blob: 6b6db42477883f93423e7d132c4d140395398d4d [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/browser/byte_stream.h"
#include <stddef.h>
#include <deque>
#include <limits>
#include "base/bind.h"
#include "base/callback.h"
#include "base/memory/ref_counted.h"
#include "base/test/test_simple_task_runner.h"
#include "net/base/io_buffer.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace content {
namespace {
void CountCallbacks(int* counter) {
++*counter;
}
} // namespace
class ByteStreamTest : public testing::Test {
public:
ByteStreamTest();
// Create a new IO buffer of the given |buffer_size|. Details of the
// contents of the created buffer will be kept, and can be validated
// by ValidateIOBuffer.
scoped_refptr<net::IOBuffer> NewIOBuffer(size_t buffer_size) {
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(buffer_size));
char *bufferp = buffer->data();
for (size_t i = 0; i < buffer_size; i++)
bufferp[i] = (i + producing_seed_key_) % (1 << sizeof(char));
pointer_queue_.push_back(bufferp);
length_queue_.push_back(buffer_size);
++producing_seed_key_;
return buffer;
}
// Create an IOBuffer of the appropriate size and add it to the
// ByteStream, returning the result of the ByteStream::Write.
// Separate function to avoid duplication of buffer_size in test
// calls.
bool Write(ByteStreamWriter* byte_stream_input, size_t buffer_size) {
return byte_stream_input->Write(NewIOBuffer(buffer_size), buffer_size);
}
// Validate that we have the IOBuffer we expect. This routine must be
// called on buffers that were allocated from NewIOBuffer, and in the
// order that they were allocated. Calls to NewIOBuffer &&
// ValidateIOBuffer may be interleaved.
bool ValidateIOBuffer(
scoped_refptr<net::IOBuffer> buffer, size_t buffer_size) {
char *bufferp = buffer->data();
char *expected_ptr = pointer_queue_.front();
size_t expected_length = length_queue_.front();
pointer_queue_.pop_front();
length_queue_.pop_front();
++consuming_seed_key_;
EXPECT_EQ(expected_ptr, bufferp);
if (expected_ptr != bufferp)
return false;
EXPECT_EQ(expected_length, buffer_size);
if (expected_length != buffer_size)
return false;
for (size_t i = 0; i < buffer_size; i++) {
// Already incremented, so subtract one from the key.
EXPECT_EQ(static_cast<int>((i + consuming_seed_key_ - 1)
% (1 << sizeof(char))),
bufferp[i]);
if (static_cast<int>((i + consuming_seed_key_ - 1) %
(1 << sizeof(char))) != bufferp[i]) {
return false;
}
}
return true;
}
protected:
base::MessageLoop message_loop_;
private:
int producing_seed_key_;
int consuming_seed_key_;
std::deque<char*> pointer_queue_;
std::deque<size_t> length_queue_;
};
ByteStreamTest::ByteStreamTest()
: producing_seed_key_(0),
consuming_seed_key_(0) { }
// Confirm that filling and emptying the stream works properly, and that
// we get full triggers when we expect.
TEST_F(ByteStreamTest, ByteStream_PushBack) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
3 * 1024, &byte_stream_input, &byte_stream_output);
// Push a series of IO buffers on; test pushback happening and
// that it's advisory.
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
EXPECT_FALSE(Write(byte_stream_input.get(), 1));
EXPECT_FALSE(Write(byte_stream_input.get(), 1024));
// Flush
byte_stream_input->Close(0);
EXPECT_EQ(4 * 1024U + 1U, byte_stream_input->GetTotalBufferedBytes());
message_loop_.RunUntilIdle();
// Data already sent to reader is also counted in.
EXPECT_EQ(4 * 1024U + 1U, byte_stream_input->GetTotalBufferedBytes());
// Pull the IO buffers out; do we get the same buffers and do they
// have the same contents?
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
message_loop_.RunUntilIdle();
// Reader now knows that all data is read out.
EXPECT_EQ(1024U, byte_stream_input->GetTotalBufferedBytes());
}
// Confirm that Flush() method makes the writer to send written contents to
// the reader.
TEST_F(ByteStreamTest, ByteStream_Flush) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
1024, &byte_stream_input, &byte_stream_output);
EXPECT_TRUE(Write(byte_stream_input.get(), 1));
message_loop_.RunUntilIdle();
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length = 0;
// Check that data is not sent to the reader yet.
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Flush();
message_loop_.RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
// Check that it's ok to Flush() an empty writer.
byte_stream_input->Flush();
message_loop_.RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(0);
message_loop_.RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Same as above, only use knowledge of the internals to confirm
// that we're getting pushback even when data's split across the two
// objects
TEST_F(ByteStreamTest, ByteStream_PushBackSplit) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
9 * 1024, &byte_stream_input, &byte_stream_output);
// Push a series of IO buffers on; test pushback happening and
// that it's advisory.
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
message_loop_.RunUntilIdle();
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
message_loop_.RunUntilIdle();
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
message_loop_.RunUntilIdle();
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
message_loop_.RunUntilIdle();
EXPECT_FALSE(Write(byte_stream_input.get(), 6 * 1024));
message_loop_.RunUntilIdle();
// Pull the IO buffers out; do we get the same buffers and do they
// have the same contents?
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that a Close() notification transmits in-order
// with data on the stream.
TEST_F(ByteStreamTest, ByteStream_CompleteTransmits) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Empty stream, non-error case.
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
3 * 1024, &byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(0);
message_loop_.RunUntilIdle();
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(0, byte_stream_output->GetStatus());
// Non-empty stream, non-error case.
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
3 * 1024, &byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
byte_stream_input->Close(0);
message_loop_.RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(0, byte_stream_output->GetStatus());
const int kFakeErrorCode = 22;
// Empty stream, error case.
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
3 * 1024, &byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(kFakeErrorCode);
message_loop_.RunUntilIdle();
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(kFakeErrorCode, byte_stream_output->GetStatus());
// Non-empty stream, error case.
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
3 * 1024, &byte_stream_input, &byte_stream_output);
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(Write(byte_stream_input.get(), 1024));
byte_stream_input->Close(kFakeErrorCode);
message_loop_.RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
ASSERT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(kFakeErrorCode, byte_stream_output->GetStatus());
}
// Confirm that callbacks on the sink side are triggered when they should be.
TEST_F(ByteStreamTest, ByteStream_SinkCallback) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), task_runner, 10000,
&byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Note that the specifics of when the callbacks are called with regard
// to how much data is pushed onto the stream is not (currently) part
// of the interface contract. If it becomes part of the contract, the
// tests below should get much more precise.
// Confirm callback called when you add more than 33% of the buffer.
// Setup callback
int num_callbacks = 0;
byte_stream_output->RegisterCallback(
base::Bind(CountCallbacks, &num_callbacks));
EXPECT_TRUE(Write(byte_stream_input.get(), 4000));
message_loop_.RunUntilIdle();
EXPECT_EQ(0, num_callbacks);
task_runner->RunUntilIdle();
EXPECT_EQ(1, num_callbacks);
// Check data and stream state.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
// Confirm callback *isn't* called at less than 33% (by lack of
// unexpected call on task runner).
EXPECT_TRUE(Write(byte_stream_input.get(), 3000));
message_loop_.RunUntilIdle();
// This reflects an implementation artifact that data goes with callbacks,
// which should not be considered part of the interface guarantee.
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that callbacks on the source side are triggered when they should
// be.
TEST_F(ByteStreamTest, ByteStream_SourceCallback) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(task_runner, message_loop_.task_runner(), 10000,
&byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
// Note that the specifics of when the callbacks are called with regard
// to how much data is pulled from the stream is not (currently) part
// of the interface contract. If it becomes part of the contract, the
// tests below should get much more precise.
// Confirm callback called when about 33% space available, and not
// at other transitions.
// Add data.
int num_callbacks = 0;
byte_stream_input->RegisterCallback(
base::Bind(CountCallbacks, &num_callbacks));
EXPECT_TRUE(Write(byte_stream_input.get(), 2000));
EXPECT_TRUE(Write(byte_stream_input.get(), 2001));
EXPECT_FALSE(Write(byte_stream_input.get(), 6000));
// Allow bytes to transition (needed for message passing implementation),
// and get and validate the data.
message_loop_.RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
// Grab data, triggering callback. Recorded on dispatch, but doesn't
// happen because it's caught by the mock.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
// Confirm that the callback passed to the mock does what we expect.
EXPECT_EQ(0, num_callbacks);
task_runner->RunUntilIdle();
EXPECT_EQ(1, num_callbacks);
// Same drill with final buffer.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_EQ(1, num_callbacks);
task_runner->RunUntilIdle();
// Should have updated the internal structures but not called the
// callback.
EXPECT_EQ(1, num_callbacks);
}
// Confirm that racing a change to a sink callback with a post results
// in the new callback being called.
TEST_F(ByteStreamTest, ByteStream_SinkInterrupt) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), task_runner, 10000,
&byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
base::Closure intermediate_callback;
// Record initial state.
int num_callbacks = 0;
byte_stream_output->RegisterCallback(
base::Bind(CountCallbacks, &num_callbacks));
// Add data, and pass it across.
EXPECT_TRUE(Write(byte_stream_input.get(), 4000));
message_loop_.RunUntilIdle();
// The task runner should have been hit, but the callback count
// isn't changed until we actually run the callback.
EXPECT_EQ(0, num_callbacks);
// If we change the callback now, the new one should be run
// (simulates race with post task).
int num_alt_callbacks = 0;
byte_stream_output->RegisterCallback(
base::Bind(CountCallbacks, &num_alt_callbacks));
task_runner->RunUntilIdle();
EXPECT_EQ(0, num_callbacks);
EXPECT_EQ(1, num_alt_callbacks);
// Final cleanup.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that racing a change to a source callback with a post results
// in the new callback being called.
TEST_F(ByteStreamTest, ByteStream_SourceInterrupt) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(task_runner, message_loop_.task_runner(), 10000,
&byte_stream_input, &byte_stream_output);
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
base::Closure intermediate_callback;
// Setup state for test.
int num_callbacks = 0;
byte_stream_input->RegisterCallback(
base::Bind(CountCallbacks, &num_callbacks));
EXPECT_TRUE(Write(byte_stream_input.get(), 2000));
EXPECT_TRUE(Write(byte_stream_input.get(), 2001));
EXPECT_FALSE(Write(byte_stream_input.get(), 6000));
message_loop_.RunUntilIdle();
// Initial get should not trigger callback.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
message_loop_.RunUntilIdle();
// Second get *should* trigger callback.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
// Which should do the right thing when it's run.
int num_alt_callbacks = 0;
byte_stream_input->RegisterCallback(
base::Bind(CountCallbacks, &num_alt_callbacks));
task_runner->RunUntilIdle();
EXPECT_EQ(0, num_callbacks);
EXPECT_EQ(1, num_alt_callbacks);
// Third get should also trigger callback.
EXPECT_EQ(ByteStreamReader::STREAM_HAS_DATA,
byte_stream_output->Read(&output_io_buffer, &output_length));
EXPECT_TRUE(ValidateIOBuffer(output_io_buffer, output_length));
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
// Confirm that callback is called on zero data transfer but source
// complete.
TEST_F(ByteStreamTest, ByteStream_ZeroCallback) {
scoped_refptr<base::TestSimpleTaskRunner> task_runner(
new base::TestSimpleTaskRunner());
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), task_runner, 10000,
&byte_stream_input, &byte_stream_output);
base::Closure intermediate_callback;
// Record initial state.
int num_callbacks = 0;
byte_stream_output->RegisterCallback(
base::Bind(CountCallbacks, &num_callbacks));
// Immediately close the stream.
byte_stream_input->Close(0);
task_runner->RunUntilIdle();
EXPECT_EQ(1, num_callbacks);
}
TEST_F(ByteStreamTest, ByteStream_CloseWithoutAnyWrite) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
3 * 1024, &byte_stream_input, &byte_stream_output);
byte_stream_input->Close(0);
message_loop_.RunUntilIdle();
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
TEST_F(ByteStreamTest, ByteStream_FlushWithoutAnyWrite) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
3 * 1024, &byte_stream_input, &byte_stream_output);
byte_stream_input->Flush();
message_loop_.RunUntilIdle();
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
byte_stream_input->Close(0);
message_loop_.RunUntilIdle();
EXPECT_EQ(ByteStreamReader::STREAM_COMPLETE,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
TEST_F(ByteStreamTest, ByteStream_WriteOverflow) {
std::unique_ptr<ByteStreamWriter> byte_stream_input;
std::unique_ptr<ByteStreamReader> byte_stream_output;
CreateByteStream(message_loop_.task_runner(), message_loop_.task_runner(),
std::numeric_limits<size_t>::max(), &byte_stream_input,
&byte_stream_output);
EXPECT_TRUE(Write(byte_stream_input.get(), 1));
// 1 + size_t max -> Overflow.
scoped_refptr<net::IOBuffer> empty_io_buffer;
EXPECT_FALSE(byte_stream_input->Write(empty_io_buffer,
std::numeric_limits<size_t>::max()));
message_loop_.RunUntilIdle();
// The first write is below PostToPeer threshold. We shouldn't get anything
// from the output.
scoped_refptr<net::IOBuffer> output_io_buffer;
size_t output_length;
EXPECT_EQ(ByteStreamReader::STREAM_EMPTY,
byte_stream_output->Read(&output_io_buffer, &output_length));
}
} // namespace content