blob: 877827e68d7c6478dd949ce1f84ed9ce6b84696c [file] [log] [blame]
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains SQLite's grammar for SQL. Process this file
** using the lemon parser generator to generate C code that runs
** the parser. Lemon will also generate a header file containing
** numeric codes for all of the tokens.
*/
// All token codes are small integers with #defines that begin with "TK_"
%token_prefix TK_
// The type of the data attached to each token is Token. This is also the
// default type for non-terminals.
//
%token_type {Token}
%default_type {Token}
// The generated parser function takes a 4th argument as follows:
%extra_argument {Parse *pParse}
// This code runs whenever there is a syntax error
//
%syntax_error {
UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */
assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
}
%stack_overflow {
UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
sqlite3ErrorMsg(pParse, "parser stack overflow");
}
// The name of the generated procedure that implements the parser
// is as follows:
%name sqlite3Parser
// The following text is included near the beginning of the C source
// code file that implements the parser.
//
%include {
#include "sqliteInt.h"
/*
** Disable all error recovery processing in the parser push-down
** automaton.
*/
#define YYNOERRORRECOVERY 1
/*
** Make yytestcase() the same as testcase()
*/
#define yytestcase(X) testcase(X)
/*
** An instance of this structure holds information about the
** LIMIT clause of a SELECT statement.
*/
struct LimitVal {
Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */
Expr *pOffset; /* The OFFSET expression. NULL if there is none */
};
/*
** An instance of this structure is used to store the LIKE,
** GLOB, NOT LIKE, and NOT GLOB operators.
*/
struct LikeOp {
Token eOperator; /* "like" or "glob" or "regexp" */
int bNot; /* True if the NOT keyword is present */
};
/*
** An instance of the following structure describes the event of a
** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT,
** TK_DELETE, or TK_INSTEAD. If the event is of the form
**
** UPDATE ON (a,b,c)
**
** Then the "b" IdList records the list "a,b,c".
*/
struct TrigEvent { int a; IdList * b; };
/*
** An instance of this structure holds the ATTACH key and the key type.
*/
struct AttachKey { int type; Token key; };
} // end %include
// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
ecmd ::= SEMI.
ecmd ::= explain cmdx SEMI.
explain ::= . { sqlite3BeginParse(pParse, 0); }
%ifndef SQLITE_OMIT_EXPLAIN
explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); }
explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); }
%endif SQLITE_OMIT_EXPLAIN
cmdx ::= cmd. { sqlite3FinishCoding(pParse); }
///////////////////// Begin and end transactions. ////////////////////////////
//
cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);}
trans_opt ::= .
trans_opt ::= TRANSACTION.
trans_opt ::= TRANSACTION nm.
%type transtype {int}
transtype(A) ::= . {A = TK_DEFERRED;}
transtype(A) ::= DEFERRED(X). {A = @X;}
transtype(A) ::= IMMEDIATE(X). {A = @X;}
transtype(A) ::= EXCLUSIVE(X). {A = @X;}
cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);}
cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);}
cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);}
savepoint_opt ::= SAVEPOINT.
savepoint_opt ::= .
cmd ::= SAVEPOINT nm(X). {
sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X);
}
cmd ::= RELEASE savepoint_opt nm(X). {
sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X);
}
cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). {
sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X);
}
///////////////////// The CREATE TABLE statement ////////////////////////////
//
cmd ::= create_table create_table_args.
create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). {
sqlite3StartTable(pParse,&Y,&Z,T,0,0,E);
}
createkw(A) ::= CREATE(X). {
pParse->db->lookaside.bEnabled = 0;
A = X;
}
%type ifnotexists {int}
ifnotexists(A) ::= . {A = 0;}
ifnotexists(A) ::= IF NOT EXISTS. {A = 1;}
%type temp {int}
%ifndef SQLITE_OMIT_TEMPDB
temp(A) ::= TEMP. {A = 1;}
%endif SQLITE_OMIT_TEMPDB
temp(A) ::= . {A = 0;}
create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). {
sqlite3EndTable(pParse,&X,&E,F,0);
}
create_table_args ::= AS select(S). {
sqlite3EndTable(pParse,0,0,0,S);
sqlite3SelectDelete(pParse->db, S);
}
%type table_options {u8}
table_options(A) ::= . {A = 0;}
table_options(A) ::= WITHOUT nm(X). {
if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){
A = TF_WithoutRowid;
}else{
A = 0;
sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z);
}
}
columnlist ::= columnlist COMMA column.
columnlist ::= column.
// A "column" is a complete description of a single column in a
// CREATE TABLE statement. This includes the column name, its
// datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES,
// NOT NULL and so forth.
//
column(A) ::= columnid(X) type carglist. {
A.z = X.z;
A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n;
}
columnid(A) ::= nm(X). {
sqlite3AddColumn(pParse,&X);
A = X;
pParse->constraintName.n = 0;
}
// An IDENTIFIER can be a generic identifier, or one of several
// keywords. Any non-standard keyword can also be an identifier.
//
%token_class id ID|INDEXED.
// The following directive causes tokens ABORT, AFTER, ASC, etc. to
// fallback to ID if they will not parse as their original value.
// This obviates the need for the "id" nonterminal.
//
%fallback ID
ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW
CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR
IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN
QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW
ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT
%ifdef SQLITE_OMIT_COMPOUND_SELECT
EXCEPT INTERSECT UNION
%endif SQLITE_OMIT_COMPOUND_SELECT
REINDEX RENAME CTIME_KW IF
.
%wildcard ANY.
// Define operator precedence early so that this is the first occurrence
// of the operator tokens in the grammer. Keeping the operators together
// causes them to be assigned integer values that are close together,
// which keeps parser tables smaller.
//
// The token values assigned to these symbols is determined by the order
// in which lemon first sees them. It must be the case that ISNULL/NOTNULL,
// NE/EQ, GT/LE, and GE/LT are separated by only a single value. See
// the sqlite3ExprIfFalse() routine for additional information on this
// constraint.
//
%left OR.
%left AND.
%right NOT.
%left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ.
%left GT LE LT GE.
%right ESCAPE.
%left BITAND BITOR LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH REM.
%left CONCAT.
%left COLLATE.
%right BITNOT.
// And "ids" is an identifer-or-string.
//
%token_class ids ID|STRING.
// The name of a column or table can be any of the following:
//
%type nm {Token}
nm(A) ::= id(X). {A = X;}
nm(A) ::= STRING(X). {A = X;}
nm(A) ::= JOIN_KW(X). {A = X;}
// A typetoken is really one or more tokens that form a type name such
// as can be found after the column name in a CREATE TABLE statement.
// Multiple tokens are concatenated to form the value of the typetoken.
//
%type typetoken {Token}
type ::= .
type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);}
typetoken(A) ::= typename(X). {A = X;}
typetoken(A) ::= typename(X) LP signed RP(Y). {
A.z = X.z;
A.n = (int)(&Y.z[Y.n] - X.z);
}
typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). {
A.z = X.z;
A.n = (int)(&Y.z[Y.n] - X.z);
}
%type typename {Token}
typename(A) ::= ids(X). {A = X;}
typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);}
signed ::= plus_num.
signed ::= minus_num.
// "carglist" is a list of additional constraints that come after the
// column name and column type in a CREATE TABLE statement.
//
carglist ::= carglist ccons.
carglist ::= .
ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);}
ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);}
ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);}
ccons ::= DEFAULT MINUS(A) term(X). {
ExprSpan v;
v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0);
v.zStart = A.z;
v.zEnd = X.zEnd;
sqlite3AddDefaultValue(pParse,&v);
}
ccons ::= DEFAULT id(X). {
ExprSpan v;
spanExpr(&v, pParse, TK_STRING, &X);
sqlite3AddDefaultValue(pParse,&v);
}
// In addition to the type name, we also care about the primary key and
// UNIQUE constraints.
//
ccons ::= NULL onconf.
ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I).
{sqlite3AddPrimaryKey(pParse,0,R,I,Z);}
ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);}
ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);}
ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R).
{sqlite3CreateForeignKey(pParse,0,&T,TA,R);}
ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);}
ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);}
// The optional AUTOINCREMENT keyword
%type autoinc {int}
autoinc(X) ::= . {X = 0;}
autoinc(X) ::= AUTOINCR. {X = 1;}
// The next group of rules parses the arguments to a REFERENCES clause
// that determine if the referential integrity checking is deferred or
// or immediate and which determine what action to take if a ref-integ
// check fails.
//
%type refargs {int}
refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */}
refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; }
%type refarg {struct {int value; int mask;}}
refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; }
refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; }
refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; }
refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; }
%type refact {int}
refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */}
refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */}
refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */}
refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */}
refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */}
%type defer_subclause {int}
defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;}
defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;}
%type init_deferred_pred_opt {int}
init_deferred_pred_opt(A) ::= . {A = 0;}
init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;}
init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;}
conslist_opt(A) ::= . {A.n = 0; A.z = 0;}
conslist_opt(A) ::= COMMA(X) conslist. {A = X;}
conslist ::= conslist tconscomma tcons.
conslist ::= tcons.
tconscomma ::= COMMA. {pParse->constraintName.n = 0;}
tconscomma ::= .
tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;}
tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R).
{sqlite3AddPrimaryKey(pParse,X,R,I,0);}
tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
{sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);}
tcons ::= CHECK LP expr(E) RP onconf.
{sqlite3AddCheckConstraint(pParse,E.pExpr);}
tcons ::= FOREIGN KEY LP idxlist(FA) RP
REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). {
sqlite3CreateForeignKey(pParse, FA, &T, TA, R);
sqlite3DeferForeignKey(pParse, D);
}
%type defer_subclause_opt {int}
defer_subclause_opt(A) ::= . {A = 0;}
defer_subclause_opt(A) ::= defer_subclause(X). {A = X;}
// The following is a non-standard extension that allows us to declare the
// default behavior when there is a constraint conflict.
//
%type onconf {int}
%type orconf {u8}
%type resolvetype {int}
onconf(A) ::= . {A = OE_Default;}
onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;}
orconf(A) ::= . {A = OE_Default;}
orconf(A) ::= OR resolvetype(X). {A = (u8)X;}
resolvetype(A) ::= raisetype(X). {A = X;}
resolvetype(A) ::= IGNORE. {A = OE_Ignore;}
resolvetype(A) ::= REPLACE. {A = OE_Replace;}
////////////////////////// The DROP TABLE /////////////////////////////////////
//
cmd ::= DROP TABLE ifexists(E) fullname(X). {
sqlite3DropTable(pParse, X, 0, E);
}
%type ifexists {int}
ifexists(A) ::= IF EXISTS. {A = 1;}
ifexists(A) ::= . {A = 0;}
///////////////////// The CREATE VIEW statement /////////////////////////////
//
%ifndef SQLITE_OMIT_VIEW
cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). {
sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E);
}
cmd ::= DROP VIEW ifexists(E) fullname(X). {
sqlite3DropTable(pParse, X, 1, E);
}
%endif SQLITE_OMIT_VIEW
//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X). {
SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
sqlite3Select(pParse, X, &dest);
sqlite3SelectDelete(pParse->db, X);
}
%type select {Select*}
%destructor select {sqlite3SelectDelete(pParse->db, $$);}
%type selectnowith {Select*}
%destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);}
%type oneselect {Select*}
%destructor oneselect {sqlite3SelectDelete(pParse->db, $$);}
select(A) ::= with(W) selectnowith(X). {
Select *p = X, *pNext, *pLoop;
if( p ){
int cnt = 0, mxSelect;
p->pWith = W;
if( p->pPrior ){
pNext = 0;
for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
pLoop->pNext = pNext;
pLoop->selFlags |= SF_Compound;
}
mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
if( mxSelect && cnt>mxSelect ){
sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
}
}
}else{
sqlite3WithDelete(pParse->db, W);
}
A = p;
}
selectnowith(A) ::= oneselect(X). {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). {
Select *pRhs = Z;
if( pRhs && pRhs->pPrior ){
SrcList *pFrom;
Token x;
x.n = 0;
pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
}
if( pRhs ){
pRhs->op = (u8)Y;
pRhs->pPrior = X;
if( Y!=TK_ALL ) pParse->hasCompound = 1;
}else{
sqlite3SelectDelete(pParse->db, X);
}
A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP). {A = @OP;}
multiselect_op(A) ::= UNION ALL. {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;}
%endif SQLITE_OMIT_COMPOUND_SELECT
oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y)
groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset);
#if SELECTTRACE_ENABLED
/* Populate the Select.zSelName[] string that is used to help with
** query planner debugging, to differentiate between multiple Select
** objects in a complex query.
**
** If the SELECT keyword is immediately followed by a C-style comment
** then extract the first few alphanumeric characters from within that
** comment to be the zSelName value. Otherwise, the label is #N where
** is an integer that is incremented with each SELECT statement seen.
*/
if( A!=0 ){
const char *z = S.z+6;
int i;
sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d",
++pParse->nSelect);
while( z[0]==' ' ) z++;
if( z[0]=='/' && z[1]=='*' ){
z += 2;
while( z[0]==' ' ) z++;
for(i=0; sqlite3Isalnum(z[i]); i++){}
sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z);
}
}
#endif /* SELECTRACE_ENABLED */
}
oneselect(A) ::= values(X). {A = X;}
%type values {Select*}
%destructor values {sqlite3SelectDelete(pParse->db, $$);}
values(A) ::= VALUES LP nexprlist(X) RP. {
A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0);
}
values(A) ::= values(X) COMMA LP exprlist(Y) RP. {
Select *pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values,0,0);
if( pRight ){
pRight->op = TK_ALL;
pRight->pPrior = X;
A = pRight;
}else{
A = X;
}
}
// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {u16}
distinct(A) ::= DISTINCT. {A = SF_Distinct;}
distinct(A) ::= ALL. {A = 0;}
distinct(A) ::= . {A = 0;}
// selcollist is a list of expressions that are to become the return
// values of the SELECT statement. The "*" in statements like
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ALL.
//
%type selcollist {ExprList*}
%destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);}
%type sclp {ExprList*}
%destructor sclp {sqlite3ExprListDelete(pParse->db, $$);}
sclp(A) ::= selcollist(X) COMMA. {A = X;}
sclp(A) ::= . {A = 0;}
selcollist(A) ::= sclp(P) expr(X) as(Y). {
A = sqlite3ExprListAppend(pParse, P, X.pExpr);
if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1);
sqlite3ExprListSetSpan(pParse,A,&X);
}
selcollist(A) ::= sclp(P) STAR. {
Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
A = sqlite3ExprListAppend(pParse, P, p);
}
selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). {
Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y);
Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
A = sqlite3ExprListAppend(pParse,P, pDot);
}
// An option "AS <id>" phrase that can follow one of the expressions that
// define the result set, or one of the tables in the FROM clause.
//
%type as {Token}
as(X) ::= AS nm(Y). {X = Y;}
as(X) ::= ids(Y). {X = Y;}
as(X) ::= . {X.n = 0;}
%type seltablist {SrcList*}
%destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);}
%type stl_prefix {SrcList*}
%destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);}
%type from {SrcList*}
%destructor from {sqlite3SrcListDelete(pParse->db, $$);}
// A complete FROM clause.
//
from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));}
from(A) ::= FROM seltablist(X). {
A = X;
sqlite3SrcListShiftJoinType(A);
}
// "seltablist" is a "Select Table List" - the content of the FROM clause
// in a SELECT statement. "stl_prefix" is a prefix of this list.
//
stl_prefix(A) ::= seltablist(X) joinop(Y). {
A = X;
if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y;
}
stl_prefix(A) ::= . {A = 0;}
seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I)
on_opt(N) using_opt(U). {
A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U);
sqlite3SrcListIndexedBy(pParse, A, &I);
}
%ifndef SQLITE_OMIT_SUBQUERY
seltablist(A) ::= stl_prefix(X) LP select(S) RP
as(Z) on_opt(N) using_opt(U). {
A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U);
}
seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP
as(Z) on_opt(N) using_opt(U). {
if( X==0 && Z.n==0 && N==0 && U==0 ){
A = F;
}else if( F->nSrc==1 ){
A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U);
if( A ){
struct SrcList_item *pNew = &A->a[A->nSrc-1];
struct SrcList_item *pOld = F->a;
pNew->zName = pOld->zName;
pNew->zDatabase = pOld->zDatabase;
pNew->pSelect = pOld->pSelect;
pOld->zName = pOld->zDatabase = 0;
pOld->pSelect = 0;
}
sqlite3SrcListDelete(pParse->db, F);
}else{
Select *pSubquery;
sqlite3SrcListShiftJoinType(F);
pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0);
A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U);
}
}
%endif SQLITE_OMIT_SUBQUERY
%type dbnm {Token}
dbnm(A) ::= . {A.z=0; A.n=0;}
dbnm(A) ::= DOT nm(X). {A = X;}
%type fullname {SrcList*}
%destructor fullname {sqlite3SrcListDelete(pParse->db, $$);}
fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);}
%type joinop {int}
%type joinop2 {int}
joinop(X) ::= COMMA|JOIN. { X = JT_INNER; }
joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); }
joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); }
joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN.
{ X = sqlite3JoinType(pParse,&A,&B,&C); }
%type on_opt {Expr*}
%destructor on_opt {sqlite3ExprDelete(pParse->db, $$);}
on_opt(N) ::= ON expr(E). {N = E.pExpr;}
on_opt(N) ::= . {N = 0;}
// Note that this block abuses the Token type just a little. If there is
// no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If
// there is an INDEXED BY clause, then the token is populated as per normal,
// with z pointing to the token data and n containing the number of bytes
// in the token.
//
// If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is
// normally illegal. The sqlite3SrcListIndexedBy() function
// recognizes and interprets this as a special case.
//
%type indexed_opt {Token}
indexed_opt(A) ::= . {A.z=0; A.n=0;}
indexed_opt(A) ::= INDEXED BY nm(X). {A = X;}
indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;}
%type using_opt {IdList*}
%destructor using_opt {sqlite3IdListDelete(pParse->db, $$);}
using_opt(U) ::= USING LP idlist(L) RP. {U = L;}
using_opt(U) ::= . {U = 0;}
%type orderby_opt {ExprList*}
%destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);}
%type sortlist {ExprList*}
%destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);}
orderby_opt(A) ::= . {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). {
A = sqlite3ExprListAppend(pParse,X,Y.pExpr);
if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
}
sortlist(A) ::= expr(Y) sortorder(Z). {
A = sqlite3ExprListAppend(pParse,0,Y.pExpr);
if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z;
}
%type sortorder {int}
sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;}
sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;}
sortorder(A) ::= . {A = SQLITE_SO_ASC;}
%type groupby_opt {ExprList*}
%destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);}
groupby_opt(A) ::= . {A = 0;}
groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;}
%type having_opt {Expr*}
%destructor having_opt {sqlite3ExprDelete(pParse->db, $$);}
having_opt(A) ::= . {A = 0;}
having_opt(A) ::= HAVING expr(X). {A = X.pExpr;}
%type limit_opt {struct LimitVal}
// The destructor for limit_opt will never fire in the current grammar.
// The limit_opt non-terminal only occurs at the end of a single production
// rule for SELECT statements. As soon as the rule that create the
// limit_opt non-terminal reduces, the SELECT statement rule will also
// reduce. So there is never a limit_opt non-terminal on the stack
// except as a transient. So there is never anything to destroy.
//
//%destructor limit_opt {
// sqlite3ExprDelete(pParse->db, $$.pLimit);
// sqlite3ExprDelete(pParse->db, $$.pOffset);
//}
limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;}
limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;}
limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y).
{A.pLimit = X.pExpr; A.pOffset = Y.pExpr;}
limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y).
{A.pOffset = X.pExpr; A.pLimit = Y.pExpr;}
/////////////////////////// The DELETE statement /////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W)
orderby_opt(O) limit_opt(L). {
sqlite3WithPush(pParse, C, 1);
sqlite3SrcListIndexedBy(pParse, X, &I);
W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE");
sqlite3DeleteFrom(pParse,X,W);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). {
sqlite3WithPush(pParse, C, 1);
sqlite3SrcListIndexedBy(pParse, X, &I);
sqlite3DeleteFrom(pParse,X,W);
}
%endif
%type where_opt {Expr*}
%destructor where_opt {sqlite3ExprDelete(pParse->db, $$);}
where_opt(A) ::= . {A = 0;}
where_opt(A) ::= WHERE expr(X). {A = X.pExpr;}
////////////////////////// The UPDATE command ////////////////////////////////
//
%ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
where_opt(W) orderby_opt(O) limit_opt(L). {
sqlite3WithPush(pParse, C, 1);
sqlite3SrcListIndexedBy(pParse, X, &I);
sqlite3ExprListCheckLength(pParse,Y,"set list");
W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE");
sqlite3Update(pParse,X,Y,W,R);
}
%endif
%ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT
cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y)
where_opt(W). {
sqlite3WithPush(pParse, C, 1);
sqlite3SrcListIndexedBy(pParse, X, &I);
sqlite3ExprListCheckLength(pParse,Y,"set list");
sqlite3Update(pParse,X,Y,W,R);
}
%endif
%type setlist {ExprList*}
%destructor setlist {sqlite3ExprListDelete(pParse->db, $$);}
setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). {
A = sqlite3ExprListAppend(pParse, Z, Y.pExpr);
sqlite3ExprListSetName(pParse, A, &X, 1);
}
setlist(A) ::= nm(X) EQ expr(Y). {
A = sqlite3ExprListAppend(pParse, 0, Y.pExpr);
sqlite3ExprListSetName(pParse, A, &X, 1);
}
////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= with(W) insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). {
sqlite3WithPush(pParse, W, 1);
sqlite3Insert(pParse, X, S, F, R);
}
cmd ::= with(W) insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES.
{
sqlite3WithPush(pParse, W, 1);
sqlite3Insert(pParse, X, 0, F, R);
}
%type insert_cmd {u8}
insert_cmd(A) ::= INSERT orconf(R). {A = R;}
insert_cmd(A) ::= REPLACE. {A = OE_Replace;}
%type inscollist_opt {IdList*}
%destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);}
%type idlist {IdList*}
%destructor idlist {sqlite3IdListDelete(pParse->db, $$);}
inscollist_opt(A) ::= . {A = 0;}
inscollist_opt(A) ::= LP idlist(X) RP. {A = X;}
idlist(A) ::= idlist(X) COMMA nm(Y).
{A = sqlite3IdListAppend(pParse->db,X,&Y);}
idlist(A) ::= nm(Y).
{A = sqlite3IdListAppend(pParse->db,0,&Y);}
/////////////////////////// Expression Processing /////////////////////////////
//
%type expr {ExprSpan}
%destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);}
%type term {ExprSpan}
%destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);}
%include {
/* This is a utility routine used to set the ExprSpan.zStart and
** ExprSpan.zEnd values of pOut so that the span covers the complete
** range of text beginning with pStart and going to the end of pEnd.
*/
static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){
pOut->zStart = pStart->z;
pOut->zEnd = &pEnd->z[pEnd->n];
}
/* Construct a new Expr object from a single identifier. Use the
** new Expr to populate pOut. Set the span of pOut to be the identifier
** that created the expression.
*/
static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){
pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue);
pOut->zStart = pValue->z;
pOut->zEnd = &pValue->z[pValue->n];
}
}
expr(A) ::= term(X). {A = X;}
expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);}
term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);}
expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);}
expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);}
expr(A) ::= nm(X) DOT nm(Y). {
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
spanSet(&A,&X,&Y);
}
expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). {
Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X);
Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y);
Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z);
Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
spanSet(&A,&X,&Z);
}
term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);}
term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);}
expr(A) ::= VARIABLE(X). {
if( X.n>=2 && X.z[0]=='#' && sqlite3Isdigit(X.z[1]) ){
/* When doing a nested parse, one can include terms in an expression
** that look like this: #1 #2 ... These terms refer to registers
** in the virtual machine. #N is the N-th register. */
if( pParse->nested==0 ){
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X);
A.pExpr = 0;
}else{
A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X);
if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable);
}
}else{
spanExpr(&A, pParse, TK_VARIABLE, &X);
sqlite3ExprAssignVarNumber(pParse, A.pExpr);
}
spanSet(&A, &X, &X);
}
expr(A) ::= expr(E) COLLATE ids(C). {
A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C);
A.zStart = E.zStart;
A.zEnd = &C.z[C.n];
}
%ifndef SQLITE_OMIT_CAST
expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). {
A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T);
spanSet(&A,&X,&Y);
}
%endif SQLITE_OMIT_CAST
expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). {
if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X);
}
A.pExpr = sqlite3ExprFunction(pParse, Y, &X);
spanSet(&A,&X,&E);
if( D && A.pExpr ){
A.pExpr->flags |= EP_Distinct;
}
}
expr(A) ::= id(X) LP STAR RP(E). {
A.pExpr = sqlite3ExprFunction(pParse, 0, &X);
spanSet(&A,&X,&E);
}
term(A) ::= CTIME_KW(OP). {
A.pExpr = sqlite3ExprFunction(pParse, 0, &OP);
spanSet(&A, &OP, &OP);
}
%include {
/* This routine constructs a binary expression node out of two ExprSpan
** objects and uses the result to populate a new ExprSpan object.
*/
static void spanBinaryExpr(
ExprSpan *pOut, /* Write the result here */
Parse *pParse, /* The parsing context. Errors accumulate here */
int op, /* The binary operation */
ExprSpan *pLeft, /* The left operand */
ExprSpan *pRight /* The right operand */
){
pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
pOut->zStart = pLeft->zStart;
pOut->zEnd = pRight->zEnd;
}
}
expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y).
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y).
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y).
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y).
{spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);}
%type likeop {struct LikeOp}
likeop(A) ::= LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 0;}
likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;}
expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] {
ExprList *pList;
pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
A.zStart = X.zStart;
A.zEnd = Y.zEnd;
if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}
expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] {
ExprList *pList;
pList = sqlite3ExprListAppend(pParse,0, Y.pExpr);
pList = sqlite3ExprListAppend(pParse,pList, X.pExpr);
pList = sqlite3ExprListAppend(pParse,pList, E.pExpr);
A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator);
if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
A.zStart = X.zStart;
A.zEnd = E.zEnd;
if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc;
}
%include {
/* Construct an expression node for a unary postfix operator
*/
static void spanUnaryPostfix(
ExprSpan *pOut, /* Write the new expression node here */
Parse *pParse, /* Parsing context to record errors */
int op, /* The operator */
ExprSpan *pOperand, /* The operand */
Token *pPostOp /* The operand token for setting the span */
){
pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
pOut->zStart = pOperand->zStart;
pOut->zEnd = &pPostOp->z[pPostOp->n];
}
}
expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);}
expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);}
%include {
/* A routine to convert a binary TK_IS or TK_ISNOT expression into a
** unary TK_ISNULL or TK_NOTNULL expression. */
static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){
sqlite3 *db = pParse->db;
if( pY && pA && pY->op==TK_NULL ){
pA->op = (u8)op;
sqlite3ExprDelete(db, pA->pRight);
pA->pRight = 0;
}
}
}
// expr1 IS expr2
// expr1 IS NOT expr2
//
// If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2
// is any other expression, code as TK_IS or TK_ISNOT.
//
expr(A) ::= expr(X) IS expr(Y). {
spanBinaryExpr(&A,pParse,TK_IS,&X,&Y);
binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL);
}
expr(A) ::= expr(X) IS NOT expr(Y). {
spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y);
binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL);
}
%include {
/* Construct an expression node for a unary prefix operator
*/
static void spanUnaryPrefix(
ExprSpan *pOut, /* Write the new expression node here */
Parse *pParse, /* Parsing context to record errors */
int op, /* The operator */
ExprSpan *pOperand, /* The operand */
Token *pPreOp /* The operand token for setting the span */
){
pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0);
pOut->zStart = pPreOp->z;
pOut->zEnd = pOperand->zEnd;
}
}
expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);}
expr(A) ::= MINUS(B) expr(X). [BITNOT]
{spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);}
expr(A) ::= PLUS(B) expr(X). [BITNOT]
{spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);}
%type between_op {int}
between_op(A) ::= BETWEEN. {A = 0;}
between_op(A) ::= NOT BETWEEN. {A = 1;}
expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] {
ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr);
pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr);
A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0);
if( A.pExpr ){
A.pExpr->x.pList = pList;
}else{
sqlite3ExprListDelete(pParse->db, pList);
}
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
A.zStart = W.zStart;
A.zEnd = Y.zEnd;
}
%ifndef SQLITE_OMIT_SUBQUERY
%type in_op {int}
in_op(A) ::= IN. {A = 0;}
in_op(A) ::= NOT IN. {A = 1;}
expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] {
if( Y==0 ){
/* Expressions of the form
**
** expr1 IN ()
** expr1 NOT IN ()
**
** simplify to constants 0 (false) and 1 (true), respectively,
** regardless of the value of expr1.
*/
A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]);
sqlite3ExprDelete(pParse->db, X.pExpr);
}else if( Y->nExpr==1 ){
/* Expressions of the form:
**
** expr1 IN (?1)
** expr1 NOT IN (?2)
**
** with exactly one value on the RHS can be simplified to something
** like this:
**
** expr1 == ?1
** expr1 <> ?2
**
** But, the RHS of the == or <> is marked with the EP_Generic flag
** so that it may not contribute to the computation of comparison
** affinity or the collating sequence to use for comparison. Otherwise,
** the semantics would be subtly different from IN or NOT IN.
*/
Expr *pRHS = Y->a[0].pExpr;
Y->a[0].pExpr = 0;
sqlite3ExprListDelete(pParse->db, Y);
/* pRHS cannot be NULL because a malloc error would have been detected
** before now and control would have never reached this point */
if( ALWAYS(pRHS) ){
pRHS->flags &= ~EP_Collate;
pRHS->flags |= EP_Generic;
}
A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0);
}else{
A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
if( A.pExpr ){
A.pExpr->x.pList = Y;
sqlite3ExprSetHeight(pParse, A.pExpr);
}else{
sqlite3ExprListDelete(pParse->db, Y);
}
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
}
A.zStart = X.zStart;
A.zEnd = &E.z[E.n];
}
expr(A) ::= LP(B) select(X) RP(E). {
A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
if( A.pExpr ){
A.pExpr->x.pSelect = X;
ExprSetProperty(A.pExpr, EP_xIsSelect);
sqlite3ExprSetHeight(pParse, A.pExpr);
}else{
sqlite3SelectDelete(pParse->db, X);
}
A.zStart = B.z;
A.zEnd = &E.z[E.n];
}
expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] {
A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
if( A.pExpr ){
A.pExpr->x.pSelect = Y;
ExprSetProperty(A.pExpr, EP_xIsSelect);
sqlite3ExprSetHeight(pParse, A.pExpr);
}else{
sqlite3SelectDelete(pParse->db, Y);
}
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
A.zStart = X.zStart;
A.zEnd = &E.z[E.n];
}
expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] {
SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z);
A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0);
if( A.pExpr ){
A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
ExprSetProperty(A.pExpr, EP_xIsSelect);
sqlite3ExprSetHeight(pParse, A.pExpr);
}else{
sqlite3SrcListDelete(pParse->db, pSrc);
}
if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0);
A.zStart = X.zStart;
A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n];
}
expr(A) ::= EXISTS(B) LP select(Y) RP(E). {
Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
if( p ){
p->x.pSelect = Y;
ExprSetProperty(p, EP_xIsSelect);
sqlite3ExprSetHeight(pParse, p);
}else{
sqlite3SelectDelete(pParse->db, Y);
}
A.zStart = B.z;
A.zEnd = &E.z[E.n];
}
%endif SQLITE_OMIT_SUBQUERY
/* CASE expressions */
expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). {
A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0);
if( A.pExpr ){
A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y;
sqlite3ExprSetHeight(pParse, A.pExpr);
}else{
sqlite3ExprListDelete(pParse->db, Y);
sqlite3ExprDelete(pParse->db, Z);
}
A.zStart = C.z;
A.zEnd = &E.z[E.n];
}
%type case_exprlist {ExprList*}
%destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);}
case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). {
A = sqlite3ExprListAppend(pParse,X, Y.pExpr);
A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). {
A = sqlite3ExprListAppend(pParse,0, Y.pExpr);
A = sqlite3ExprListAppend(pParse,A, Z.pExpr);
}
%type case_else {Expr*}
%destructor case_else {sqlite3ExprDelete(pParse->db, $$);}
case_else(A) ::= ELSE expr(X). {A = X.pExpr;}
case_else(A) ::= . {A = 0;}
%type case_operand {Expr*}
%destructor case_operand {sqlite3ExprDelete(pParse->db, $$);}
case_operand(A) ::= expr(X). {A = X.pExpr;}
case_operand(A) ::= . {A = 0;}
%type exprlist {ExprList*}
%destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);}
%type nexprlist {ExprList*}
%destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);}
exprlist(A) ::= nexprlist(X). {A = X;}
exprlist(A) ::= . {A = 0;}
nexprlist(A) ::= nexprlist(X) COMMA expr(Y).
{A = sqlite3ExprListAppend(pParse,X,Y.pExpr);}
nexprlist(A) ::= expr(Y).
{A = sqlite3ExprListAppend(pParse,0,Y.pExpr);}
///////////////////////////// The CREATE INDEX command ///////////////////////
//
cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D)
ON nm(Y) LP idxlist(Z) RP where_opt(W). {
sqlite3CreateIndex(pParse, &X, &D,
sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U,
&S, W, SQLITE_SO_ASC, NE);
}
%type uniqueflag {int}
uniqueflag(A) ::= UNIQUE. {A = OE_Abort;}
uniqueflag(A) ::= . {A = OE_None;}
%type idxlist {ExprList*}
%destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);}
%type idxlist_opt {ExprList*}
%destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);}
idxlist_opt(A) ::= . {A = 0;}
idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;}
idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). {
Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C);
A = sqlite3ExprListAppend(pParse,X, p);
sqlite3ExprListSetName(pParse,A,&Y,1);
sqlite3ExprListCheckLength(pParse, A, "index");
if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
}
idxlist(A) ::= nm(Y) collate(C) sortorder(Z). {
Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C);
A = sqlite3ExprListAppend(pParse,0, p);
sqlite3ExprListSetName(pParse, A, &Y, 1);
sqlite3ExprListCheckLength(pParse, A, "index");
if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z;
}
%type collate {Token}
collate(C) ::= . {C.z = 0; C.n = 0;}
collate(C) ::= COLLATE ids(X). {C = X;}
///////////////////////////// The DROP INDEX command /////////////////////////
//
cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);}
///////////////////////////// The VACUUM command /////////////////////////////
//
%ifndef SQLITE_OMIT_VACUUM
%ifndef SQLITE_OMIT_ATTACH
cmd ::= VACUUM. {sqlite3Vacuum(pParse);}
cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);}
%endif SQLITE_OMIT_ATTACH
%endif SQLITE_OMIT_VACUUM
///////////////////////////// The PRAGMA command /////////////////////////////
//
%ifndef SQLITE_OMIT_PRAGMA
cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);}
cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);}
cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y).
{sqlite3Pragma(pParse,&X,&Z,&Y,1);}
cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP.
{sqlite3Pragma(pParse,&X,&Z,&Y,1);}
nmnum(A) ::= plus_num(X). {A = X;}
nmnum(A) ::= nm(X). {A = X;}
nmnum(A) ::= ON(X). {A = X;}
nmnum(A) ::= DELETE(X). {A = X;}
nmnum(A) ::= DEFAULT(X). {A = X;}
%endif SQLITE_OMIT_PRAGMA
%token_class number INTEGER|FLOAT.
plus_num(A) ::= PLUS number(X). {A = X;}
plus_num(A) ::= number(X). {A = X;}
minus_num(A) ::= MINUS number(X). {A = X;}
//////////////////////////// The CREATE TRIGGER command /////////////////////
%ifndef SQLITE_OMIT_TRIGGER
cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). {
Token all;
all.z = A.z;
all.n = (int)(Z.z - A.z) + Z.n;
sqlite3FinishTrigger(pParse, S, &all);
}
trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z)
trigger_time(C) trigger_event(D)
ON fullname(E) foreach_clause when_clause(G). {
sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR);
A = (Z.n==0?B:Z);
}
%type trigger_time {int}
trigger_time(A) ::= BEFORE. { A = TK_BEFORE; }
trigger_time(A) ::= AFTER. { A = TK_AFTER; }
trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;}
trigger_time(A) ::= . { A = TK_BEFORE; }
%type trigger_event {struct TrigEvent}
%destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);}
trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;}
trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;}
trigger_event(A) ::= UPDATE OF idlist(X). {A.a = TK_UPDATE; A.b = X;}
foreach_clause ::= .
foreach_clause ::= FOR EACH ROW.
%type when_clause {Expr*}
%destructor when_clause {sqlite3ExprDelete(pParse->db, $$);}
when_clause(A) ::= . { A = 0; }
when_clause(A) ::= WHEN expr(X). { A = X.pExpr; }
%type trigger_cmd_list {TriggerStep*}
%destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);}
trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. {
assert( Y!=0 );
Y->pLast->pNext = X;
Y->pLast = X;
A = Y;
}
trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. {
assert( X!=0 );
X->pLast = X;
A = X;
}
// Disallow qualified table names on INSERT, UPDATE, and DELETE statements
// within a trigger. The table to INSERT, UPDATE, or DELETE is always in
// the same database as the table that the trigger fires on.
//
%type trnm {Token}
trnm(A) ::= nm(X). {A = X;}
trnm(A) ::= nm DOT nm(X). {
A = X;
sqlite3ErrorMsg(pParse,
"qualified table names are not allowed on INSERT, UPDATE, and DELETE "
"statements within triggers");
}
// Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE
// statements within triggers. We make a specific error message for this
// since it is an exception to the default grammar rules.
//
tridxby ::= .
tridxby ::= INDEXED BY nm. {
sqlite3ErrorMsg(pParse,
"the INDEXED BY clause is not allowed on UPDATE or DELETE statements "
"within triggers");
}
tridxby ::= NOT INDEXED. {
sqlite3ErrorMsg(pParse,
"the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
"within triggers");
}
%type trigger_cmd {TriggerStep*}
%destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);}
// UPDATE
trigger_cmd(A) ::=
UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z).
{ A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); }
// INSERT
trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S).
{A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);}
// DELETE
trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y).
{A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);}
// SELECT
trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); }
// The special RAISE expression that may occur in trigger programs
expr(A) ::= RAISE(X) LP IGNORE RP(Y). {
A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0);
if( A.pExpr ){
A.pExpr->affinity = OE_Ignore;
}
A.zStart = X.z;
A.zEnd = &Y.z[Y.n];
}
expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). {
A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z);
if( A.pExpr ) {
A.pExpr->affinity = (char)T;
}
A.zStart = X.z;
A.zEnd = &Y.z[Y.n];
}
%endif !SQLITE_OMIT_TRIGGER
%type raisetype {int}
raisetype(A) ::= ROLLBACK. {A = OE_Rollback;}
raisetype(A) ::= ABORT. {A = OE_Abort;}
raisetype(A) ::= FAIL. {A = OE_Fail;}
//////////////////////// DROP TRIGGER statement //////////////////////////////
%ifndef SQLITE_OMIT_TRIGGER
cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). {
sqlite3DropTrigger(pParse,X,NOERR);
}
%endif !SQLITE_OMIT_TRIGGER
//////////////////////// ATTACH DATABASE file AS name /////////////////////////
%ifndef SQLITE_OMIT_ATTACH
cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). {
sqlite3Attach(pParse, F.pExpr, D.pExpr, K);
}
cmd ::= DETACH database_kw_opt expr(D). {
sqlite3Detach(pParse, D.pExpr);
}
%type key_opt {Expr*}
%destructor key_opt {sqlite3ExprDelete(pParse->db, $$);}
key_opt(A) ::= . { A = 0; }
key_opt(A) ::= KEY expr(X). { A = X.pExpr; }
database_kw_opt ::= DATABASE.
database_kw_opt ::= .
%endif SQLITE_OMIT_ATTACH
////////////////////////// REINDEX collation //////////////////////////////////
%ifndef SQLITE_OMIT_REINDEX
cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);}
cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);}
%endif SQLITE_OMIT_REINDEX
/////////////////////////////////// ANALYZE ///////////////////////////////////
%ifndef SQLITE_OMIT_ANALYZE
cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);}
cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);}
%endif
//////////////////////// ALTER TABLE table ... ////////////////////////////////
%ifndef SQLITE_OMIT_ALTERTABLE
cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). {
sqlite3AlterRenameTable(pParse,X,&Z);
}
cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). {
sqlite3AlterFinishAddColumn(pParse, &Y);
}
add_column_fullname ::= fullname(X). {
pParse->db->lookaside.bEnabled = 0;
sqlite3AlterBeginAddColumn(pParse, X);
}
kwcolumn_opt ::= .
kwcolumn_opt ::= COLUMNKW.
%endif SQLITE_OMIT_ALTERTABLE
//////////////////////// CREATE VIRTUAL TABLE ... /////////////////////////////
%ifndef SQLITE_OMIT_VIRTUALTABLE
cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);}
cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);}
create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E)
nm(X) dbnm(Y) USING nm(Z). {
sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E);
}
vtabarglist ::= vtabarg.
vtabarglist ::= vtabarglist COMMA vtabarg.
vtabarg ::= . {sqlite3VtabArgInit(pParse);}
vtabarg ::= vtabarg vtabargtoken.
vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);}
vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);}
lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);}
anylist ::= .
anylist ::= anylist LP anylist RP.
anylist ::= anylist ANY.
%endif SQLITE_OMIT_VIRTUALTABLE
//////////////////////// COMMON TABLE EXPRESSIONS ////////////////////////////
%type with {With*}
%type wqlist {With*}
%destructor with {sqlite3WithDelete(pParse->db, $$);}
%destructor wqlist {sqlite3WithDelete(pParse->db, $$);}
with(A) ::= . {A = 0;}
%ifndef SQLITE_OMIT_CTE
with(A) ::= WITH wqlist(W). { A = W; }
with(A) ::= WITH RECURSIVE wqlist(W). { A = W; }
wqlist(A) ::= nm(X) idxlist_opt(Y) AS LP select(Z) RP. {
A = sqlite3WithAdd(pParse, 0, &X, Y, Z);
}
wqlist(A) ::= wqlist(W) COMMA nm(X) idxlist_opt(Y) AS LP select(Z) RP. {
A = sqlite3WithAdd(pParse, W, &X, Y, Z);
}
%endif SQLITE_OMIT_CTE