blob: 05f3f6f6c95cb389ace99bd97573b128e1e52e3c [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <cmath>
#include <string>
#include <vector>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <GLES2/gl2extchromium.h>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/files/file_util.h"
#include "base/json/json_reader.h"
#include "base/macros.h"
#include "base/memory/ref_counted_memory.h"
#include "base/message_loop/message_loop.h"
#include "base/run_loop.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/waitable_event.h"
#include "base/test/launcher/unit_test_launcher.h"
#include "base/test/test_suite.h"
#include "base/time/time.h"
#include "base/trace_event/trace_event.h"
#include "content/browser/compositor/gl_helper.h"
#include "content/browser/compositor/gl_helper_readback_support.h"
#include "content/browser/compositor/gl_helper_scaling.h"
#include "gpu/command_buffer/client/gl_in_process_context.h"
#include "gpu/command_buffer/client/gles2_implementation.h"
#include "media/base/video_frame.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkTypes.h"
#include "ui/gl/gl_implementation.h"
namespace content {
content::GLHelper::ScalerQuality kQualities[] = {
content::GLHelper::SCALER_QUALITY_BEST,
content::GLHelper::SCALER_QUALITY_GOOD,
content::GLHelper::SCALER_QUALITY_FAST,
};
const char* kQualityNames[] = {
"best", "good", "fast",
};
class GLHelperTest : public testing::Test {
protected:
void SetUp() override {
gpu::gles2::ContextCreationAttribHelper attributes;
attributes.alpha_size = 8;
attributes.depth_size = 24;
attributes.red_size = 8;
attributes.green_size = 8;
attributes.blue_size = 8;
attributes.stencil_size = 8;
attributes.samples = 4;
attributes.sample_buffers = 1;
attributes.bind_generates_resource = false;
context_.reset(gpu::GLInProcessContext::Create(
nullptr, /* service */
nullptr, /* surface */
true, /* offscreen */
gfx::kNullAcceleratedWidget, /* window */
gfx::Size(1, 1), /* size */
nullptr, /* share_context */
attributes, gfx::PreferDiscreteGpu,
::gpu::GLInProcessContextSharedMemoryLimits(),
nullptr, /* gpu_memory_buffer_manager */
nullptr /* image_factory */));
gl_ = context_->GetImplementation();
gpu::ContextSupport* support = context_->GetImplementation();
helper_.reset(new content::GLHelper(gl_, support));
helper_scaling_.reset(new content::GLHelperScaling(gl_, helper_.get()));
}
void TearDown() override {
helper_scaling_.reset(NULL);
helper_.reset(NULL);
context_.reset(NULL);
}
void StartTracing(const std::string& filter) {
base::trace_event::TraceLog::GetInstance()->SetEnabled(
base::trace_event::TraceConfig(filter,
base::trace_event::RECORD_UNTIL_FULL),
base::trace_event::TraceLog::RECORDING_MODE);
}
static void TraceDataCB(
const base::Callback<void()>& callback,
std::string* output,
const scoped_refptr<base::RefCountedString>& json_events_str,
bool has_more_events) {
if (output->size() > 1 && !json_events_str->data().empty()) {
output->append(",");
}
output->append(json_events_str->data());
if (!has_more_events) {
callback.Run();
}
}
// End tracing, return tracing data in a simple map
// of event name->counts.
void EndTracing(std::map<std::string, int>* event_counts) {
std::string json_data = "[";
base::trace_event::TraceLog::GetInstance()->SetDisabled();
base::RunLoop run_loop;
base::trace_event::TraceLog::GetInstance()->Flush(
base::Bind(&GLHelperTest::TraceDataCB, run_loop.QuitClosure(),
base::Unretained(&json_data)));
run_loop.Run();
json_data.append("]");
std::string error_msg;
std::unique_ptr<base::Value> trace_data =
base::JSONReader::ReadAndReturnError(json_data, 0, NULL, &error_msg);
CHECK(trace_data) << "JSON parsing failed (" << error_msg
<< ") JSON data:" << std::endl
<< json_data;
base::ListValue* list;
CHECK(trace_data->GetAsList(&list));
for (size_t i = 0; i < list->GetSize(); i++) {
base::Value* item = NULL;
if (list->Get(i, &item)) {
base::DictionaryValue* dict;
CHECK(item->GetAsDictionary(&dict));
std::string name;
CHECK(dict->GetString("name", &name));
std::string trace_type;
CHECK(dict->GetString("ph", &trace_type));
// Count all except END traces, as they come in BEGIN/END pairs.
if (trace_type != "E" && trace_type != "e")
(*event_counts)[name]++;
VLOG(1) << "trace name: " << name;
}
}
}
// Bicubic filter kernel function.
static float Bicubic(float x) {
const float a = -0.5;
x = std::abs(x);
float x2 = x * x;
float x3 = x2 * x;
if (x <= 1) {
return (a + 2) * x3 - (a + 3) * x2 + 1;
} else if (x < 2) {
return a * x3 - 5 * a * x2 + 8 * a * x - 4 * a;
} else {
return 0.0f;
}
}
// Look up a single channel value. Works for 4-channel and single channel
// bitmaps. Clamp x/y.
int Channel(SkBitmap* pixels, int x, int y, int c) {
if (pixels->bytesPerPixel() == 4) {
uint32_t* data =
pixels->getAddr32(std::max(0, std::min(x, pixels->width() - 1)),
std::max(0, std::min(y, pixels->height() - 1)));
return (*data) >> (c * 8) & 0xff;
} else {
DCHECK_EQ(pixels->bytesPerPixel(), 1);
DCHECK_EQ(c, 0);
return *pixels->getAddr8(std::max(0, std::min(x, pixels->width() - 1)),
std::max(0, std::min(y, pixels->height() - 1)));
}
}
// Set a single channel value. Works for 4-channel and single channel
// bitmaps. Clamp x/y.
void SetChannel(SkBitmap* pixels, int x, int y, int c, int v) {
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_LT(x, pixels->width());
DCHECK_LT(y, pixels->height());
if (pixels->bytesPerPixel() == 4) {
uint32_t* data = pixels->getAddr32(x, y);
v = std::max(0, std::min(v, 255));
*data = (*data & ~(0xffu << (c * 8))) | (v << (c * 8));
} else {
DCHECK_EQ(pixels->bytesPerPixel(), 1);
DCHECK_EQ(c, 0);
uint8_t* data = pixels->getAddr8(x, y);
v = std::max(0, std::min(v, 255));
*data = v;
}
}
// Print all the R, G, B or A values from an SkBitmap in a
// human-readable format.
void PrintChannel(SkBitmap* pixels, int c) {
for (int y = 0; y < pixels->height(); y++) {
std::string formatted;
for (int x = 0; x < pixels->width(); x++) {
formatted.append(base::StringPrintf("%3d, ", Channel(pixels, x, y, c)));
}
LOG(ERROR) << formatted;
}
}
// Print out the individual steps of a scaler pipeline.
std::string PrintStages(
const std::vector<GLHelperScaling::ScalerStage>& scaler_stages) {
std::string ret;
for (size_t i = 0; i < scaler_stages.size(); i++) {
ret.append(base::StringPrintf(
"%dx%d -> %dx%d ", scaler_stages[i].src_size.width(),
scaler_stages[i].src_size.height(), scaler_stages[i].dst_size.width(),
scaler_stages[i].dst_size.height()));
bool xy_matters = false;
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_BILINEAR:
ret.append("bilinear");
break;
case GLHelperScaling::SHADER_BILINEAR2:
ret.append("bilinear2");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR3:
ret.append("bilinear3");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR4:
ret.append("bilinear4");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
ret.append("bilinear2x2");
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
ret.append("bicubic upscale");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
ret.append("bicubic 1/2");
xy_matters = true;
break;
case GLHelperScaling::SHADER_PLANAR:
ret.append("planar");
break;
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
ret.append("rgb2yuv pass 1");
break;
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
ret.append("rgb2yuv pass 2");
break;
}
if (xy_matters) {
if (scaler_stages[i].scale_x) {
ret.append(" X");
} else {
ret.append(" Y");
}
}
ret.append("\n");
}
return ret;
}
bool CheckScale(double scale, int samples, bool already_scaled) {
// 1:1 is valid if there is one sample.
if (samples == 1 && scale == 1.0) {
return true;
}
// Is it an exact down-scale (50%, 25%, etc.?)
if (scale == 2.0 * samples) {
return true;
}
// Upscales, only valid if we haven't already scaled in this dimension.
if (!already_scaled) {
// Is it a valid bilinear upscale?
if (samples == 1 && scale <= 1.0) {
return true;
}
// Multi-sample upscale-downscale combination?
if (scale > samples / 2.0 && scale < samples) {
return true;
}
}
return false;
}
// Make sure that the stages of the scaler pipeline are sane.
void ValidateScalerStages(
content::GLHelper::ScalerQuality quality,
const std::vector<GLHelperScaling::ScalerStage>& scaler_stages,
const gfx::Size& dst_size,
const std::string& message) {
bool previous_error = HasFailure();
// First, check that the input size for each stage is equal to
// the output size of the previous stage.
for (size_t i = 1; i < scaler_stages.size(); i++) {
EXPECT_EQ(scaler_stages[i - 1].dst_size.width(),
scaler_stages[i].src_size.width());
EXPECT_EQ(scaler_stages[i - 1].dst_size.height(),
scaler_stages[i].src_size.height());
EXPECT_EQ(scaler_stages[i].src_subrect.x(), 0);
EXPECT_EQ(scaler_stages[i].src_subrect.y(), 0);
EXPECT_EQ(scaler_stages[i].src_subrect.width(),
scaler_stages[i].src_size.width());
EXPECT_EQ(scaler_stages[i].src_subrect.height(),
scaler_stages[i].src_size.height());
}
// Check the output size matches the destination of the last stage
EXPECT_EQ(scaler_stages[scaler_stages.size() - 1].dst_size.width(),
dst_size.width());
EXPECT_EQ(scaler_stages[scaler_stages.size() - 1].dst_size.height(),
dst_size.height());
// Used to verify that up-scales are not attempted after some
// other scale.
bool scaled_x = false;
bool scaled_y = false;
for (size_t i = 0; i < scaler_stages.size(); i++) {
// Note: 2.0 means scaling down by 50%
double x_scale =
static_cast<double>(scaler_stages[i].src_subrect.width()) /
static_cast<double>(scaler_stages[i].dst_size.width());
double y_scale =
static_cast<double>(scaler_stages[i].src_subrect.height()) /
static_cast<double>(scaler_stages[i].dst_size.height());
int x_samples = 0;
int y_samples = 0;
// Codify valid scale operations.
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_PLANAR:
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
EXPECT_TRUE(false) << "Invalid shader.";
break;
case GLHelperScaling::SHADER_BILINEAR:
if (quality != content::GLHelper::SCALER_QUALITY_FAST) {
x_samples = 1;
y_samples = 1;
}
break;
case GLHelperScaling::SHADER_BILINEAR2:
x_samples = 2;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR3:
x_samples = 3;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR4:
x_samples = 4;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
x_samples = 2;
y_samples = 2;
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
if (scaler_stages[i].scale_x) {
EXPECT_LT(x_scale, 1.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_LT(y_scale, 1.0);
}
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
if (scaler_stages[i].scale_x) {
EXPECT_EQ(x_scale, 2.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_EQ(y_scale, 2.0);
}
break;
}
if (!scaler_stages[i].scale_x) {
std::swap(x_samples, y_samples);
}
if (x_samples) {
EXPECT_TRUE(CheckScale(x_scale, x_samples, scaled_x)) << "x_scale = "
<< x_scale;
}
if (y_samples) {
EXPECT_TRUE(CheckScale(y_scale, y_samples, scaled_y)) << "y_scale = "
<< y_scale;
}
if (x_scale != 1.0) {
scaled_x = true;
}
if (y_scale != 1.0) {
scaled_y = true;
}
}
if (HasFailure() && !previous_error) {
LOG(ERROR) << "Invalid scaler stages: " << message;
LOG(ERROR) << "Scaler stages:";
LOG(ERROR) << PrintStages(scaler_stages);
}
}
// Compares two bitmaps taking color types into account. Checks whether each
// component of each pixel is no more than |maxdiff| apart. If bitmaps are not
// similar enough, prints out |truth|, |other|, |source|, |scaler_stages|
// and |message|.
void Compare(SkBitmap* truth,
SkBitmap* other,
int maxdiff,
SkBitmap* source,
const std::vector<GLHelperScaling::ScalerStage>& scaler_stages,
std::string message) {
EXPECT_EQ(truth->width(), other->width());
EXPECT_EQ(truth->height(), other->height());
bool swizzle = (truth->colorType() == kRGBA_8888_SkColorType &&
other->colorType() == kBGRA_8888_SkColorType) ||
(truth->colorType() == kBGRA_8888_SkColorType &&
other->colorType() == kRGBA_8888_SkColorType);
EXPECT_TRUE(swizzle || truth->colorType() == other->colorType());
int bpp = truth->bytesPerPixel();
for (int x = 0; x < truth->width(); x++) {
for (int y = 0; y < truth->height(); y++) {
for (int c = 0; c < bpp; c++) {
int a = Channel(truth, x, y, c);
// swizzle when comparing if needed
int b = swizzle && (c == 0 || c == 2)
? Channel(other, x, y, (c + 2) & 2)
: Channel(other, x, y, c);
EXPECT_NEAR(a, b, maxdiff) << " x=" << x << " y=" << y << " c=" << c
<< " " << message;
if (std::abs(a - b) > maxdiff) {
LOG(ERROR) << "-------expected--------";
for (int i = 0; i < bpp; i++) {
LOG(ERROR) << "Channel " << i << ":";
PrintChannel(truth, i);
}
LOG(ERROR) << "-------actual--------";
for (int i = 0; i < bpp; i++) {
LOG(ERROR) << "Channel " << i << ":";
PrintChannel(other, i);
}
if (source) {
LOG(ERROR) << "-------original--------";
for (int i = 0; i < source->bytesPerPixel(); i++) {
LOG(ERROR) << "Channel " << i << ":";
PrintChannel(source, i);
}
}
LOG(ERROR) << "-----Scaler stages------";
LOG(ERROR) << PrintStages(scaler_stages);
return;
}
}
}
}
}
// Get a single R, G, B or A value as a float.
float ChannelAsFloat(SkBitmap* pixels, int x, int y, int c) {
return Channel(pixels, x, y, c) / 255.0;
}
// Works like a GL_LINEAR lookup on an SkBitmap.
float Bilinear(SkBitmap* pixels, float x, float y, int c) {
x -= 0.5;
y -= 0.5;
int base_x = static_cast<int>(floorf(x));
int base_y = static_cast<int>(floorf(y));
x -= base_x;
y -= base_y;
return (ChannelAsFloat(pixels, base_x, base_y, c) * (1 - x) * (1 - y) +
ChannelAsFloat(pixels, base_x + 1, base_y, c) * x * (1 - y) +
ChannelAsFloat(pixels, base_x, base_y + 1, c) * (1 - x) * y +
ChannelAsFloat(pixels, base_x + 1, base_y + 1, c) * x * y);
}
// Encodes an RGBA bitmap to grayscale.
// Reference implementation for
// GLHelper::CopyToTextureImpl::EncodeTextureAsGrayscale.
void EncodeToGrayscaleSlow(SkBitmap* input, SkBitmap* output) {
const float kRGBtoGrayscaleColorWeights[3] = {0.213f, 0.715f, 0.072f};
CHECK_EQ(kAlpha_8_SkColorType, output->colorType());
CHECK_EQ(input->width(), output->width());
CHECK_EQ(input->height(), output->height());
CHECK_EQ(input->colorType(), kRGBA_8888_SkColorType);
for (int dst_y = 0; dst_y < output->height(); dst_y++) {
for (int dst_x = 0; dst_x < output->width(); dst_x++) {
float c0 = ChannelAsFloat(input, dst_x, dst_y, 0);
float c1 = ChannelAsFloat(input, dst_x, dst_y, 1);
float c2 = ChannelAsFloat(input, dst_x, dst_y, 2);
float value = c0 * kRGBtoGrayscaleColorWeights[0] +
c1 * kRGBtoGrayscaleColorWeights[1] +
c2 * kRGBtoGrayscaleColorWeights[2];
SetChannel(output, dst_x, dst_y, 0,
static_cast<int>(value * 255.0f + 0.5f));
}
}
}
// Very slow bicubic / bilinear scaler for reference.
void ScaleSlow(SkBitmap* input,
SkBitmap* output,
content::GLHelper::ScalerQuality quality) {
float xscale = static_cast<float>(input->width()) / output->width();
float yscale = static_cast<float>(input->height()) / output->height();
float clamped_xscale = xscale < 1.0 ? 1.0 : 1.0 / xscale;
float clamped_yscale = yscale < 1.0 ? 1.0 : 1.0 / yscale;
for (int dst_y = 0; dst_y < output->height(); dst_y++) {
for (int dst_x = 0; dst_x < output->width(); dst_x++) {
for (int channel = 0; channel < 4; channel++) {
float dst_x_in_src = (dst_x + 0.5f) * xscale;
float dst_y_in_src = (dst_y + 0.5f) * yscale;
float value = 0.0f;
float sum = 0.0f;
switch (quality) {
case content::GLHelper::SCALER_QUALITY_BEST:
for (int src_y = -10; src_y < input->height() + 10; ++src_y) {
float coeff_y =
Bicubic((src_y + 0.5f - dst_y_in_src) * clamped_yscale);
if (coeff_y == 0.0f) {
continue;
}
for (int src_x = -10; src_x < input->width() + 10; ++src_x) {
float coeff =
coeff_y *
Bicubic((src_x + 0.5f - dst_x_in_src) * clamped_xscale);
if (coeff == 0.0f) {
continue;
}
sum += coeff;
float c = ChannelAsFloat(input, src_x, src_y, channel);
value += c * coeff;
}
}
break;
case content::GLHelper::SCALER_QUALITY_GOOD: {
int xshift = 0, yshift = 0;
while ((output->width() << xshift) < input->width()) {
xshift++;
}
while ((output->height() << yshift) < input->height()) {
yshift++;
}
int xmag = 1 << xshift;
int ymag = 1 << yshift;
if (xmag == 4 && output->width() * 3 >= input->width()) {
xmag = 3;
}
if (ymag == 4 && output->height() * 3 >= input->height()) {
ymag = 3;
}
for (int x = 0; x < xmag; x++) {
for (int y = 0; y < ymag; y++) {
value += Bilinear(
input, (dst_x * xmag + x + 0.5) * xscale / xmag,
(dst_y * ymag + y + 0.5) * yscale / ymag, channel);
sum += 1.0;
}
}
break;
}
case content::GLHelper::SCALER_QUALITY_FAST:
value = Bilinear(input, dst_x_in_src, dst_y_in_src, channel);
sum = 1.0;
}
value /= sum;
SetChannel(output, dst_x, dst_y, channel,
static_cast<int>(value * 255.0f + 0.5f));
}
}
}
}
void FlipSKBitmap(SkBitmap* bitmap) {
int bpp = bitmap->bytesPerPixel();
DCHECK(bpp == 4 || bpp == 1);
int top_line = 0;
int bottom_line = bitmap->height() - 1;
while (top_line < bottom_line) {
for (int x = 0; x < bitmap->width(); x++) {
bpp == 4 ? std::swap(*bitmap->getAddr32(x, top_line),
*bitmap->getAddr32(x, bottom_line))
: std::swap(*bitmap->getAddr8(x, top_line),
*bitmap->getAddr8(x, bottom_line));
}
top_line++;
bottom_line--;
}
}
// Swaps red and blue channels in each pixel in a 32-bit bitmap.
void SwizzleSKBitmap(SkBitmap* bitmap) {
int bpp = bitmap->bytesPerPixel();
DCHECK(bpp == 4);
for (int y = 0; y < bitmap->height(); y++) {
for (int x = 0; x < bitmap->width(); x++) {
// Swap channels 0 and 2 (red and blue)
int c0 = Channel(bitmap, x, y, 0);
int c2 = Channel(bitmap, x, y, 2);
SetChannel(bitmap, x, y, 2, c0);
SetChannel(bitmap, x, y, 0, c2);
}
}
}
// gl_helper scales recursively, so we'll need to do that
// in the reference implementation too.
void ScaleSlowRecursive(SkBitmap* input,
SkBitmap* output,
content::GLHelper::ScalerQuality quality) {
if (quality == content::GLHelper::SCALER_QUALITY_FAST ||
quality == content::GLHelper::SCALER_QUALITY_GOOD) {
ScaleSlow(input, output, quality);
return;
}
float xscale = static_cast<float>(output->width()) / input->width();
// This corresponds to all the operations we can do directly.
float yscale = static_cast<float>(output->height()) / input->height();
if ((xscale == 1.0f && yscale == 1.0f) ||
(xscale == 0.5f && yscale == 1.0f) ||
(xscale == 1.0f && yscale == 0.5f) ||
(xscale >= 1.0f && yscale == 1.0f) ||
(xscale == 1.0f && yscale >= 1.0f)) {
ScaleSlow(input, output, quality);
return;
}
// Now we break the problem down into smaller pieces, using the
// operations available.
int xtmp = input->width();
int ytmp = input->height();
if (output->height() != input->height()) {
ytmp = output->height();
while (ytmp < input->height() && ytmp * 2 != input->height()) {
ytmp += ytmp;
}
} else {
xtmp = output->width();
while (xtmp < input->width() && xtmp * 2 != input->width()) {
xtmp += xtmp;
}
}
SkBitmap tmp;
tmp.allocN32Pixels(xtmp, ytmp);
ScaleSlowRecursive(input, &tmp, quality);
ScaleSlowRecursive(&tmp, output, quality);
}
// Creates an RGBA SkBitmap
std::unique_ptr<SkBitmap> CreateTestBitmap(int width,
int height,
int test_pattern) {
std::unique_ptr<SkBitmap> bitmap(new SkBitmap);
bitmap->allocPixels(SkImageInfo::Make(width, height, kRGBA_8888_SkColorType,
kPremul_SkAlphaType));
for (int x = 0; x < width; ++x) {
for (int y = 0; y < height; ++y) {
switch (test_pattern) {
case 0: // Smooth test pattern
SetChannel(bitmap.get(), x, y, 0, x * 10);
SetChannel(bitmap.get(), x, y, 0, y == 0 ? x * 50 : x * 10);
SetChannel(bitmap.get(), x, y, 1, y * 10);
SetChannel(bitmap.get(), x, y, 2, (x + y) * 10);
SetChannel(bitmap.get(), x, y, 3, 255);
break;
case 1: // Small blocks
SetChannel(bitmap.get(), x, y, 0, x & 1 ? 255 : 0);
SetChannel(bitmap.get(), x, y, 1, y & 1 ? 255 : 0);
SetChannel(bitmap.get(), x, y, 2, (x + y) & 1 ? 255 : 0);
SetChannel(bitmap.get(), x, y, 3, 255);
break;
case 2: // Medium blocks
SetChannel(bitmap.get(), x, y, 0, 10 + x / 2 * 50);
SetChannel(bitmap.get(), x, y, 1, 10 + y / 3 * 50);
SetChannel(bitmap.get(), x, y, 2, (x + y) / 5 * 50 + 5);
SetChannel(bitmap.get(), x, y, 3, 255);
break;
}
}
}
return bitmap;
}
// Binds texture and framebuffer and loads the bitmap pixels into the texture.
void BindTextureAndFrameBuffer(GLuint texture,
GLuint framebuffer,
SkBitmap* bitmap,
int width,
int height) {
gl_->BindFramebuffer(GL_FRAMEBUFFER, framebuffer);
gl_->BindTexture(GL_TEXTURE_2D, texture);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA,
GL_UNSIGNED_BYTE, bitmap->getPixels());
}
// Create a test image, transform it using
// GLHelper::CropScaleReadbackAndCleanTexture and a reference implementation
// and compare the results.
void TestCropScaleReadbackAndCleanTexture(int xsize,
int ysize,
int scaled_xsize,
int scaled_ysize,
int test_pattern,
SkColorType out_color_type,
bool swizzle,
size_t quality_index) {
DCHECK(out_color_type == kAlpha_8_SkColorType ||
out_color_type == kRGBA_8888_SkColorType ||
out_color_type == kBGRA_8888_SkColorType);
GLuint src_texture;
gl_->GenTextures(1, &src_texture);
GLuint framebuffer;
gl_->GenFramebuffers(1, &framebuffer);
std::unique_ptr<SkBitmap> input_pixels =
CreateTestBitmap(xsize, ysize, test_pattern);
BindTextureAndFrameBuffer(src_texture, framebuffer, input_pixels.get(),
xsize, ysize);
std::string message = base::StringPrintf(
"input size: %dx%d "
"output size: %dx%d "
"pattern: %d , quality: %s, "
"out_color_type: %d",
xsize, ysize, scaled_xsize, scaled_ysize, test_pattern,
kQualityNames[quality_index], out_color_type);
// Transform the bitmap using GLHelper::CropScaleReadbackAndCleanTexture.
SkBitmap output_pixels;
output_pixels.allocPixels(SkImageInfo::Make(
scaled_xsize, scaled_ysize, out_color_type, kPremul_SkAlphaType));
base::RunLoop run_loop;
gfx::Size encoded_texture_size;
helper_->CropScaleReadbackAndCleanTexture(
src_texture, gfx::Size(xsize, ysize), gfx::Rect(xsize, ysize),
gfx::Size(scaled_xsize, scaled_ysize),
static_cast<unsigned char*>(output_pixels.getPixels()), out_color_type,
base::Bind(&callcallback, run_loop.QuitClosure()),
kQualities[quality_index]);
run_loop.Run();
// CropScaleReadbackAndCleanTexture flips the pixels. Flip them back.
FlipSKBitmap(&output_pixels);
// If the bitmap shouldn't have changed - compare against input.
if (xsize == scaled_xsize && ysize == scaled_ysize &&
out_color_type != kAlpha_8_SkColorType) {
const std::vector<GLHelperScaling::ScalerStage> dummy_stages;
Compare(input_pixels.get(), &output_pixels, 0, NULL, dummy_stages,
message + " comparing against input");
return;
}
// Now transform the bitmap using the reference implementation.
SkBitmap scaled_pixels;
scaled_pixels.allocPixels(SkImageInfo::Make(scaled_xsize, scaled_ysize,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType));
SkBitmap truth_pixels;
// Step 1: Scale
ScaleSlowRecursive(input_pixels.get(), &scaled_pixels,
kQualities[quality_index]);
// Step 2: Encode to grayscale if needed.
if (out_color_type == kAlpha_8_SkColorType) {
truth_pixels.allocPixels(SkImageInfo::Make(
scaled_xsize, scaled_ysize, out_color_type, kPremul_SkAlphaType));
EncodeToGrayscaleSlow(&scaled_pixels, &truth_pixels);
} else {
truth_pixels = scaled_pixels;
}
// Now compare the results.
SkAutoLockPixels lock_input(truth_pixels);
const std::vector<GLHelperScaling::ScalerStage> dummy_stages;
Compare(&truth_pixels, &output_pixels, 2, input_pixels.get(), dummy_stages,
message + " comparing against transformed/scaled");
gl_->DeleteTextures(1, &src_texture);
gl_->DeleteFramebuffers(1, &framebuffer);
}
// Scaling test: Create a test image, scale it using GLHelperScaling
// and a reference implementation and compare the results.
void TestScale(int xsize,
int ysize,
int scaled_xsize,
int scaled_ysize,
int test_pattern,
size_t quality_index,
bool flip) {
GLuint src_texture;
gl_->GenTextures(1, &src_texture);
GLuint framebuffer;
gl_->GenFramebuffers(1, &framebuffer);
std::unique_ptr<SkBitmap> input_pixels =
CreateTestBitmap(xsize, ysize, test_pattern);
BindTextureAndFrameBuffer(src_texture, framebuffer, input_pixels.get(),
xsize, ysize);
std::string message = base::StringPrintf(
"input size: %dx%d "
"output size: %dx%d "
"pattern: %d quality: %s",
xsize, ysize, scaled_xsize, scaled_ysize, test_pattern,
kQualityNames[quality_index]);
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(kQualities[quality_index],
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(scaled_xsize, scaled_ysize),
flip,
false,
&stages);
ValidateScalerStages(kQualities[quality_index],
stages,
gfx::Size(scaled_xsize, scaled_ysize),
message);
GLuint dst_texture = helper_->CopyAndScaleTexture(
src_texture, gfx::Size(xsize, ysize),
gfx::Size(scaled_xsize, scaled_ysize), flip, kQualities[quality_index]);
SkBitmap output_pixels;
output_pixels.allocPixels(SkImageInfo::Make(scaled_xsize, scaled_ysize,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType));
helper_->ReadbackTextureSync(
dst_texture, gfx::Rect(0, 0, scaled_xsize, scaled_ysize),
static_cast<unsigned char*>(output_pixels.getPixels()),
kRGBA_8888_SkColorType);
if (flip) {
// Flip the pixels back.
FlipSKBitmap(&output_pixels);
}
// If the bitmap shouldn't have changed - compare against input.
if (xsize == scaled_xsize && ysize == scaled_ysize) {
Compare(input_pixels.get(), &output_pixels, 0, NULL, stages,
message + " comparing against input");
return;
}
// Now scale the bitmap using the reference implementation.
SkBitmap truth_pixels;
truth_pixels.allocPixels(SkImageInfo::Make(scaled_xsize, scaled_ysize,
kRGBA_8888_SkColorType,
kPremul_SkAlphaType));
ScaleSlowRecursive(input_pixels.get(), &truth_pixels,
kQualities[quality_index]);
Compare(&truth_pixels, &output_pixels, 2, input_pixels.get(), stages,
message + " comparing against scaled");
gl_->DeleteTextures(1, &src_texture);
gl_->DeleteTextures(1, &dst_texture);
gl_->DeleteFramebuffers(1, &framebuffer);
}
// Create a scaling pipeline and check that it is made up of
// valid scaling operations.
void TestScalerPipeline(size_t quality,
int xsize,
int ysize,
int dst_xsize,
int dst_ysize) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
kQualities[quality], gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize), gfx::Size(dst_xsize, dst_ysize), false,
false, &stages);
ValidateScalerStages(kQualities[quality], stages,
gfx::Size(dst_xsize, dst_ysize),
base::StringPrintf("input size: %dx%d "
"output size: %dx%d "
"quality: %s",
xsize, ysize, dst_xsize, dst_ysize,
kQualityNames[quality]));
}
// Create a scaling pipeline and make sure that the steps
// are exactly the steps we expect.
void CheckPipeline(content::GLHelper::ScalerQuality quality,
int xsize,
int ysize,
int dst_xsize,
int dst_ysize,
const std::string& description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
quality, gfx::Size(xsize, ysize), gfx::Rect(0, 0, xsize, ysize),
gfx::Size(dst_xsize, dst_ysize), false, false, &stages);
ValidateScalerStages(content::GLHelper::SCALER_QUALITY_GOOD, stages,
gfx::Size(dst_xsize, dst_ysize), "");
EXPECT_EQ(PrintStages(stages), description);
}
// Note: Left/Right means Top/Bottom when used for Y dimension.
enum Margin {
MarginLeft,
MarginMiddle,
MarginRight,
MarginInvalid,
};
static Margin NextMargin(Margin m) {
switch (m) {
case MarginLeft:
return MarginMiddle;
case MarginMiddle:
return MarginRight;
case MarginRight:
return MarginInvalid;
default:
return MarginInvalid;
}
}
int compute_margin(int insize, int outsize, Margin m) {
int available = outsize - insize;
switch (m) {
default:
EXPECT_TRUE(false) << "This should not happen.";
return 0;
case MarginLeft:
return 0;
case MarginMiddle:
return (available / 2) & ~1;
case MarginRight:
return available;
}
}
// Convert 0.0 - 1.0 to 0 - 255
int float_to_byte(float v) {
int ret = static_cast<int>(floorf(v * 255.0f + 0.5f));
if (ret < 0) {
return 0;
}
if (ret > 255) {
return 255;
}
return ret;
}
static void callcallback(const base::Callback<void()>& callback,
bool result) {
callback.Run();
}
void PrintPlane(unsigned char* plane, int xsize, int stride, int ysize) {
for (int y = 0; y < ysize; y++) {
std::string formatted;
for (int x = 0; x < xsize; x++) {
formatted.append(base::StringPrintf("%3d, ", plane[y * stride + x]));
}
LOG(ERROR) << formatted << " (" << (plane + y * stride) << ")";
}
}
// Compare two planes make sure that each component of each pixel
// is no more than |maxdiff| apart.
void ComparePlane(unsigned char* truth,
int truth_stride,
unsigned char* other,
int other_stride,
int maxdiff,
int xsize,
int ysize,
SkBitmap* source,
std::string message) {
for (int x = 0; x < xsize; x++) {
for (int y = 0; y < ysize; y++) {
int a = other[y * other_stride + x];
int b = truth[y * truth_stride + x];
EXPECT_NEAR(a, b, maxdiff) << " x=" << x << " y=" << y << " "
<< message;
if (std::abs(a - b) > maxdiff) {
LOG(ERROR) << "-------expected--------";
PrintPlane(truth, xsize, truth_stride, ysize);
LOG(ERROR) << "-------actual--------";
PrintPlane(other, xsize, other_stride, ysize);
if (source) {
LOG(ERROR) << "-------before yuv conversion: red--------";
PrintChannel(source, 0);
LOG(ERROR) << "-------before yuv conversion: green------";
PrintChannel(source, 1);
LOG(ERROR) << "-------before yuv conversion: blue-------";
PrintChannel(source, 2);
}
return;
}
}
}
}
void DrawGridToBitmap(int w,
int h,
SkColor background_color,
SkColor grid_color,
int grid_pitch,
int grid_width,
SkBitmap& bmp) {
ASSERT_GT(grid_pitch, 0);
ASSERT_GT(grid_width, 0);
ASSERT_NE(background_color, grid_color);
for (int y = 0; y < h; ++y) {
bool y_on_grid = ((y % grid_pitch) < grid_width);
for (int x = 0; x < w; ++x) {
bool on_grid = (y_on_grid || ((x % grid_pitch) < grid_width));
if (bmp.colorType() == kRGBA_8888_SkColorType ||
bmp.colorType() == kBGRA_8888_SkColorType) {
*bmp.getAddr32(x, y) = (on_grid ? grid_color : background_color);
} else if (bmp.colorType() == kRGB_565_SkColorType) {
*bmp.getAddr16(x, y) = (on_grid ? grid_color : background_color);
}
}
}
}
void DrawCheckerToBitmap(int w,
int h,
SkColor color1,
SkColor color2,
int rect_w,
int rect_h,
SkBitmap& bmp) {
ASSERT_GT(rect_w, 0);
ASSERT_GT(rect_h, 0);
ASSERT_NE(color1, color2);
for (int y = 0; y < h; ++y) {
bool y_bit = (((y / rect_h) & 0x1) == 0);
for (int x = 0; x < w; ++x) {
bool x_bit = (((x / rect_w) & 0x1) == 0);
bool use_color2 = (x_bit != y_bit); // xor
if (bmp.colorType() == kRGBA_8888_SkColorType ||
bmp.colorType() == kBGRA_8888_SkColorType) {
*bmp.getAddr32(x, y) = (use_color2 ? color2 : color1);
} else if (bmp.colorType() == kRGB_565_SkColorType) {
*bmp.getAddr16(x, y) = (use_color2 ? color2 : color1);
}
}
}
}
bool ColorComponentsClose(SkColor component1,
SkColor component2,
SkColorType color_type) {
int c1 = static_cast<int>(component1);
int c2 = static_cast<int>(component2);
bool result = false;
switch (color_type) {
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
result = (std::abs(c1 - c2) == 0);
break;
case kRGB_565_SkColorType:
result = (std::abs(c1 - c2) <= 7);
break;
default:
break;
}
return result;
}
bool ColorsClose(SkColor color1, SkColor color2, SkColorType color_type) {
bool red = ColorComponentsClose(SkColorGetR(color1), SkColorGetR(color2),
color_type);
bool green = ColorComponentsClose(SkColorGetG(color1), SkColorGetG(color2),
color_type);
bool blue = ColorComponentsClose(SkColorGetB(color1), SkColorGetB(color2),
color_type);
bool alpha = ColorComponentsClose(SkColorGetA(color1), SkColorGetA(color2),
color_type);
if (color_type == kRGB_565_SkColorType) {
return red && blue && green;
}
return red && blue && green && alpha;
}
bool IsEqual(const SkBitmap& bmp1, const SkBitmap& bmp2) {
if (bmp1.isNull() && bmp2.isNull())
return true;
if (bmp1.width() != bmp2.width() || bmp1.height() != bmp2.height()) {
LOG(ERROR) << "Bitmap geometry check failure";
return false;
}
if (bmp1.colorType() != bmp2.colorType())
return false;
SkAutoLockPixels lock1(bmp1);
SkAutoLockPixels lock2(bmp2);
if (!bmp1.getPixels() || !bmp2.getPixels()) {
LOG(ERROR) << "Empty Bitmap!";
return false;
}
for (int y = 0; y < bmp1.height(); ++y) {
for (int x = 0; x < bmp1.width(); ++x) {
if (!ColorsClose(bmp1.getColor(x, y), bmp2.getColor(x, y),
bmp1.colorType())) {
LOG(ERROR) << "Bitmap color comparision failure";
return false;
}
}
}
return true;
}
void BindAndAttachTextureWithPixels(GLuint src_texture,
SkColorType color_type,
const gfx::Size& src_size,
const SkBitmap& input_pixels) {
gl_->BindTexture(GL_TEXTURE_2D, src_texture);
GLenum format = 0;
switch (color_type) {
case kBGRA_8888_SkColorType:
format = GL_BGRA_EXT;
break;
case kRGBA_8888_SkColorType:
format = GL_RGBA;
break;
case kRGB_565_SkColorType:
format = GL_RGB;
break;
default:
NOTREACHED();
}
GLenum type = (color_type == kRGB_565_SkColorType) ?
GL_UNSIGNED_SHORT_5_6_5 : GL_UNSIGNED_BYTE;
gl_->TexImage2D(GL_TEXTURE_2D, 0, format, src_size.width(),
src_size.height(), 0, format, type,
input_pixels.getPixels());
}
void ReadBackTexture(GLuint src_texture,
const gfx::Size& src_size,
unsigned char* pixels,
SkColorType color_type,
bool async) {
if (async) {
base::RunLoop run_loop;
helper_->ReadbackTextureAsync(
src_texture, src_size, pixels, color_type,
base::Bind(&callcallback, run_loop.QuitClosure()));
run_loop.Run();
} else {
helper_->ReadbackTextureSync(src_texture, gfx::Rect(src_size), pixels,
color_type);
}
}
// Test basic format readback.
bool TestTextureFormatReadback(const gfx::Size& src_size,
SkColorType color_type,
bool async) {
SkImageInfo info = SkImageInfo::Make(src_size.width(), src_size.height(),
color_type, kPremul_SkAlphaType);
if (!helper_->IsReadbackConfigSupported(color_type)) {
LOG(INFO) << "Skipping test format not supported" << color_type;
return true;
}
GLuint src_texture;
gl_->GenTextures(1, &src_texture);
SkBitmap input_pixels;
input_pixels.allocPixels(info);
// Test Pattern-1, Fill with Plain color pattern.
// Erase the input bitmap with red color.
input_pixels.eraseColor(SK_ColorRED);
BindAndAttachTextureWithPixels(src_texture, color_type, src_size,
input_pixels);
SkBitmap output_pixels;
output_pixels.allocPixels(info);
// Initialize the output bitmap with Green color.
// When the readback is over output bitmap should have the red color.
output_pixels.eraseColor(SK_ColorGREEN);
uint8_t* pixels = static_cast<uint8_t*>(output_pixels.getPixels());
ReadBackTexture(src_texture, src_size, pixels, color_type, async);
bool result = IsEqual(input_pixels, output_pixels);
if (!result) {
LOG(ERROR) << "Bitmap comparision failure Pattern-1";
return false;
}
const int rect_w = 10, rect_h = 4, src_grid_pitch = 10, src_grid_width = 4;
const SkColor color1 = SK_ColorRED, color2 = SK_ColorBLUE;
// Test Pattern-2, Fill with Grid Pattern.
DrawGridToBitmap(src_size.width(), src_size.height(), color2, color1,
src_grid_pitch, src_grid_width, input_pixels);
BindAndAttachTextureWithPixels(src_texture, color_type, src_size,
input_pixels);
ReadBackTexture(src_texture, src_size, pixels, color_type, async);
result = IsEqual(input_pixels, output_pixels);
if (!result) {
LOG(ERROR) << "Bitmap comparision failure Pattern-2";
return false;
}
// Test Pattern-3, Fill with CheckerBoard Pattern.
DrawCheckerToBitmap(src_size.width(), src_size.height(), color1, color2,
rect_w, rect_h, input_pixels);
BindAndAttachTextureWithPixels(src_texture, color_type, src_size,
input_pixels);
ReadBackTexture(src_texture, src_size, pixels, color_type, async);
result = IsEqual(input_pixels, output_pixels);
if (!result) {
LOG(ERROR) << "Bitmap comparision failure Pattern-3";
return false;
}
gl_->DeleteTextures(1, &src_texture);
if (HasFailure()) {
return false;
}
return true;
}
// YUV readback test. Create a test pattern, convert to YUV
// with reference implementation and compare to what gl_helper
// returns.
void TestYUVReadback(int xsize,
int ysize,
int output_xsize,
int output_ysize,
int xmargin,
int ymargin,
int test_pattern,
bool flip,
bool use_mrt,
content::GLHelper::ScalerQuality quality) {
GLuint src_texture;
gl_->GenTextures(1, &src_texture);
SkBitmap input_pixels;
input_pixels.allocN32Pixels(xsize, ysize);
for (int x = 0; x < xsize; ++x) {
for (int y = 0; y < ysize; ++y) {
switch (test_pattern) {
case 0: // Smooth test pattern
SetChannel(&input_pixels, x, y, 0, x * 10);
SetChannel(&input_pixels, x, y, 1, y * 10);
SetChannel(&input_pixels, x, y, 2, (x + y) * 10);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 1: // Small blocks
SetChannel(&input_pixels, x, y, 0, x & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 1, y & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 2, (x + y) & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 2: // Medium blocks
SetChannel(&input_pixels, x, y, 0, 10 + x / 2 * 50);
SetChannel(&input_pixels, x, y, 1, 10 + y / 3 * 50);
SetChannel(&input_pixels, x, y, 2, (x + y) / 5 * 50 + 5);
SetChannel(&input_pixels, x, y, 3, 255);
break;
}
}
}
gl_->BindTexture(GL_TEXTURE_2D, src_texture);
gl_->TexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, xsize, ysize, 0, GL_RGBA,
GL_UNSIGNED_BYTE, input_pixels.getPixels());
gpu::Mailbox mailbox;
gl_->GenMailboxCHROMIUM(mailbox.name);
EXPECT_FALSE(mailbox.IsZero());
gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name);
const GLuint64 fence_sync = gl_->InsertFenceSyncCHROMIUM();
gl_->ShallowFlushCHROMIUM();
gpu::SyncToken sync_token;
gl_->GenSyncTokenCHROMIUM(fence_sync, sync_token.GetData());
std::string message = base::StringPrintf(
"input size: %dx%d "
"output size: %dx%d "
"margin: %dx%d "
"pattern: %d %s %s",
xsize, ysize, output_xsize, output_ysize, xmargin, ymargin,
test_pattern, flip ? "flip" : "noflip", flip ? "mrt" : "nomrt");
std::unique_ptr<ReadbackYUVInterface> yuv_reader(
helper_->CreateReadbackPipelineYUV(
quality, gfx::Size(xsize, ysize), gfx::Rect(0, 0, xsize, ysize),
gfx::Size(xsize, ysize), flip, use_mrt));
scoped_refptr<media::VideoFrame> output_frame =
media::VideoFrame::CreateFrame(
media::PIXEL_FORMAT_YV12,
// The coded size of the output frame is rounded up to the next
// 16-byte boundary. This tests that the readback is being
// positioned inside the frame's visible region, and not dependent
// on its coded size.
gfx::Size((output_xsize + 15) & ~15, (output_ysize + 15) & ~15),
gfx::Rect(0, 0, output_xsize, output_ysize),
gfx::Size(output_xsize, output_ysize),
base::TimeDelta::FromSeconds(0));
scoped_refptr<media::VideoFrame> truth_frame =
media::VideoFrame::CreateFrame(
media::PIXEL_FORMAT_YV12, gfx::Size(output_xsize, output_ysize),
gfx::Rect(0, 0, output_xsize, output_ysize),
gfx::Size(output_xsize, output_ysize),
base::TimeDelta::FromSeconds(0));
base::RunLoop run_loop;
yuv_reader->ReadbackYUV(mailbox, sync_token, output_frame.get(),
gfx::Point(xmargin, ymargin),
base::Bind(&callcallback, run_loop.QuitClosure()));
run_loop.Run();
if (flip) {
FlipSKBitmap(&input_pixels);
}
unsigned char* Y = truth_frame->visible_data(media::VideoFrame::kYPlane);
unsigned char* U = truth_frame->visible_data(media::VideoFrame::kUPlane);
unsigned char* V = truth_frame->visible_data(media::VideoFrame::kVPlane);
int32_t y_stride = truth_frame->stride(media::VideoFrame::kYPlane);
int32_t u_stride = truth_frame->stride(media::VideoFrame::kUPlane);
int32_t v_stride = truth_frame->stride(media::VideoFrame::kVPlane);
memset(Y, 0x00, y_stride * output_ysize);
memset(U, 0x80, u_stride * output_ysize / 2);
memset(V, 0x80, v_stride * output_ysize / 2);
const float kRGBtoYColorWeights[] = {0.257f, 0.504f, 0.098f, 0.0625f};
const float kRGBtoUColorWeights[] = {-0.148f, -0.291f, 0.439f, 0.5f};
const float kRGBtoVColorWeights[] = {0.439f, -0.368f, -0.071f, 0.5f};
for (int y = 0; y < ysize; y++) {
for (int x = 0; x < xsize; x++) {
Y[(y + ymargin) * y_stride + x + xmargin] = float_to_byte(
ChannelAsFloat(&input_pixels, x, y, 0) * kRGBtoYColorWeights[0] +
ChannelAsFloat(&input_pixels, x, y, 1) * kRGBtoYColorWeights[1] +
ChannelAsFloat(&input_pixels, x, y, 2) * kRGBtoYColorWeights[2] +
kRGBtoYColorWeights[3]);
}
}
for (int y = 0; y < ysize / 2; y++) {
for (int x = 0; x < xsize / 2; x++) {
U[(y + ymargin / 2) * u_stride + x + xmargin / 2] =
float_to_byte(Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 0) *
kRGBtoUColorWeights[0] +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 1) *
kRGBtoUColorWeights[1] +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 2) *
kRGBtoUColorWeights[2] +
kRGBtoUColorWeights[3]);
V[(y + ymargin / 2) * v_stride + x + xmargin / 2] =
float_to_byte(Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 0) *
kRGBtoVColorWeights[0] +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 1) *
kRGBtoVColorWeights[1] +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 2) *
kRGBtoVColorWeights[2] +
kRGBtoVColorWeights[3]);
}
}
ComparePlane(
Y, y_stride, output_frame->visible_data(media::VideoFrame::kYPlane),
output_frame->stride(media::VideoFrame::kYPlane), 2, output_xsize,
output_ysize, &input_pixels, message + " Y plane");
ComparePlane(
U, u_stride, output_frame->visible_data(media::VideoFrame::kUPlane),
output_frame->stride(media::VideoFrame::kUPlane), 2, output_xsize / 2,
output_ysize / 2, &input_pixels, message + " U plane");
ComparePlane(
V, v_stride, output_frame->visible_data(media::VideoFrame::kVPlane),
output_frame->stride(media::VideoFrame::kVPlane), 2, output_xsize / 2,
output_ysize / 2, &input_pixels, message + " V plane");
gl_->DeleteTextures(1, &src_texture);
}
void TestAddOps(int src, int dst, bool scale_x, bool allow3) {
std::deque<GLHelperScaling::ScaleOp> ops;
GLHelperScaling::ScaleOp::AddOps(src, dst, scale_x, allow3, &ops);
// Scale factor 3 is a special case.
// It is currently only allowed by itself.
if (allow3 && dst * 3 >= src && dst * 2 < src) {
EXPECT_EQ(ops[0].scale_factor, 3);
EXPECT_EQ(ops.size(), 1U);
EXPECT_EQ(ops[0].scale_x, scale_x);
EXPECT_EQ(ops[0].scale_size, dst);
return;
}
for (size_t i = 0; i < ops.size(); i++) {
EXPECT_EQ(ops[i].scale_x, scale_x);
if (i == 0) {
// Only the first op is allowed to be a scale up.
// (Scaling up *after* scaling down would make it fuzzy.)
EXPECT_TRUE(ops[0].scale_factor == 0 || ops[0].scale_factor == 2);
} else {
// All other operations must be 50% downscales.
EXPECT_EQ(ops[i].scale_factor, 2);
}
}
// Check that the scale factors make sense and add up.
int tmp = dst;
for (int i = static_cast<int>(ops.size() - 1); i >= 0; i--) {
EXPECT_EQ(tmp, ops[i].scale_size);
if (ops[i].scale_factor == 0) {
EXPECT_EQ(i, 0);
EXPECT_GT(tmp, src);
tmp = src;
} else {
tmp *= ops[i].scale_factor;
}
}
EXPECT_EQ(tmp, src);
}
void CheckPipeline2(int xsize,
int ysize,
int dst_xsize,
int dst_ysize,
const std::string& description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ConvertScalerOpsToScalerStages(
content::GLHelper::SCALER_QUALITY_GOOD, gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize), gfx::Size(dst_xsize, dst_ysize), false,
false, &x_ops_, &y_ops_, &stages);
EXPECT_EQ(x_ops_.size(), 0U);
EXPECT_EQ(y_ops_.size(), 0U);
ValidateScalerStages(content::GLHelper::SCALER_QUALITY_GOOD, stages,
gfx::Size(dst_xsize, dst_ysize), "");
EXPECT_EQ(PrintStages(stages), description);
}
void CheckOptimizationsTest() {
// Basic upscale. X and Y should be combined into one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 2000, 2000, "1024x768 -> 2000x2000 bilinear\n");
// X scaled 1/2, Y upscaled, should still be one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 512, 2000, "1024x768 -> 512x2000 bilinear\n");
// X upscaled, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 2000, 384, "1024x768 -> 2000x384 bilinear\n");
// X scaled 1/2, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 512, 384, "1024x768 -> 512x384 bilinear\n");
// X scaled 1/2, Y scaled to 60%, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 50, 60, "100x100 -> 50x60 bilinear2 Y\n");
// X scaled to 60%, Y scaled 1/2, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 50));
CheckPipeline2(100, 100, 60, 50, "100x100 -> 60x50 bilinear2 X\n");
// X scaled to 60%, Y scaled 60%, one bilinear2x2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 60, 60, "100x100 -> 60x60 bilinear2x2\n");
// X scaled to 40%, Y scaled 40%, two bilinear3 passes.
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 40, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 40x40 bilinear3 X\n");
// X scaled to 60%, Y scaled 40%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 60, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 60x40 bilinear2 X\n");
// X scaled to 40%, Y scaled 60%
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 40, 60,
"100x100 -> 100x60 bilinear2 Y\n"
"100x60 -> 40x60 bilinear3 X\n");
// X scaled to 30%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 30));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 30, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 30x30 bilinear4 X\n");
// X scaled to 50%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 50, 30, "100x100 -> 50x30 bilinear4 Y\n");
// X scaled to 150%, Y scaled 30%
// Note that we avoid combinding X and Y passes
// as that would probably be LESS efficient here.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 150));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 150, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 150x30 bilinear\n");
// X scaled to 1%, Y scaled 1%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 128));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 64));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 32));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 16));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 8));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 4));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 2));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 1));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 128));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 64));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 32));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 16));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 8));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 4));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 2));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 1));
CheckPipeline2(100, 100, 1, 1,
"100x100 -> 100x32 bilinear4 Y\n"
"100x32 -> 100x4 bilinear4 Y\n"
"100x4 -> 64x1 bilinear2x2\n"
"64x1 -> 8x1 bilinear4 X\n"
"8x1 -> 1x1 bilinear4 X\n");
}
std::unique_ptr<gpu::GLInProcessContext> context_;
gpu::gles2::GLES2Interface* gl_;
std::unique_ptr<content::GLHelper> helper_;
std::unique_ptr<content::GLHelperScaling> helper_scaling_;
std::deque<GLHelperScaling::ScaleOp> x_ops_, y_ops_;
};
class GLHelperPixelTest : public GLHelperTest {
private:
gfx::DisableNullDrawGLBindings enable_pixel_output_;
};
TEST_F(GLHelperTest, RGBASyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kRGBA_8888_SkColorType, false);
EXPECT_EQ(result, true);
}
TEST_F(GLHelperTest, BGRASyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kBGRA_8888_SkColorType, false);
EXPECT_EQ(result, true);
}
TEST_F(GLHelperTest, RGB565SyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kRGB_565_SkColorType, false);
EXPECT_EQ(result, true);
}
TEST_F(GLHelperTest, RGBAASyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kRGBA_8888_SkColorType, true);
EXPECT_EQ(result, true);
}
TEST_F(GLHelperTest, BGRAASyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kBGRA_8888_SkColorType, true);
EXPECT_EQ(result, true);
}
TEST_F(GLHelperTest, RGB565ASyncReadbackTest) {
const int kTestSize = 64;
bool result = TestTextureFormatReadback(gfx::Size(kTestSize, kTestSize),
kRGB_565_SkColorType, true);
EXPECT_EQ(result, true);
}
TEST_F(GLHelperPixelTest, YUVReadbackOptTest) {
// This test uses the gpu.service/gpu_decoder tracing events to detect how
// many scaling passes are actually performed by the YUV readback pipeline.
StartTracing(TRACE_DISABLED_BY_DEFAULT(
"gpu.service") "," TRACE_DISABLED_BY_DEFAULT("gpu_decoder"));
TestYUVReadback(800, 400, 800, 400, 0, 0, 1, false, true,
content::GLHelper::SCALER_QUALITY_FAST);
std::map<std::string, int> event_counts;
EndTracing(&event_counts);
int draw_buffer_calls = event_counts["kDrawBuffersEXTImmediate"];
int draw_arrays_calls = event_counts["kDrawArrays"];
VLOG(1) << "Draw buffer calls: " << draw_buffer_calls;
VLOG(1) << "DrawArrays calls: " << draw_arrays_calls;
if (draw_buffer_calls) {
// When using MRT, the YUV readback code should only
// execute two draw arrays, and scaling should be integrated
// into those two calls since we are using the FAST scalign
// quality.
EXPECT_EQ(2, draw_arrays_calls);
} else {
// When not using MRT, there are three passes for the YUV,
// and one for the scaling.
EXPECT_EQ(4, draw_arrays_calls);
}
}
class GLHelperPixelYuvReadback
: public GLHelperPixelTest,
public ::testing::WithParamInterface<
std::tr1::tuple<bool, bool, unsigned int, unsigned int>> {};
int kYUVReadBackSizes[] = {2, 4, 14};
TEST_P(GLHelperPixelYuvReadback, Test) {
bool flip = std::tr1::get<0>(GetParam());
bool use_mrt = std::tr1::get<1>(GetParam());
unsigned int x = std::tr1::get<2>(GetParam());
unsigned int y = std::tr1::get<3>(GetParam());
for (unsigned int ox = x; ox < arraysize(kYUVReadBackSizes); ox++) {
for (unsigned int oy = y; oy < arraysize(kYUVReadBackSizes); oy++) {
// If output is a subsection of the destination frame, (letterbox)
// then try different variations of where the subsection goes.
for (Margin xm = x < ox ? MarginLeft : MarginRight; xm <= MarginRight;
xm = NextMargin(xm)) {
for (Margin ym = y < oy ? MarginLeft : MarginRight; ym <= MarginRight;
ym = NextMargin(ym)) {
for (int pattern = 0; pattern < 3; pattern++) {
TestYUVReadback(
kYUVReadBackSizes[x], kYUVReadBackSizes[y],
kYUVReadBackSizes[ox], kYUVReadBackSizes[oy],
compute_margin(kYUVReadBackSizes[x], kYUVReadBackSizes[ox], xm),
compute_margin(kYUVReadBackSizes[y], kYUVReadBackSizes[oy], ym),
pattern, flip, use_mrt, content::GLHelper::SCALER_QUALITY_GOOD);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
// First argument is intentionally empty.
INSTANTIATE_TEST_CASE_P(
,
GLHelperPixelYuvReadback,
::testing::Combine(
::testing::Bool(),
::testing::Bool(),
::testing::Range<unsigned int>(0, arraysize(kYUVReadBackSizes)),
::testing::Range<unsigned int>(0, arraysize(kYUVReadBackSizes))));
int kRGBReadBackSizes[] = {3, 6, 16};
class GLHelperPixelReadbackTest
: public GLHelperPixelTest,
public ::testing::WithParamInterface<std::tr1::tuple<unsigned int,
unsigned int,
unsigned int,
unsigned int,
unsigned int>> {};
// Per pixel tests, all sizes are small so that we can print
// out the generated bitmaps.
TEST_P(GLHelperPixelReadbackTest, ScaleTest) {
unsigned int q_index = std::tr1::get<0>(GetParam());
unsigned int x = std::tr1::get<1>(GetParam());
unsigned int y = std::tr1::get<2>(GetParam());
unsigned int dst_x = std::tr1::get<3>(GetParam());
unsigned int dst_y = std::tr1::get<4>(GetParam());
for (int flip = 0; flip <= 1; flip++) {
for (int pattern = 0; pattern < 3; pattern++) {
TestScale(kRGBReadBackSizes[x], kRGBReadBackSizes[y],
kRGBReadBackSizes[dst_x], kRGBReadBackSizes[dst_y], pattern,
q_index, flip == 1);
if (HasFailure()) {
return;
}
}
}
}
// Per pixel tests, all sizes are small so that we can print
// out the generated bitmaps.
TEST_P(GLHelperPixelReadbackTest, CropScaleReadbackAndCleanTextureTest) {
unsigned int q_index = std::tr1::get<0>(GetParam());
unsigned int x = std::tr1::get<1>(GetParam());
unsigned int y = std::tr1::get<2>(GetParam());
unsigned int dst_x = std::tr1::get<3>(GetParam());
unsigned int dst_y = std::tr1::get<4>(GetParam());
const SkColorType kColorTypes[] = {
kAlpha_8_SkColorType, kRGBA_8888_SkColorType, kBGRA_8888_SkColorType};
for (size_t color_type = 0; color_type < arraysize(kColorTypes);
color_type++) {
for (int pattern = 0; pattern < 3; pattern++) {
TestCropScaleReadbackAndCleanTexture(
kRGBReadBackSizes[x], kRGBReadBackSizes[y], kRGBReadBackSizes[dst_x],
kRGBReadBackSizes[dst_y], pattern, kColorTypes[color_type], false,
q_index);
if (HasFailure())
return;
}
}
}
INSTANTIATE_TEST_CASE_P(
,
GLHelperPixelReadbackTest,
::testing::Combine(
::testing::Range<unsigned int>(0, arraysize(kQualities)),
::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes)),
::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes)),
::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes)),
::testing::Range<unsigned int>(0, arraysize(kRGBReadBackSizes))));
// Validate that all scaling generates valid pipelines.
TEST_F(GLHelperTest, ValidateScalerPipelines) {
int sizes[] = {7, 99, 128, 256, 512, 719, 720, 721, 1920, 2011, 3217, 4096};
for (size_t q = 0; q < arraysize(kQualities); q++) {
for (size_t x = 0; x < arraysize(sizes); x++) {
for (size_t y = 0; y < arraysize(sizes); y++) {
for (size_t dst_x = 0; dst_x < arraysize(sizes); dst_x++) {
for (size_t dst_y = 0; dst_y < arraysize(sizes); dst_y++) {
TestScalerPipeline(q, sizes[x], sizes[y], sizes[dst_x],
sizes[dst_y]);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
// Make sure we don't create overly complicated pipelines
// for a few common use cases.
TEST_F(GLHelperTest, CheckSpecificPipelines) {
// Upscale should be single pass.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD, 1024, 700, 1280, 720,
"1024x700 -> 1280x720 bilinear\n");
// Slight downscale should use BILINEAR2X2.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD, 1280, 720, 1024, 700,
"1280x720 -> 1024x700 bilinear2x2\n");
// Most common tab capture pipeline on the Pixel.
// Should be using two BILINEAR3 passes.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD, 2560, 1476, 1249, 720,
"2560x1476 -> 2560x720 bilinear3 Y\n"
"2560x720 -> 1249x720 bilinear3 X\n");
}
TEST_F(GLHelperTest, ScalerOpTest) {
for (int allow3 = 0; allow3 <= 1; allow3++) {
for (int dst = 1; dst < 2049; dst += 1 + (dst >> 3)) {
for (int src = 1; src < 2049; src++) {
TestAddOps(src, dst, allow3 == 1, (src & 1) == 1);
if (HasFailure()) {
LOG(ERROR) << "Failed for src=" << src << " dst=" << dst
<< " allow3=" << allow3;
return;
}
}
}
}
}
TEST_F(GLHelperTest, CheckOptimizations) {
// Test in baseclass since it is friends with GLHelperScaling
CheckOptimizationsTest();
}
} // namespace content