blob: 34039cecb05775f0e2ee3c57c6925ffdc80b5736 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/http/transport_security_state.h"
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "base/base64.h"
#include "base/build_time.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/sparse_histogram.h"
#include "base/sha1.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/values.h"
#include "crypto/sha2.h"
#include "net/base/host_port_pair.h"
#include "net/cert/ct_policy_status.h"
#include "net/cert/x509_cert_types.h"
#include "net/cert/x509_certificate.h"
#include "net/dns/dns_util.h"
#include "net/http/http_security_headers.h"
#include "net/ssl/ssl_info.h"
namespace net {
namespace {
#include "net/http/transport_security_state_static.h"
const size_t kMaxHPKPReportCacheEntries = 50;
const int kTimeToRememberHPKPReportsMins = 60;
const size_t kReportCacheKeyLength = 16;
void RecordUMAForHPKPReportFailure(const GURL& report_uri, int net_error) {
UMA_HISTOGRAM_SPARSE_SLOWLY("Net.PublicKeyPinReportSendingFailure",
net_error);
}
std::string TimeToISO8601(const base::Time& t) {
base::Time::Exploded exploded;
t.UTCExplode(&exploded);
return base::StringPrintf(
"%04d-%02d-%02dT%02d:%02d:%02d.%03dZ", exploded.year, exploded.month,
exploded.day_of_month, exploded.hour, exploded.minute, exploded.second,
exploded.millisecond);
}
std::unique_ptr<base::ListValue> GetPEMEncodedChainAsList(
const net::X509Certificate* cert_chain) {
if (!cert_chain)
return base::WrapUnique(new base::ListValue());
std::unique_ptr<base::ListValue> result(new base::ListValue());
std::vector<std::string> pem_encoded_chain;
cert_chain->GetPEMEncodedChain(&pem_encoded_chain);
for (const std::string& cert : pem_encoded_chain)
result->Append(base::WrapUnique(new base::StringValue(cert)));
return result;
}
bool HashReportForCache(const base::DictionaryValue& report,
const GURL& report_uri,
std::string* cache_key) {
char hashed[crypto::kSHA256Length];
std::string to_hash;
if (!base::JSONWriter::Write(report, &to_hash))
return false;
to_hash += "," + report_uri.spec();
crypto::SHA256HashString(to_hash, hashed, sizeof(hashed));
static_assert(kReportCacheKeyLength <= sizeof(hashed),
"HPKP report cache key size is larger than hash size.");
*cache_key = std::string(hashed, kReportCacheKeyLength);
return true;
}
bool GetHPKPReport(const HostPortPair& host_port_pair,
const TransportSecurityState::PKPState& pkp_state,
const X509Certificate* served_certificate_chain,
const X509Certificate* validated_certificate_chain,
std::string* serialized_report,
std::string* cache_key) {
if (pkp_state.report_uri.is_empty())
return false;
base::DictionaryValue report;
base::Time now = base::Time::Now();
report.SetString("hostname", host_port_pair.host());
report.SetInteger("port", host_port_pair.port());
report.SetBoolean("include-subdomains", pkp_state.include_subdomains);
report.SetString("noted-hostname", pkp_state.domain);
std::unique_ptr<base::ListValue> served_certificate_chain_list =
GetPEMEncodedChainAsList(served_certificate_chain);
std::unique_ptr<base::ListValue> validated_certificate_chain_list =
GetPEMEncodedChainAsList(validated_certificate_chain);
report.Set("served-certificate-chain",
std::move(served_certificate_chain_list));
report.Set("validated-certificate-chain",
std::move(validated_certificate_chain_list));
std::unique_ptr<base::ListValue> known_pin_list(new base::ListValue());
for (const auto& hash_value : pkp_state.spki_hashes) {
std::string known_pin;
switch (hash_value.tag) {
case HASH_VALUE_SHA1:
known_pin += "pin-sha1=";
break;
case HASH_VALUE_SHA256:
known_pin += "pin-sha256=";
break;
}
std::string base64_value;
base::Base64Encode(
base::StringPiece(reinterpret_cast<const char*>(hash_value.data()),
hash_value.size()),
&base64_value);
known_pin += "\"" + base64_value + "\"";
known_pin_list->Append(
std::unique_ptr<base::Value>(new base::StringValue(known_pin)));
}
report.Set("known-pins", std::move(known_pin_list));
// For the sent reports cache, do not include the effective expiration
// date. The expiration date will likely change every time the user
// visits the site, so it would prevent reports from being effectively
// deduplicated.
if (!HashReportForCache(report, pkp_state.report_uri, cache_key)) {
LOG(ERROR) << "Failed to compute cache key for HPKP violation report.";
return false;
}
report.SetString("date-time", TimeToISO8601(now));
report.SetString("effective-expiration-date",
TimeToISO8601(pkp_state.expiry));
if (!base::JSONWriter::Write(report, serialized_report)) {
LOG(ERROR) << "Failed to serialize HPKP violation report.";
return false;
}
return true;
}
// Do not send a report over HTTPS to the same host that set the
// pin. Such report URIs will result in loops. (A.com has a pinning
// violation which results in a report being sent to A.com, which
// results in a pinning violation which results in a report being sent
// to A.com, etc.)
bool IsReportUriValidForHost(const GURL& report_uri, const std::string& host) {
return (report_uri.host_piece() != host ||
!report_uri.SchemeIsCryptographic());
}
std::string HashesToBase64String(const HashValueVector& hashes) {
std::string str;
for (size_t i = 0; i != hashes.size(); ++i) {
if (i != 0)
str += ",";
str += hashes[i].ToString();
}
return str;
}
std::string HashHost(const std::string& canonicalized_host) {
char hashed[crypto::kSHA256Length];
crypto::SHA256HashString(canonicalized_host, hashed, sizeof(hashed));
return std::string(hashed, sizeof(hashed));
}
// Returns true if the intersection of |a| and |b| is not empty. If either
// |a| or |b| is empty, returns false.
bool HashesIntersect(const HashValueVector& a,
const HashValueVector& b) {
for (const auto& hash : a) {
auto p = std::find(b.begin(), b.end(), hash);
if (p != b.end())
return true;
}
return false;
}
bool AddHash(const char* sha256_hash, HashValueVector* out) {
HashValue hash(HASH_VALUE_SHA256);
memcpy(hash.data(), sha256_hash, hash.size());
out->push_back(hash);
return true;
}
// Converts |hostname| from dotted form ("www.google.com") to the form
// used in DNS: "\x03www\x06google\x03com", lowercases that, and returns
// the result.
std::string CanonicalizeHost(const std::string& host) {
// We cannot perform the operations as detailed in the spec here as |host|
// has already undergone IDN processing before it reached us. Thus, we check
// that there are no invalid characters in the host and lowercase the result.
std::string new_host;
if (!DNSDomainFromDot(host, &new_host)) {
// DNSDomainFromDot can fail if any label is > 63 bytes or if the whole
// name is >255 bytes. However, search terms can have those properties.
return std::string();
}
for (size_t i = 0; new_host[i]; i += new_host[i] + 1) {
const unsigned label_length = static_cast<unsigned>(new_host[i]);
if (!label_length)
break;
for (size_t j = 0; j < label_length; ++j) {
new_host[i + 1 + j] = static_cast<char>(tolower(new_host[i + 1 + j]));
}
}
return new_host;
}
// BitReader is a class that allows a bytestring to be read bit-by-bit.
class BitReader {
public:
BitReader(const uint8_t* bytes, size_t num_bits)
: bytes_(bytes),
num_bits_(num_bits),
num_bytes_((num_bits + 7) / 8),
current_byte_index_(0),
num_bits_used_(8) {}
// Next sets |*out| to the next bit from the input. It returns false if no
// more bits are available or true otherwise.
bool Next(bool* out) {
if (num_bits_used_ == 8) {
if (current_byte_index_ >= num_bytes_) {
return false;
}
current_byte_ = bytes_[current_byte_index_++];
num_bits_used_ = 0;
}
*out = 1 & (current_byte_ >> (7 - num_bits_used_));
num_bits_used_++;
return true;
}
// Read sets the |num_bits| least-significant bits of |*out| to the value of
// the next |num_bits| bits from the input. It returns false if there are
// insufficient bits in the input or true otherwise.
bool Read(unsigned num_bits, uint32_t* out) {
DCHECK_LE(num_bits, 32u);
uint32_t ret = 0;
for (unsigned i = 0; i < num_bits; ++i) {
bool bit;
if (!Next(&bit)) {
return false;
}
ret |= static_cast<uint32_t>(bit) << (num_bits - 1 - i);
}
*out = ret;
return true;
}
// Unary sets |*out| to the result of decoding a unary value from the input.
// It returns false if there were insufficient bits in the input and true
// otherwise.
bool Unary(size_t* out) {
size_t ret = 0;
for (;;) {
bool bit;
if (!Next(&bit)) {
return false;
}
if (!bit) {
break;
}
ret++;
}
*out = ret;
return true;
}
// Seek sets the current offest in the input to bit number |offset|. It
// returns true if |offset| is within the range of the input and false
// otherwise.
bool Seek(size_t offset) {
if (offset >= num_bits_) {
return false;
}
current_byte_index_ = offset / 8;
current_byte_ = bytes_[current_byte_index_++];
num_bits_used_ = offset % 8;
return true;
}
private:
const uint8_t* const bytes_;
const size_t num_bits_;
const size_t num_bytes_;
// current_byte_index_ contains the current byte offset in |bytes_|.
size_t current_byte_index_;
// current_byte_ contains the current byte of the input.
uint8_t current_byte_;
// num_bits_used_ contains the number of bits of |current_byte_| that have
// been read.
unsigned num_bits_used_;
};
// HuffmanDecoder is a very simple Huffman reader. The input Huffman tree is
// simply encoded as a series of two-byte structures. The first byte determines
// the "0" pointer for that node and the second the "1" pointer. Each byte
// either has the MSB set, in which case the bottom 7 bits are the value for
// that position, or else the bottom seven bits contain the index of a node.
//
// The tree is decoded by walking rather than a table-driven approach.
class HuffmanDecoder {
public:
HuffmanDecoder(const uint8_t* tree, size_t tree_bytes)
: tree_(tree), tree_bytes_(tree_bytes) {}
bool Decode(BitReader* reader, char* out) {
const uint8_t* current = &tree_[tree_bytes_ - 2];
for (;;) {
bool bit;
if (!reader->Next(&bit)) {
return false;
}
uint8_t b = current[bit];
if (b & 0x80) {
*out = static_cast<char>(b & 0x7f);
return true;
}
unsigned offset = static_cast<unsigned>(b) * 2;
DCHECK_LT(offset, tree_bytes_);
if (offset >= tree_bytes_) {
return false;
}
current = &tree_[offset];
}
}
private:
const uint8_t* const tree_;
const size_t tree_bytes_;
};
// PreloadResult is the result of resolving a specific name in the preloaded
// data.
struct PreloadResult {
uint32_t pinset_id;
uint32_t domain_id;
// hostname_offset contains the number of bytes from the start of the given
// hostname where the name of the matching entry starts.
size_t hostname_offset;
bool sts_include_subdomains;
bool pkp_include_subdomains;
bool force_https;
bool has_pins;
bool expect_ct;
uint32_t expect_ct_report_uri_id;
bool expect_staple;
bool expect_staple_include_subdomains;
uint32_t expect_staple_report_uri_id;
};
// DecodeHSTSPreloadRaw resolves |hostname| in the preloaded data. It returns
// false on internal error and true otherwise. After a successful return,
// |*out_found| is true iff a relevant entry has been found. If so, |*out|
// contains the details.
//
// Don't call this function, call DecodeHSTSPreload, below.
//
// Although this code should be robust, it never processes attacker-controlled
// data -- it only operates on the preloaded data built into the binary.
//
// The preloaded data is represented as a trie and matches the hostname
// backwards. Each node in the trie starts with a number of characters, which
// must match exactly. After that is a dispatch table which maps the next
// character in the hostname to another node in the trie.
//
// In the dispatch table, the zero character represents the "end of string"
// (which is the *beginning* of a hostname since we process it backwards). The
// value in that case is special -- rather than an offset to another trie node,
// it contains the HSTS information: whether subdomains are included, pinsets
// etc. If an "end of string" matches a period in the hostname then the
// information is remembered because, if no more specific node is found, then
// that information applies to the hostname.
//
// Dispatch tables are always given in order, but the "end of string" (zero)
// value always comes before an entry for '.'.
bool DecodeHSTSPreloadRaw(const std::string& search_hostname,
bool* out_found,
PreloadResult* out) {
HuffmanDecoder huffman(kHSTSHuffmanTree, sizeof(kHSTSHuffmanTree));
BitReader reader(kPreloadedHSTSData, kPreloadedHSTSBits);
size_t bit_offset = kHSTSRootPosition;
static const char kEndOfString = 0;
static const char kEndOfTable = 127;
*out_found = false;
// Ensure that |search_hostname| is a valid hostname before
// processing.
if (CanonicalizeHost(search_hostname).empty()) {
return true;
}
// Normalize any trailing '.' used for DNS suffix searches.
std::string hostname = search_hostname;
size_t found = hostname.find_last_not_of('.');
if (found != std::string::npos) {
hostname.erase(found + 1);
} else {
hostname.clear();
}
// |hostname| has already undergone IDN conversion, so should be
// entirely A-Labels. The preload data is entirely normalized to
// lower case.
hostname = base::ToLowerASCII(hostname);
if (hostname.empty()) {
return true;
}
// hostname_offset contains one more than the index of the current character
// in the hostname that is being considered. It's one greater so that we can
// represent the position just before the beginning (with zero).
size_t hostname_offset = hostname.size();
for (;;) {
// Seek to the desired location.
if (!reader.Seek(bit_offset)) {
return false;
}
// Decode the unary length of the common prefix.
size_t prefix_length;
if (!reader.Unary(&prefix_length)) {
return false;
}
// Match each character in the prefix.
for (size_t i = 0; i < prefix_length; ++i) {
if (hostname_offset == 0) {
// We can't match the terminator with a prefix string.
return true;
}
char c;
if (!huffman.Decode(&reader, &c)) {
return false;
}
if (hostname[hostname_offset - 1] != c) {
return true;
}
hostname_offset--;
}
bool is_first_offset = true;
size_t current_offset = 0;
// Next is the dispatch table.
for (;;) {
char c;
if (!huffman.Decode(&reader, &c)) {
return false;
}
if (c == kEndOfTable) {
// No exact match.
return true;
}
if (c == kEndOfString) {
PreloadResult tmp;
if (!reader.Next(&tmp.sts_include_subdomains) ||
!reader.Next(&tmp.force_https) || !reader.Next(&tmp.has_pins)) {
return false;
}
tmp.pkp_include_subdomains = tmp.sts_include_subdomains;
if (tmp.has_pins) {
if (!reader.Read(4, &tmp.pinset_id) ||
!reader.Read(9, &tmp.domain_id) ||
(!tmp.sts_include_subdomains &&
!reader.Next(&tmp.pkp_include_subdomains))) {
return false;
}
}
if (!reader.Next(&tmp.expect_ct))
return false;
if (tmp.expect_ct) {
if (!reader.Read(4, &tmp.expect_ct_report_uri_id))
return false;
}
if (!reader.Next(&tmp.expect_staple))
return false;
tmp.expect_staple_include_subdomains = false;
if (tmp.expect_staple) {
if (!reader.Next(&tmp.expect_staple_include_subdomains))
return false;
if (!reader.Read(4, &tmp.expect_staple_report_uri_id))
return false;
}
tmp.hostname_offset = hostname_offset;
if (hostname_offset == 0 || hostname[hostname_offset - 1] == '.') {
*out_found = tmp.sts_include_subdomains ||
tmp.pkp_include_subdomains ||
tmp.expect_staple_include_subdomains;
*out = tmp;
if (hostname_offset > 0) {
out->force_https &= tmp.sts_include_subdomains;
} else {
*out_found = true;
return true;
}
}
continue;
}
// The entries in a dispatch table are in order thus we can tell if there
// will be no match if the current character past the one that we want.
if (hostname_offset == 0 || hostname[hostname_offset - 1] < c) {
return true;
}
if (is_first_offset) {
// The first offset is backwards from the current position.
uint32_t jump_delta_bits;
uint32_t jump_delta;
if (!reader.Read(5, &jump_delta_bits) ||
!reader.Read(jump_delta_bits, &jump_delta)) {
return false;
}
if (bit_offset < jump_delta) {
return false;
}
current_offset = bit_offset - jump_delta;
is_first_offset = false;
} else {
// Subsequent offsets are forward from the target of the first offset.
uint32_t is_long_jump;
if (!reader.Read(1, &is_long_jump)) {
return false;
}
uint32_t jump_delta;
if (!is_long_jump) {
if (!reader.Read(7, &jump_delta)) {
return false;
}
} else {
uint32_t jump_delta_bits;
if (!reader.Read(4, &jump_delta_bits) ||
!reader.Read(jump_delta_bits + 8, &jump_delta)) {
return false;
}
}
current_offset += jump_delta;
if (current_offset >= bit_offset) {
return false;
}
}
DCHECK_LT(0u, hostname_offset);
if (hostname[hostname_offset - 1] == c) {
bit_offset = current_offset;
hostname_offset--;
break;
}
}
}
}
bool DecodeHSTSPreload(const std::string& hostname, PreloadResult* out) {
bool found;
if (!DecodeHSTSPreloadRaw(hostname, &found, out)) {
DCHECK(false) << "Internal error in DecodeHSTSPreloadRaw for hostname "
<< hostname;
return false;
}
return found;
}
} // namespace
TransportSecurityState::TransportSecurityState()
: enable_static_pins_(true),
enable_static_expect_ct_(true),
enable_static_expect_staple_(false),
sent_reports_cache_(kMaxHPKPReportCacheEntries) {
// Static pinning is only enabled for official builds to make sure that
// others don't end up with pins that cannot be easily updated.
#if !defined(OFFICIAL_BUILD) || defined(OS_ANDROID) || defined(OS_IOS)
enable_static_pins_ = false;
enable_static_expect_ct_ = false;
#endif
DCHECK(CalledOnValidThread());
}
// Both HSTS and HPKP cause fatal SSL errors, so return true if a
// host has either.
bool TransportSecurityState::ShouldSSLErrorsBeFatal(const std::string& host) {
STSState sts_state;
PKPState pkp_state;
if (GetStaticDomainState(host, &sts_state, &pkp_state))
return true;
if (GetDynamicSTSState(host, &sts_state))
return true;
return GetDynamicPKPState(host, &pkp_state);
}
bool TransportSecurityState::ShouldUpgradeToSSL(const std::string& host) {
STSState dynamic_sts_state;
if (GetDynamicSTSState(host, &dynamic_sts_state))
return dynamic_sts_state.ShouldUpgradeToSSL();
STSState static_sts_state;
PKPState unused;
if (GetStaticDomainState(host, &static_sts_state, &unused) &&
static_sts_state.ShouldUpgradeToSSL()) {
return true;
}
return false;
}
TransportSecurityState::PKPStatus TransportSecurityState::CheckPublicKeyPins(
const HostPortPair& host_port_pair,
bool is_issued_by_known_root,
const HashValueVector& public_key_hashes,
const X509Certificate* served_certificate_chain,
const X509Certificate* validated_certificate_chain,
const PublicKeyPinReportStatus report_status,
std::string* pinning_failure_log) {
// Perform pin validation only if the server actually has public key pins.
if (!HasPublicKeyPins(host_port_pair.host())) {
return PKPStatus::OK;
}
PKPStatus pin_validity = CheckPublicKeyPinsImpl(
host_port_pair, is_issued_by_known_root, public_key_hashes,
served_certificate_chain, validated_certificate_chain, report_status,
pinning_failure_log);
// Don't track statistics when a local trust anchor would override the pinning
// anyway.
if (!is_issued_by_known_root)
return pin_validity;
if (pin_validity == PKPStatus::VIOLATED) {
LOG(ERROR) << *pinning_failure_log;
ReportUMAOnPinFailure(host_port_pair.host());
}
UMA_HISTOGRAM_BOOLEAN("Net.PublicKeyPinSuccess",
pin_validity == PKPStatus::OK);
return pin_validity;
}
bool TransportSecurityState::HasPublicKeyPins(const std::string& host) {
PKPState dynamic_state;
if (GetDynamicPKPState(host, &dynamic_state))
return dynamic_state.HasPublicKeyPins();
STSState unused;
PKPState static_pkp_state;
if (GetStaticDomainState(host, &unused, &static_pkp_state)) {
if (static_pkp_state.HasPublicKeyPins())
return true;
}
return false;
}
bool TransportSecurityState::ShouldRequireCT(
const std::string& hostname,
const X509Certificate* validated_certificate_chain,
const HashValueVector& public_key_hashes) {
using CTRequirementLevel = RequireCTDelegate::CTRequirementLevel;
CTRequirementLevel ct_required = CTRequirementLevel::DEFAULT;
if (require_ct_delegate_)
ct_required = require_ct_delegate_->IsCTRequiredForHost(hostname);
if (ct_required != CTRequirementLevel::DEFAULT)
return ct_required == CTRequirementLevel::REQUIRED;
return false;
}
void TransportSecurityState::SetDelegate(
TransportSecurityState::Delegate* delegate) {
DCHECK(CalledOnValidThread());
delegate_ = delegate;
}
void TransportSecurityState::SetReportSender(
TransportSecurityState::ReportSenderInterface* report_sender) {
DCHECK(CalledOnValidThread());
report_sender_ = report_sender;
if (report_sender_)
report_sender_->SetErrorCallback(base::Bind(RecordUMAForHPKPReportFailure));
}
void TransportSecurityState::SetExpectCTReporter(
ExpectCTReporter* expect_ct_reporter) {
DCHECK(CalledOnValidThread());
expect_ct_reporter_ = expect_ct_reporter;
}
void TransportSecurityState::SetRequireCTDelegate(RequireCTDelegate* delegate) {
DCHECK(CalledOnValidThread());
require_ct_delegate_ = delegate;
}
void TransportSecurityState::AddHSTSInternal(
const std::string& host,
TransportSecurityState::STSState::UpgradeMode upgrade_mode,
const base::Time& expiry,
bool include_subdomains) {
DCHECK(CalledOnValidThread());
STSState sts_state;
sts_state.last_observed = base::Time::Now();
sts_state.include_subdomains = include_subdomains;
sts_state.expiry = expiry;
sts_state.upgrade_mode = upgrade_mode;
EnableSTSHost(host, sts_state);
}
void TransportSecurityState::AddHPKPInternal(const std::string& host,
const base::Time& last_observed,
const base::Time& expiry,
bool include_subdomains,
const HashValueVector& hashes,
const GURL& report_uri) {
DCHECK(CalledOnValidThread());
PKPState pkp_state;
pkp_state.last_observed = last_observed;
pkp_state.expiry = expiry;
pkp_state.include_subdomains = include_subdomains;
pkp_state.spki_hashes = hashes;
pkp_state.report_uri = report_uri;
EnablePKPHost(host, pkp_state);
}
void TransportSecurityState::EnableSTSHost(const std::string& host,
const STSState& state) {
DCHECK(CalledOnValidThread());
const std::string canonicalized_host = CanonicalizeHost(host);
if (canonicalized_host.empty())
return;
// Only store new state when HSTS is explicitly enabled. If it is
// disabled, remove the state from the enabled hosts.
if (state.ShouldUpgradeToSSL()) {
STSState sts_state(state);
// No need to store this value since it is redundant. (|canonicalized_host|
// is the map key.)
sts_state.domain.clear();
enabled_sts_hosts_[HashHost(canonicalized_host)] = sts_state;
} else {
const std::string hashed_host = HashHost(canonicalized_host);
enabled_sts_hosts_.erase(hashed_host);
}
DirtyNotify();
}
void TransportSecurityState::EnablePKPHost(const std::string& host,
const PKPState& state) {
DCHECK(CalledOnValidThread());
const std::string canonicalized_host = CanonicalizeHost(host);
if (canonicalized_host.empty())
return;
// Only store new state when HPKP is explicitly enabled. If it is
// disabled, remove the state from the enabled hosts.
if (state.HasPublicKeyPins()) {
PKPState pkp_state(state);
// No need to store this value since it is redundant. (|canonicalized_host|
// is the map key.)
pkp_state.domain.clear();
enabled_pkp_hosts_[HashHost(canonicalized_host)] = pkp_state;
} else {
const std::string hashed_host = HashHost(canonicalized_host);
enabled_pkp_hosts_.erase(hashed_host);
}
DirtyNotify();
}
TransportSecurityState::PKPStatus
TransportSecurityState::CheckPinsAndMaybeSendReport(
const HostPortPair& host_port_pair,
bool is_issued_by_known_root,
const TransportSecurityState::PKPState& pkp_state,
const HashValueVector& hashes,
const X509Certificate* served_certificate_chain,
const X509Certificate* validated_certificate_chain,
const TransportSecurityState::PublicKeyPinReportStatus report_status,
std::string* failure_log) {
if (pkp_state.CheckPublicKeyPins(hashes, failure_log))
return PKPStatus::OK;
// Don't report violations for certificates that chain to local roots.
if (!is_issued_by_known_root)
return PKPStatus::BYPASSED;
if (!report_sender_ ||
report_status != TransportSecurityState::ENABLE_PIN_REPORTS ||
pkp_state.report_uri.is_empty()) {
return PKPStatus::VIOLATED;
}
DCHECK(pkp_state.report_uri.is_valid());
// Report URIs should not be used if they are the same host as the pin
// and are HTTPS, to avoid going into a report-sending loop.
if (!IsReportUriValidForHost(pkp_state.report_uri, host_port_pair.host()))
return PKPStatus::VIOLATED;
std::string serialized_report;
std::string report_cache_key;
if (!GetHPKPReport(host_port_pair, pkp_state, served_certificate_chain,
validated_certificate_chain, &serialized_report,
&report_cache_key)) {
return PKPStatus::VIOLATED;
}
// Limit the rate at which duplicate reports are sent to the same
// report URI. The same report will not be sent within
// |kTimeToRememberHPKPReportsMins|, which reduces load on servers and
// also prevents accidental loops (a.com triggers a report to b.com
// which triggers a report to a.com). See section 2.1.4 of RFC 7469.
if (sent_reports_cache_.Get(report_cache_key, base::TimeTicks::Now()))
return PKPStatus::VIOLATED;
sent_reports_cache_.Put(
report_cache_key, true, base::TimeTicks::Now(),
base::TimeTicks::Now() +
base::TimeDelta::FromMinutes(kTimeToRememberHPKPReportsMins));
report_sender_->Send(pkp_state.report_uri, serialized_report);
return PKPStatus::VIOLATED;
}
bool TransportSecurityState::GetStaticExpectCTState(
const std::string& host,
ExpectCTState* expect_ct_state) const {
DCHECK(CalledOnValidThread());
if (!IsBuildTimely())
return false;
PreloadResult result;
if (!DecodeHSTSPreload(host, &result))
return false;
if (!enable_static_expect_ct_ || !result.expect_ct)
return false;
expect_ct_state->domain = host.substr(result.hostname_offset);
expect_ct_state->report_uri =
GURL(kExpectCTReportURIs[result.expect_ct_report_uri_id]);
return true;
}
bool TransportSecurityState::GetStaticExpectStapleState(
const std::string& host,
ExpectStapleState* expect_staple_state) const {
DCHECK(CalledOnValidThread());
if (!IsBuildTimely())
return false;
PreloadResult result;
if (!DecodeHSTSPreload(host, &result))
return false;
if (!enable_static_expect_staple_ || !result.expect_staple)
return false;
expect_staple_state->domain = host.substr(result.hostname_offset);
expect_staple_state->include_subdomains =
result.expect_staple_include_subdomains;
expect_staple_state->report_uri =
GURL(kExpectStapleReportURIs[result.expect_staple_report_uri_id]);
return true;
}
bool TransportSecurityState::DeleteDynamicDataForHost(const std::string& host) {
DCHECK(CalledOnValidThread());
const std::string canonicalized_host = CanonicalizeHost(host);
if (canonicalized_host.empty())
return false;
const std::string hashed_host = HashHost(canonicalized_host);
bool deleted = false;
STSStateMap::iterator sts_interator = enabled_sts_hosts_.find(hashed_host);
if (sts_interator != enabled_sts_hosts_.end()) {
enabled_sts_hosts_.erase(sts_interator);
deleted = true;
}
PKPStateMap::iterator pkp_iterator = enabled_pkp_hosts_.find(hashed_host);
if (pkp_iterator != enabled_pkp_hosts_.end()) {
enabled_pkp_hosts_.erase(pkp_iterator);
deleted = true;
}
if (deleted)
DirtyNotify();
return deleted;
}
void TransportSecurityState::ClearDynamicData() {
DCHECK(CalledOnValidThread());
enabled_sts_hosts_.clear();
enabled_pkp_hosts_.clear();
}
void TransportSecurityState::DeleteAllDynamicDataSince(const base::Time& time) {
DCHECK(CalledOnValidThread());
bool dirtied = false;
STSStateMap::iterator sts_iterator = enabled_sts_hosts_.begin();
while (sts_iterator != enabled_sts_hosts_.end()) {
if (sts_iterator->second.last_observed >= time) {
dirtied = true;
enabled_sts_hosts_.erase(sts_iterator++);
continue;
}
++sts_iterator;
}
PKPStateMap::iterator pkp_iterator = enabled_pkp_hosts_.begin();
while (pkp_iterator != enabled_pkp_hosts_.end()) {
if (pkp_iterator->second.last_observed >= time) {
dirtied = true;
enabled_pkp_hosts_.erase(pkp_iterator++);
continue;
}
++pkp_iterator;
}
if (dirtied)
DirtyNotify();
}
TransportSecurityState::~TransportSecurityState() {
DCHECK(CalledOnValidThread());
}
void TransportSecurityState::DirtyNotify() {
DCHECK(CalledOnValidThread());
if (delegate_)
delegate_->StateIsDirty(this);
}
bool TransportSecurityState::AddHSTSHeader(const std::string& host,
const std::string& value) {
DCHECK(CalledOnValidThread());
base::Time now = base::Time::Now();
base::TimeDelta max_age;
bool include_subdomains;
if (!ParseHSTSHeader(value, &max_age, &include_subdomains)) {
return false;
}
// Handle max-age == 0.
STSState::UpgradeMode upgrade_mode;
if (max_age.InSeconds() == 0) {
upgrade_mode = STSState::MODE_DEFAULT;
} else {
upgrade_mode = STSState::MODE_FORCE_HTTPS;
}
AddHSTSInternal(host, upgrade_mode, now + max_age, include_subdomains);
return true;
}
bool TransportSecurityState::AddHPKPHeader(const std::string& host,
const std::string& value,
const SSLInfo& ssl_info) {
DCHECK(CalledOnValidThread());
base::Time now = base::Time::Now();
base::TimeDelta max_age;
bool include_subdomains;
HashValueVector spki_hashes;
GURL report_uri;
if (!ParseHPKPHeader(value, ssl_info.public_key_hashes, &max_age,
&include_subdomains, &spki_hashes, &report_uri)) {
return false;
}
// Handle max-age == 0.
if (max_age.InSeconds() == 0)
spki_hashes.clear();
AddHPKPInternal(host, now, now + max_age, include_subdomains, spki_hashes,
report_uri);
return true;
}
void TransportSecurityState::AddHSTS(const std::string& host,
const base::Time& expiry,
bool include_subdomains) {
DCHECK(CalledOnValidThread());
AddHSTSInternal(host, STSState::MODE_FORCE_HTTPS, expiry, include_subdomains);
}
void TransportSecurityState::AddHPKP(const std::string& host,
const base::Time& expiry,
bool include_subdomains,
const HashValueVector& hashes,
const GURL& report_uri) {
DCHECK(CalledOnValidThread());
AddHPKPInternal(host, base::Time::Now(), expiry, include_subdomains, hashes,
report_uri);
}
bool TransportSecurityState::ProcessHPKPReportOnlyHeader(
const std::string& value,
const HostPortPair& host_port_pair,
const SSLInfo& ssl_info) {
DCHECK(CalledOnValidThread());
base::Time now = base::Time::Now();
bool include_subdomains;
HashValueVector spki_hashes;
GURL report_uri;
std::string unused_failure_log;
if (!ParseHPKPReportOnlyHeader(value, &include_subdomains, &spki_hashes,
&report_uri) ||
!report_uri.is_valid() || report_uri.is_empty()) {
return false;
}
PKPState pkp_state;
pkp_state.last_observed = now;
pkp_state.expiry = now;
pkp_state.include_subdomains = include_subdomains;
pkp_state.spki_hashes = spki_hashes;
pkp_state.report_uri = report_uri;
pkp_state.domain = DNSDomainToString(CanonicalizeHost(host_port_pair.host()));
CheckPinsAndMaybeSendReport(
host_port_pair, ssl_info.is_issued_by_known_root, pkp_state,
ssl_info.public_key_hashes, ssl_info.unverified_cert.get(),
ssl_info.cert.get(), ENABLE_PIN_REPORTS, &unused_failure_log);
return true;
}
void TransportSecurityState::ProcessExpectCTHeader(
const std::string& value,
const HostPortPair& host_port_pair,
const SSLInfo& ssl_info) {
DCHECK(CalledOnValidThread());
if (!expect_ct_reporter_)
return;
if (value != "preload")
return;
if (!IsBuildTimely())
return;
if (!ssl_info.is_issued_by_known_root ||
!ssl_info.ct_compliance_details_available ||
ssl_info.ct_cert_policy_compliance ==
ct::CertPolicyCompliance::CERT_POLICY_COMPLIES_VIA_SCTS) {
return;
}
ExpectCTState state;
if (!GetStaticExpectCTState(host_port_pair.host(), &state))
return;
expect_ct_reporter_->OnExpectCTFailed(host_port_pair, state.report_uri,
ssl_info);
}
// static
void TransportSecurityState::ReportUMAOnPinFailure(const std::string& host) {
PreloadResult result;
if (!DecodeHSTSPreload(host, &result) ||
!result.has_pins) {
return;
}
DCHECK(result.domain_id != DOMAIN_NOT_PINNED);
UMA_HISTOGRAM_SPARSE_SLOWLY(
"Net.PublicKeyPinFailureDomain", result.domain_id);
}
// static
bool TransportSecurityState::IsBuildTimely() {
const base::Time build_time = base::GetBuildTime();
// We consider built-in information to be timely for 10 weeks.
return (base::Time::Now() - build_time).InDays() < 70 /* 10 weeks */;
}
TransportSecurityState::PKPStatus
TransportSecurityState::CheckPublicKeyPinsImpl(
const HostPortPair& host_port_pair,
bool is_issued_by_known_root,
const HashValueVector& hashes,
const X509Certificate* served_certificate_chain,
const X509Certificate* validated_certificate_chain,
const PublicKeyPinReportStatus report_status,
std::string* failure_log) {
PKPState pkp_state;
STSState unused;
bool found_state =
GetDynamicPKPState(host_port_pair.host(), &pkp_state) ||
GetStaticDomainState(host_port_pair.host(), &unused, &pkp_state);
// HasPublicKeyPins should have returned true in order for this method to have
// been called.
DCHECK(found_state);
return CheckPinsAndMaybeSendReport(
host_port_pair, is_issued_by_known_root, pkp_state, hashes,
served_certificate_chain, validated_certificate_chain, report_status,
failure_log);
}
bool TransportSecurityState::GetStaticDomainState(const std::string& host,
STSState* sts_state,
PKPState* pkp_state) const {
DCHECK(CalledOnValidThread());
sts_state->upgrade_mode = STSState::MODE_FORCE_HTTPS;
sts_state->include_subdomains = false;
pkp_state->include_subdomains = false;
if (!IsBuildTimely())
return false;
PreloadResult result;
if (!DecodeHSTSPreload(host, &result))
return false;
sts_state->domain = host.substr(result.hostname_offset);
pkp_state->domain = sts_state->domain;
sts_state->include_subdomains = result.sts_include_subdomains;
sts_state->last_observed = base::GetBuildTime();
sts_state->upgrade_mode = STSState::MODE_DEFAULT;
if (result.force_https) {
sts_state->upgrade_mode = STSState::MODE_FORCE_HTTPS;
}
if (enable_static_pins_ && result.has_pins) {
pkp_state->include_subdomains = result.pkp_include_subdomains;
pkp_state->last_observed = base::GetBuildTime();
if (result.pinset_id >= arraysize(kPinsets))
return false;
const Pinset *pinset = &kPinsets[result.pinset_id];
if (pinset->report_uri != kNoReportURI)
pkp_state->report_uri = GURL(pinset->report_uri);
if (pinset->accepted_pins) {
const char* const* sha256_hash = pinset->accepted_pins;
while (*sha256_hash) {
AddHash(*sha256_hash, &pkp_state->spki_hashes);
sha256_hash++;
}
}
if (pinset->rejected_pins) {
const char* const* sha256_hash = pinset->rejected_pins;
while (*sha256_hash) {
AddHash(*sha256_hash, &pkp_state->bad_spki_hashes);
sha256_hash++;
}
}
}
return true;
}
bool TransportSecurityState::IsGooglePinnedHost(const std::string& host) const {
DCHECK(CalledOnValidThread());
if (!IsBuildTimely())
return false;
PreloadResult result;
if (!DecodeHSTSPreload(host, &result))
return false;
if (!result.has_pins)
return false;
if (result.pinset_id >= arraysize(kPinsets))
return false;
return kPinsets[result.pinset_id].accepted_pins == kGoogleAcceptableCerts;
}
bool TransportSecurityState::GetDynamicSTSState(const std::string& host,
STSState* result) {
DCHECK(CalledOnValidThread());
const std::string canonicalized_host = CanonicalizeHost(host);
if (canonicalized_host.empty())
return false;
base::Time current_time(base::Time::Now());
for (size_t i = 0; canonicalized_host[i]; i += canonicalized_host[i] + 1) {
std::string host_sub_chunk(&canonicalized_host[i],
canonicalized_host.size() - i);
STSStateMap::iterator j = enabled_sts_hosts_.find(HashHost(host_sub_chunk));
if (j == enabled_sts_hosts_.end())
continue;
// If the entry is invalid, drop it.
if (current_time > j->second.expiry) {
enabled_sts_hosts_.erase(j);
DirtyNotify();
continue;
}
// If this is the most specific STS match, add it to the result. Note: a STS
// entry at a more specific domain overrides a less specific domain whether
// or not |include_subdomains| is set.
if (current_time <= j->second.expiry) {
if (i == 0 || j->second.include_subdomains) {
*result = j->second;
result->domain = DNSDomainToString(host_sub_chunk);
return true;
}
break;
}
}
return false;
}
bool TransportSecurityState::GetDynamicPKPState(const std::string& host,
PKPState* result) {
DCHECK(CalledOnValidThread());
const std::string canonicalized_host = CanonicalizeHost(host);
if (canonicalized_host.empty())
return false;
base::Time current_time(base::Time::Now());
for (size_t i = 0; canonicalized_host[i]; i += canonicalized_host[i] + 1) {
std::string host_sub_chunk(&canonicalized_host[i],
canonicalized_host.size() - i);
PKPStateMap::iterator j = enabled_pkp_hosts_.find(HashHost(host_sub_chunk));
if (j == enabled_pkp_hosts_.end())
continue;
// If the entry is invalid, drop it.
if (current_time > j->second.expiry) {
enabled_pkp_hosts_.erase(j);
DirtyNotify();
continue;
}
// If this is the most specific PKP match, add it to the result. Note: a PKP
// entry at a more specific domain overrides a less specific domain whether
// or not |include_subdomains| is set.
if (current_time <= j->second.expiry) {
if (i == 0 || j->second.include_subdomains) {
*result = j->second;
result->domain = DNSDomainToString(host_sub_chunk);
return true;
}
break;
}
}
return false;
}
void TransportSecurityState::AddOrUpdateEnabledSTSHosts(
const std::string& hashed_host,
const STSState& state) {
DCHECK(CalledOnValidThread());
DCHECK(state.ShouldUpgradeToSSL());
enabled_sts_hosts_[hashed_host] = state;
}
void TransportSecurityState::AddOrUpdateEnabledPKPHosts(
const std::string& hashed_host,
const PKPState& state) {
DCHECK(CalledOnValidThread());
DCHECK(state.HasPublicKeyPins());
enabled_pkp_hosts_[hashed_host] = state;
}
TransportSecurityState::STSState::STSState()
: upgrade_mode(MODE_DEFAULT), include_subdomains(false) {
}
TransportSecurityState::STSState::~STSState() {
}
bool TransportSecurityState::STSState::ShouldUpgradeToSSL() const {
return upgrade_mode == MODE_FORCE_HTTPS;
}
TransportSecurityState::STSStateIterator::STSStateIterator(
const TransportSecurityState& state)
: iterator_(state.enabled_sts_hosts_.begin()),
end_(state.enabled_sts_hosts_.end()) {
}
TransportSecurityState::STSStateIterator::~STSStateIterator() {
}
TransportSecurityState::PKPState::PKPState() : include_subdomains(false) {
}
TransportSecurityState::PKPState::PKPState(const PKPState& other) = default;
TransportSecurityState::PKPState::~PKPState() {
}
TransportSecurityState::ExpectCTState::ExpectCTState() {}
TransportSecurityState::ExpectCTState::~ExpectCTState() {}
TransportSecurityState::ExpectStapleState::ExpectStapleState()
: include_subdomains(false) {}
TransportSecurityState::ExpectStapleState::~ExpectStapleState() {}
bool TransportSecurityState::PKPState::CheckPublicKeyPins(
const HashValueVector& hashes,
std::string* failure_log) const {
// Validate that hashes is not empty. By the time this code is called (in
// production), that should never happen, but it's good to be defensive.
// And, hashes *can* be empty in some test scenarios.
if (hashes.empty()) {
failure_log->append(
"Rejecting empty public key chain for public-key-pinned domains: " +
domain);
return false;
}
if (HashesIntersect(bad_spki_hashes, hashes)) {
failure_log->append("Rejecting public key chain for domain " + domain +
". Validated chain: " + HashesToBase64String(hashes) +
", matches one or more bad hashes: " +
HashesToBase64String(bad_spki_hashes));
return false;
}
// If there are no pins, then any valid chain is acceptable.
if (spki_hashes.empty())
return true;
if (HashesIntersect(spki_hashes, hashes)) {
return true;
}
failure_log->append("Rejecting public key chain for domain " + domain +
". Validated chain: " + HashesToBase64String(hashes) +
", expected: " + HashesToBase64String(spki_hashes));
return false;
}
bool TransportSecurityState::PKPState::HasPublicKeyPins() const {
return spki_hashes.size() > 0 || bad_spki_hashes.size() > 0;
}
TransportSecurityState::PKPStateIterator::PKPStateIterator(
const TransportSecurityState& state)
: iterator_(state.enabled_pkp_hosts_.begin()),
end_(state.enabled_pkp_hosts_.end()) {
}
TransportSecurityState::PKPStateIterator::~PKPStateIterator() {
}
} // namespace