blob: aaa2c49b2b51638c0fb2be9ece410cd8f5cc2304 [file] [log] [blame]
// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/src/service_resolver.h"
#include "base/logging.h"
#include "base/scoped_ptr.h"
#include "sandbox/src/sandbox_utils.h"
#include "sandbox/src/win_utils.h"
namespace {
#pragma pack(push, 1)
const BYTE kMovEax = 0xB8;
const BYTE kMovEdx = 0xBA;
const USHORT kCallPtrEdx = 0x12FF;
const USHORT kCallEdx = 0xD2FF;
const BYTE kRet = 0xC2;
const BYTE kNop = 0x90;
const USHORT kJmpEdx = 0xE2FF;
const USHORT kXorEcx = 0xC933;
const ULONG kLeaEdx = 0x0424548D;
const ULONG kCallFs1 = 0xC015FF64;
const USHORT kCallFs2 = 0;
const BYTE kCallFs3 = 0;
const BYTE kAddEsp1 = 0x83;
const USHORT kAddEsp2 = 0x4C4;
const BYTE kJmp32 = 0xE9;
const int kMaxService = 1000;
// Service code for 32 bit systems.
// NOTE: on win2003 "call dword ptr [edx]" is "call edx".
struct ServiceEntry {
// this struct contains roughly the following code:
// 00 mov eax,25h
// 05 mov edx,offset SharedUserData!SystemCallStub (7ffe0300)
// 0a call dword ptr [edx]
// 0c ret 2Ch
// 0f nop
BYTE mov_eax; // = B8
ULONG service_id;
BYTE mov_edx; // = BA
ULONG stub;
USHORT call_ptr_edx; // = FF 12
BYTE ret; // = C2
USHORT num_params;
BYTE nop;
ULONG pad1; // Extend the structure to be the same size as the
ULONG pad2; // 64 version (Wow64Entry)
};
// Service code for a 32 bit process running on a 64 bit os.
struct Wow64Entry {
// This struct may contain one of two versions of code:
// 1. For XP, Vista and 2K3:
// 00 b852000000 mov eax, 25h
// 05 33c9 xor ecx, ecx
// 07 8d542404 lea edx, [esp + 4]
// 0b 64ff15c0000000 call dword ptr fs:[0C0h]
// 12 c22c00 ret 2Ch
//
// 2. For Windows 7:
// 00 b852000000 mov eax, 25h
// 05 33c9 xor ecx, ecx
// 07 8d542404 lea edx, [esp + 4]
// 0b 64ff15c0000000 call dword ptr fs:[0C0h]
// 12 83c404 add esp, 4
// 15 c22c00 ret 2Ch
//
// So we base the structure on the bigger one:
BYTE mov_eax; // = B8
ULONG service_id;
USHORT xor_ecx; // = 33 C9
ULONG lea_edx; // = 8D 54 24 04
ULONG call_fs1; // = 64 FF 15 C0
USHORT call_fs2; // = 00 00
BYTE call_fs3; // = 00
BYTE add_esp1; // = 83 or ret
USHORT add_esp2; // = C4 04 or num_params
BYTE ret; // = C2
USHORT num_params;
};
// Make sure that relaxed patching works as expected.
COMPILE_ASSERT(sizeof(ServiceEntry) == sizeof(Wow64Entry), wrong_service_len);
struct ServiceFullThunk {
union {
ServiceEntry original;
Wow64Entry wow_64;
};
int internal_thunk; // Dummy member to the beginning of the internal thunk.
};
#pragma pack(pop)
}; // namespace
namespace sandbox {
NTSTATUS ServiceResolverThunk::Setup(const void* target_module,
const void* interceptor_module,
const char* target_name,
const char* interceptor_name,
const void* interceptor_entry_point,
void* thunk_storage,
size_t storage_bytes,
size_t* storage_used) {
NTSTATUS ret = Init(target_module, interceptor_module, target_name,
interceptor_name, interceptor_entry_point,
thunk_storage, storage_bytes);
if (!NT_SUCCESS(ret))
return ret;
size_t thunk_bytes = GetThunkSize();
scoped_array<char> thunk_buffer(new char[thunk_bytes]);
ServiceFullThunk* thunk = reinterpret_cast<ServiceFullThunk*>(
thunk_buffer.get());
if (!IsFunctionAService(&thunk->original) &&
(!relaxed_ || !SaveOriginalFunction(&thunk->original, thunk_storage)))
return STATUS_UNSUCCESSFUL;
ret = PerformPatch(thunk, thunk_storage);
if (NULL != storage_used)
*storage_used = thunk_bytes;
return ret;
}
size_t ServiceResolverThunk::GetThunkSize() const {
return offsetof(ServiceFullThunk, internal_thunk) + GetInternalThunkSize();
}
bool ServiceResolverThunk::IsFunctionAService(void* local_thunk) const {
ServiceEntry function_code;
SIZE_T read;
if (!::ReadProcessMemory(process_, target_, &function_code,
sizeof(function_code), &read))
return false;
if (sizeof(function_code) != read)
return false;
if (kMovEax != function_code.mov_eax ||
kMovEdx != function_code.mov_edx ||
(kCallPtrEdx != function_code.call_ptr_edx &&
kCallEdx != function_code.call_ptr_edx) ||
kRet != function_code.ret)
return false;
// Find the system call pointer if we don't already have it.
if (kCallEdx != function_code.call_ptr_edx) {
DWORD ki_system_call;
if (!::ReadProcessMemory(process_,
bit_cast<const void*>(function_code.stub),
&ki_system_call, sizeof(ki_system_call), &read))
return false;
if (sizeof(ki_system_call) != read)
return false;
HMODULE module_1, module_2;
// last check, call_stub should point to a KiXXSystemCall function on ntdll
if (!GetModuleHandleHelper(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT,
bit_cast<const wchar_t*>(ki_system_call),
&module_1))
return false;
if (NULL != ntdll_base_) {
// This path is only taken when running the unit tests. We want to be
// able to patch a buffer in memory, so target_ is not inside ntdll.
module_2 = ntdll_base_;
} else {
if (!GetModuleHandleHelper(
GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS |
GET_MODULE_HANDLE_EX_FLAG_UNCHANGED_REFCOUNT,
reinterpret_cast<const wchar_t*>(target_),
&module_2)) {
return false;
}
}
if (module_1 != module_2)
return false;
}
// Save the verified code
memcpy(local_thunk, &function_code, sizeof(function_code));
return true;
}
NTSTATUS ServiceResolverThunk::PerformPatch(void* local_thunk,
void* remote_thunk) {
ServiceEntry intercepted_code;
size_t bytes_to_write = sizeof(intercepted_code);
ServiceFullThunk *full_local_thunk = reinterpret_cast<ServiceFullThunk*>(
local_thunk);
ServiceFullThunk *full_remote_thunk = reinterpret_cast<ServiceFullThunk*>(
remote_thunk);
// patch the original code
memcpy(&intercepted_code, &full_local_thunk->original,
sizeof(intercepted_code));
intercepted_code.mov_eax = kMovEax;
intercepted_code.service_id = full_local_thunk->original.service_id;
intercepted_code.mov_edx = kMovEdx;
intercepted_code.stub = bit_cast<ULONG>(&full_remote_thunk->internal_thunk);
intercepted_code.call_ptr_edx = kJmpEdx;
if (!win2k_) {
intercepted_code.ret = kRet;
intercepted_code.num_params = full_local_thunk->original.num_params;
intercepted_code.nop = kNop;
} else {
bytes_to_write = offsetof(ServiceEntry, ret);
}
if (relative_jump_) {
intercepted_code.mov_eax = kJmp32;
intercepted_code.service_id = relative_jump_;
bytes_to_write = offsetof(ServiceEntry, mov_edx);
}
// setup the thunk
SetInternalThunk(&full_local_thunk->internal_thunk, GetInternalThunkSize(),
remote_thunk, interceptor_);
size_t thunk_size = GetThunkSize();
// copy the local thunk buffer to the child
SIZE_T written;
if (!::WriteProcessMemory(process_, remote_thunk, local_thunk,
thunk_size, &written))
return STATUS_UNSUCCESSFUL;
if (thunk_size != written)
return STATUS_UNSUCCESSFUL;
// and now change the function to intercept, on the child
if (NULL != ntdll_base_) {
// running a unit test
if (!::WriteProcessMemory(process_, target_, &intercepted_code,
bytes_to_write, &written))
return STATUS_UNSUCCESSFUL;
} else {
if (!WriteProtectedChildMemory(process_, target_, &intercepted_code,
bytes_to_write))
return STATUS_UNSUCCESSFUL;
}
return STATUS_SUCCESS;
}
bool ServiceResolverThunk::SaveOriginalFunction(void* local_thunk,
void* remote_thunk) {
ServiceEntry function_code;
SIZE_T read;
if (!::ReadProcessMemory(process_, target_, &function_code,
sizeof(function_code), &read))
return false;
if (sizeof(function_code) != read)
return false;
if (kJmp32 == function_code.mov_eax) {
// Plain old entry point patch. The relative jump address follows it.
ULONG relative = function_code.service_id;
// First, fix our copy of their patch.
relative += bit_cast<ULONG>(target_) - bit_cast<ULONG>(remote_thunk);
function_code.service_id = relative;
// And now, remember how to re-patch it.
ServiceFullThunk *full_thunk =
reinterpret_cast<ServiceFullThunk*>(remote_thunk);
const ULONG kJmp32Size = 5;
relative_jump_ = bit_cast<ULONG>(&full_thunk->internal_thunk) -
bit_cast<ULONG>(target_) - kJmp32Size;
}
// Save the verified code
memcpy(local_thunk, &function_code, sizeof(function_code));
return true;
}
bool Wow64ResolverThunk::IsFunctionAService(void* local_thunk) const {
Wow64Entry function_code;
SIZE_T read;
if (!::ReadProcessMemory(process_, target_, &function_code,
sizeof(function_code), &read))
return false;
if (sizeof(function_code) != read)
return false;
if (kMovEax != function_code.mov_eax || kXorEcx != function_code.xor_ecx ||
kLeaEdx != function_code.lea_edx || kCallFs1 != function_code.call_fs1 ||
kCallFs2 != function_code.call_fs2 || kCallFs3 != function_code.call_fs3)
return false;
if ((kAddEsp1 == function_code.add_esp1 &&
kAddEsp2 == function_code.add_esp2 &&
kRet == function_code.ret) || kRet == function_code.add_esp1) {
// Save the verified code
memcpy(local_thunk, &function_code, sizeof(function_code));
return true;
}
return false;
}
bool Win2kResolverThunk::IsFunctionAService(void* local_thunk) const {
ServiceEntry function_code;
SIZE_T read;
if (!::ReadProcessMemory(process_, target_, &function_code,
sizeof(function_code), &read))
return false;
if (sizeof(function_code) != read)
return false;
if (kMovEax != function_code.mov_eax ||
function_code.service_id > kMaxService)
return false;
// Save the verified code
memcpy(local_thunk, &function_code, sizeof(function_code));
return true;
}
} // namespace sandbox