blob: e5b937942d9050e376b85282c8006dc05db0ddfd [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/rtree.h"
#include <stddef.h>
#include "testing/gtest/include/gtest/gtest.h"
namespace cc {
TEST(RTreeTest, ReserveNodesDoesntDcheck) {
// Make sure that anywhere between 0 and 1000 rects, our reserve math in rtree
// is correct. (This test would DCHECK if broken either in
// RTree::AllocateNodeAtLevel, indicating that the capacity calculation was
// too small or in RTree::Build, indicating the capacity was too large).
for (int i = 0; i < 1000; ++i) {
std::vector<gfx::Rect> rects;
for (int j = 0; j < i; ++j)
rects.push_back(gfx::Rect(j, i, 1, 1));
RTree<size_t> rtree;
rtree.Build(rects);
}
}
TEST(RTreeTest, NoOverlap) {
std::vector<gfx::Rect> rects;
for (int y = 0; y < 50; ++y) {
for (int x = 0; x < 50; ++x) {
rects.push_back(gfx::Rect(x, y, 1, 1));
}
}
RTree<size_t> rtree;
rtree.Build(rects);
std::vector<size_t> results;
rtree.Search(gfx::Rect(0, 0, 50, 50), &results);
ASSERT_EQ(2500u, results.size());
// Note that the results have to be sorted.
for (size_t i = 0; i < 2500; ++i) {
ASSERT_EQ(results[i], i);
}
rtree.Search(gfx::Rect(0, 0, 50, 49), &results);
ASSERT_EQ(2450u, results.size());
for (size_t i = 0; i < 2450; ++i) {
ASSERT_EQ(results[i], i);
}
rtree.Search(gfx::Rect(5, 6, 1, 1), &results);
ASSERT_EQ(1u, results.size());
EXPECT_EQ(6u * 50 + 5u, results[0]);
}
TEST(RTreeTest, Overlap) {
std::vector<gfx::Rect> rects;
for (int h = 1; h <= 50; ++h) {
for (int w = 1; w <= 50; ++w) {
rects.push_back(gfx::Rect(0, 0, w, h));
}
}
RTree<size_t> rtree;
rtree.Build(rects);
std::vector<size_t> results;
rtree.Search(gfx::Rect(0, 0, 1, 1), &results);
ASSERT_EQ(2500u, results.size());
// Both the checks for the elements assume elements are sorted.
for (size_t i = 0; i < 2500; ++i) {
ASSERT_EQ(results[i], i);
}
rtree.Search(gfx::Rect(0, 49, 1, 1), &results);
ASSERT_EQ(50u, results.size());
for (size_t i = 0; i < 50; ++i) {
EXPECT_EQ(results[i], 2450u + i);
}
}
static void VerifySorted(const std::vector<size_t>& results) {
for (size_t i = 1; i < results.size(); ++i) {
ASSERT_LT(results[i - 1], results[i]);
}
}
TEST(RTreeTest, SortedResults) {
// This test verifies that all queries return sorted elements.
std::vector<gfx::Rect> rects;
for (int y = 0; y < 50; ++y) {
for (int x = 0; x < 50; ++x) {
rects.push_back(gfx::Rect(x, y, 1, 1));
rects.push_back(gfx::Rect(x, y, 2, 2));
rects.push_back(gfx::Rect(x, y, 3, 3));
}
}
RTree<size_t> rtree;
rtree.Build(rects);
for (int y = 0; y < 50; ++y) {
for (int x = 0; x < 50; ++x) {
std::vector<size_t> results;
rtree.Search(gfx::Rect(x, y, 1, 1), &results);
VerifySorted(results);
rtree.Search(gfx::Rect(x, y, 50, 1), &results);
VerifySorted(results);
rtree.Search(gfx::Rect(x, y, 1, 50), &results);
VerifySorted(results);
}
}
}
TEST(RTreeTest, GetBoundsEmpty) {
RTree<size_t> rtree;
EXPECT_EQ(gfx::Rect(), rtree.GetBounds());
EXPECT_TRUE(rtree.GetAllBoundsForTracing().empty());
}
TEST(RTreeTest, GetBoundsNonOverlapping) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(5, 6, 7, 8));
rects.push_back(gfx::Rect(11, 12, 13, 14));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_EQ(gfx::Rect(5, 6, 19, 20), rtree.GetBounds());
EXPECT_EQ(rects, rtree.GetAllBoundsForTracing());
}
TEST(RTreeTest, GetBoundsOverlapping) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(5, 5, 5, 5));
RTree<size_t> rtree;
rtree.Build(rects);
EXPECT_EQ(gfx::Rect(0, 0, 10, 10), rtree.GetBounds());
EXPECT_EQ(rects, rtree.GetAllBoundsForTracing());
}
TEST(RTreeTest, BuildAfterReset) {
std::vector<gfx::Rect> rects;
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(0, 0, 10, 10));
rects.push_back(gfx::Rect(0, 0, 10, 10));
RTree<size_t> rtree;
rtree.Build(rects);
// Resetting should give the same as an empty rtree.
rtree.Reset();
EXPECT_EQ(gfx::Rect(), rtree.GetBounds());
EXPECT_TRUE(rtree.GetAllBoundsForTracing().empty());
// Should be able to rebuild from a reset rtree.
rtree.Build(rects);
EXPECT_EQ(gfx::Rect(0, 0, 10, 10), rtree.GetBounds());
EXPECT_EQ(rects, rtree.GetAllBoundsForTracing());
}
TEST(RTreeTest, Payload) {
using Container = std::vector<std::pair<gfx::Rect, float>>;
Container data;
data.emplace_back(gfx::Rect(10, 10, 10, 10), 40.f);
data.emplace_back(gfx::Rect(0, 0, 10, 10), 10.f);
data.emplace_back(gfx::Rect(0, 10, 10, 10), 30.f);
data.emplace_back(gfx::Rect(10, 0, 10, 10), 20.f);
RTree<float> rtree;
rtree.Build(
data,
[](const Container& items, size_t index) { return items[index].first; },
[](const Container& items, size_t index) { return items[index].second; });
std::vector<float> results;
rtree.Search(gfx::Rect(0, 0, 1, 1), &results);
ASSERT_EQ(1u, results.size());
EXPECT_FLOAT_EQ(10.f, results[0]);
rtree.Search(gfx::Rect(5, 5, 10, 10), &results);
ASSERT_EQ(4u, results.size());
// Items returned should be in the order they were inserted.
EXPECT_FLOAT_EQ(40.f, results[0]);
EXPECT_FLOAT_EQ(10.f, results[1]);
EXPECT_FLOAT_EQ(30.f, results[2]);
EXPECT_FLOAT_EQ(20.f, results[3]);
}
} // namespace cc