v) VALUES ('trailer')")); |
| |
| // This table needs index and a unique index to work. |
| ASSERT_TRUE(db().Execute("CREATE TABLE y (name TEXT, v TEXT)")); |
| ASSERT_TRUE(db().Execute("CREATE UNIQUE INDEX y_name ON y(name)")); |
| ASSERT_TRUE(db().Execute("CREATE INDEX y_v ON y(v)")); |
| EXPECT_TRUE(db().Execute("INSERT INTO y VALUES ('jim', 'telephone')")); |
| EXPECT_TRUE(db().Execute("INSERT INTO y VALUES ('bob', 'truck')")); |
| EXPECT_TRUE(db().Execute("INSERT INTO y VALUES ('dean', 'trailer')")); |
| |
| // View which is the intersection of [x.v] and [y.v]. |
| ASSERT_TRUE(db().Execute( |
| "CREATE VIEW v AS SELECT x.v FROM x, y WHERE x.v = y.v")); |
| |
| // When an element is deleted from [x], trigger a delete on [y]. Between the |
| // BEGIN and END, [old] stands for the deleted rows from [x]. |
| ASSERT_TRUE(db().Execute("CREATE TRIGGER t AFTER DELETE ON x " |
| "BEGIN DELETE FROM y WHERE y.v = old.v; END")); |
| |
| // Save aside a copy of the original schema, verifying that it has the created |
| // items plus the sqlite_sequence table. |
| const std::string orig_schema(GetSchema(&db())); |
| ASSERT_EQ(6, std::count(orig_schema.begin(), orig_schema.end(), '\n')); |
| |
| const char kXSql[] = "SELECT * FROM x ORDER BY 1"; |
| const char kYSql[] = "SELECT * FROM y ORDER BY 1"; |
| const char kVSql[] = "SELECT * FROM v ORDER BY 1"; |
| EXPECT_EQ("1|turtle\n2|truck\n3|trailer", |
| ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| EXPECT_EQ("bob|truck\ndean|trailer\njim|telephone", |
| ExecuteWithResults(&db(), kYSql, "|", "\n")); |
| EXPECT_EQ("trailer\ntruck", ExecuteWithResults(&db(), kVSql, "|", "\n")); |
| |
| // Database handle is valid before recovery, poisoned after. |
| const char kTrivialSql[] = "SELECT COUNT(*) FROM sqlite_master"; |
| EXPECT_TRUE(db().IsSQLValid(kTrivialSql)); |
| sql::Recovery::RecoverDatabase(&db(), db_path()); |
| EXPECT_FALSE(db().IsSQLValid(kTrivialSql)); |
| |
| // Since the database was not corrupt, the entire schema and all |
| // data should be recovered. |
| ASSERT_TRUE(Reopen()); |
| ASSERT_EQ(orig_schema, GetSchema(&db())); |
| EXPECT_EQ("1|turtle\n2|truck\n3|trailer", |
| ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| EXPECT_EQ("bob|truck\ndean|trailer\njim|telephone", |
| ExecuteWithResults(&db(), kYSql, "|", "\n")); |
| EXPECT_EQ("trailer\ntruck", ExecuteWithResults(&db(), kVSql, "|", "\n")); |
| |
| // Test that the trigger works. |
| ASSERT_TRUE(db().Execute("DELETE FROM x WHERE v = 'truck'")); |
| EXPECT_EQ("1|turtle\n3|trailer", |
| ExecuteWithResults(&db(), kXSql, "|", "\n")); |
| EXPECT_EQ("dean|trailer\njim|telephone", |
| ExecuteWithResults(&db(), kYSql, "|", "\n")); |
| EXPECT_EQ("trailer", ExecuteWithResults(&db(), kVSql, "|", "\n")); |
| } |
| |
| } // namespace |