blob: a3b757a14f82f6e3ec63c2632f81c9c0ca64476a [file] [log] [blame]
// Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Unit test for SyncChannel.
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/message_loop.h"
#include "base/platform_thread.h"
#include "base/scoped_ptr.h"
#include "base/stl_util-inl.h"
#include "base/string_util.h"
#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
#include "base/thread.h"
#include "base/waitable_event.h"
#include "ipc/ipc_message.h"
#include "ipc/ipc_sync_channel.h"
#include "ipc/ipc_sync_message_filter.h"
#include "testing/gtest/include/gtest/gtest.h"
#define MESSAGES_INTERNAL_FILE "ipc/ipc_sync_message_unittest.h"
#include "ipc/ipc_message_macros.h"
// Definition of IPC Messages used for this test.
#define MESSAGES_INTERNAL_IMPL_FILE "ipc/ipc_sync_message_unittest.h"
#include "ipc/ipc_message_impl_macros.h"
using namespace IPC;
using base::WaitableEvent;
namespace {
// Base class for a "process" with listener and IPC threads.
class Worker : public Channel::Listener, public Message::Sender {
public:
// Will create a channel without a name.
Worker(Channel::Mode mode, const std::string& thread_name)
: done_(new WaitableEvent(false, false)),
channel_created_(new WaitableEvent(false, false)),
mode_(mode),
ipc_thread_((thread_name + "_ipc").c_str()),
listener_thread_((thread_name + "_listener").c_str()),
overrided_thread_(NULL),
shutdown_event_(true, false) {
// The data race on vfptr is real but is very hard
// to suppress using standard Valgrind mechanism (suppressions).
// We have to use ANNOTATE_BENIGN_RACE to hide the reports and
// make ThreadSanitizer bots green.
ANNOTATE_BENIGN_RACE(this, "Race on vfptr, http://crbug.com/25841");
}
// Will create a named channel and use this name for the threads' name.
Worker(const std::string& channel_name, Channel::Mode mode)
: done_(new WaitableEvent(false, false)),
channel_created_(new WaitableEvent(false, false)),
channel_name_(channel_name),
mode_(mode),
ipc_thread_((channel_name + "_ipc").c_str()),
listener_thread_((channel_name + "_listener").c_str()),
overrided_thread_(NULL),
shutdown_event_(true, false) {
// The data race on vfptr is real but is very hard
// to suppress using standard Valgrind mechanism (suppressions).
// We have to use ANNOTATE_BENIGN_RACE to hide the reports and
// make ThreadSanitizer bots green.
ANNOTATE_BENIGN_RACE(this, "Race on vfptr, http://crbug.com/25841");
}
// The IPC thread needs to outlive SyncChannel, so force the correct order of
// destruction.
virtual ~Worker() {
WaitableEvent listener_done(false, false), ipc_done(false, false);
ListenerThread()->message_loop()->PostTask(FROM_HERE, NewRunnableMethod(
this, &Worker::OnListenerThreadShutdown1, &listener_done,
&ipc_done));
listener_done.Wait();
ipc_done.Wait();
ipc_thread_.Stop();
listener_thread_.Stop();
}
void AddRef() { }
void Release() { }
static bool ImplementsThreadSafeReferenceCounting() { return true; }
bool Send(Message* msg) { return channel_->Send(msg); }
bool SendWithTimeout(Message* msg, int timeout_ms) {
return channel_->SendWithTimeout(msg, timeout_ms);
}
void WaitForChannelCreation() { channel_created_->Wait(); }
void CloseChannel() {
DCHECK(MessageLoop::current() == ListenerThread()->message_loop());
channel_->Close();
}
void Start() {
StartThread(&listener_thread_, MessageLoop::TYPE_DEFAULT);
ListenerThread()->message_loop()->PostTask(FROM_HERE, NewRunnableMethod(
this, &Worker::OnStart));
}
void OverrideThread(base::Thread* overrided_thread) {
DCHECK(overrided_thread_ == NULL);
overrided_thread_ = overrided_thread;
}
bool SendAnswerToLife(bool pump, int timeout, bool succeed) {
int answer = 0;
SyncMessage* msg = new SyncChannelTestMsg_AnswerToLife(&answer);
if (pump)
msg->EnableMessagePumping();
bool result = SendWithTimeout(msg, timeout);
DCHECK_EQ(result, succeed);
DCHECK_EQ(answer, (succeed ? 42 : 0));
return result;
}
bool SendDouble(bool pump, bool succeed) {
int answer = 0;
SyncMessage* msg = new SyncChannelTestMsg_Double(5, &answer);
if (pump)
msg->EnableMessagePumping();
bool result = Send(msg);
DCHECK_EQ(result, succeed);
DCHECK_EQ(answer, (succeed ? 10 : 0));
return result;
}
Channel::Mode mode() { return mode_; }
WaitableEvent* done_event() { return done_.get(); }
WaitableEvent* shutdown_event() { return &shutdown_event_; }
void ResetChannel() { channel_.reset(); }
// Derived classes need to call this when they've completed their part of
// the test.
void Done() { done_->Signal(); }
protected:
IPC::SyncChannel* channel() { return channel_.get(); }
// Functions for dervied classes to implement if they wish.
virtual void Run() { }
virtual void OnAnswer(int* answer) { NOTREACHED(); }
virtual void OnAnswerDelay(Message* reply_msg) {
// The message handler map below can only take one entry for
// SyncChannelTestMsg_AnswerToLife, so since some classes want
// the normal version while other want the delayed reply, we
// call the normal version if the derived class didn't override
// this function.
int answer;
OnAnswer(&answer);
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, answer);
Send(reply_msg);
}
virtual void OnDouble(int in, int* out) { NOTREACHED(); }
virtual void OnDoubleDelay(int in, Message* reply_msg) {
int result;
OnDouble(in, &result);
SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, result);
Send(reply_msg);
}
virtual void OnNestedTestMsg(Message* reply_msg) {
NOTREACHED();
}
private:
base::Thread* ListenerThread() {
return overrided_thread_ ? overrided_thread_ : &listener_thread_;
}
// Called on the listener thread to create the sync channel.
void OnStart() {
// Link ipc_thread_, listener_thread_ and channel_ altogether.
StartThread(&ipc_thread_, MessageLoop::TYPE_IO);
channel_.reset(new SyncChannel(
channel_name_, mode_, this, NULL, ipc_thread_.message_loop(), true,
&shutdown_event_));
channel_created_->Signal();
Run();
}
void OnListenerThreadShutdown1(WaitableEvent* listener_event,
WaitableEvent* ipc_event) {
// SyncChannel needs to be destructed on the thread that it was created on.
channel_.reset();
MessageLoop::current()->RunAllPending();
ipc_thread_.message_loop()->PostTask(FROM_HERE, NewRunnableMethod(
this, &Worker::OnIPCThreadShutdown, listener_event, ipc_event));
}
void OnIPCThreadShutdown(WaitableEvent* listener_event,
WaitableEvent* ipc_event) {
MessageLoop::current()->RunAllPending();
ipc_event->Signal();
listener_thread_.message_loop()->PostTask(FROM_HERE, NewRunnableMethod(
this, &Worker::OnListenerThreadShutdown2, listener_event));
}
void OnListenerThreadShutdown2(WaitableEvent* listener_event) {
MessageLoop::current()->RunAllPending();
listener_event->Signal();
}
void OnMessageReceived(const Message& message) {
IPC_BEGIN_MESSAGE_MAP(Worker, message)
IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelTestMsg_Double, OnDoubleDelay)
IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelTestMsg_AnswerToLife,
OnAnswerDelay)
IPC_MESSAGE_HANDLER_DELAY_REPLY(SyncChannelNestedTestMsg_String,
OnNestedTestMsg)
IPC_END_MESSAGE_MAP()
}
void StartThread(base::Thread* thread, MessageLoop::Type type) {
base::Thread::Options options;
options.message_loop_type = type;
thread->StartWithOptions(options);
}
scoped_ptr<WaitableEvent> done_;
scoped_ptr<WaitableEvent> channel_created_;
std::string channel_name_;
Channel::Mode mode_;
scoped_ptr<SyncChannel> channel_;
base::Thread ipc_thread_;
base::Thread listener_thread_;
base::Thread* overrided_thread_;
base::WaitableEvent shutdown_event_;
DISALLOW_COPY_AND_ASSIGN(Worker);
};
// Starts the test with the given workers. This function deletes the workers
// when it's done.
void RunTest(std::vector<Worker*> workers) {
// First we create the workers that are channel servers, or else the other
// workers' channel initialization might fail because the pipe isn't created..
for (size_t i = 0; i < workers.size(); ++i) {
if (workers[i]->mode() == Channel::MODE_SERVER) {
workers[i]->Start();
workers[i]->WaitForChannelCreation();
}
}
// now create the clients
for (size_t i = 0; i < workers.size(); ++i) {
if (workers[i]->mode() == Channel::MODE_CLIENT)
workers[i]->Start();
}
// wait for all the workers to finish
for (size_t i = 0; i < workers.size(); ++i)
workers[i]->done_event()->Wait();
STLDeleteContainerPointers(workers.begin(), workers.end());
}
} // namespace
class IPCSyncChannelTest : public testing::Test {
private:
MessageLoop message_loop_;
};
//-----------------------------------------------------------------------------
namespace {
class SimpleServer : public Worker {
public:
explicit SimpleServer(bool pump_during_send)
: Worker(Channel::MODE_SERVER, "simpler_server"),
pump_during_send_(pump_during_send) { }
void Run() {
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
Done();
}
bool pump_during_send_;
};
class SimpleClient : public Worker {
public:
SimpleClient() : Worker(Channel::MODE_CLIENT, "simple_client") { }
void OnAnswer(int* answer) {
*answer = 42;
Done();
}
};
void Simple(bool pump_during_send) {
std::vector<Worker*> workers;
workers.push_back(new SimpleServer(pump_during_send));
workers.push_back(new SimpleClient());
RunTest(workers);
}
} // namespace
// Tests basic synchronous call
TEST_F(IPCSyncChannelTest, Simple) {
Simple(false);
Simple(true);
}
//-----------------------------------------------------------------------------
namespace {
class DelayClient : public Worker {
public:
DelayClient() : Worker(Channel::MODE_CLIENT, "delay_client") { }
void OnAnswerDelay(Message* reply_msg) {
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
Done();
}
};
void DelayReply(bool pump_during_send) {
std::vector<Worker*> workers;
workers.push_back(new SimpleServer(pump_during_send));
workers.push_back(new DelayClient());
RunTest(workers);
}
} // namespace
// Tests that asynchronous replies work
TEST_F(IPCSyncChannelTest, DelayReply) {
DelayReply(false);
DelayReply(true);
}
//-----------------------------------------------------------------------------
namespace {
class NoHangServer : public Worker {
public:
explicit NoHangServer(WaitableEvent* got_first_reply, bool pump_during_send)
: Worker(Channel::MODE_SERVER, "no_hang_server"),
got_first_reply_(got_first_reply),
pump_during_send_(pump_during_send) { }
void Run() {
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
got_first_reply_->Signal();
SendAnswerToLife(pump_during_send_, base::kNoTimeout, false);
Done();
}
WaitableEvent* got_first_reply_;
bool pump_during_send_;
};
class NoHangClient : public Worker {
public:
explicit NoHangClient(WaitableEvent* got_first_reply)
: Worker(Channel::MODE_CLIENT, "no_hang_client"),
got_first_reply_(got_first_reply) { }
virtual void OnAnswerDelay(Message* reply_msg) {
// Use the DELAY_REPLY macro so that we can force the reply to be sent
// before this function returns (when the channel will be reset).
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
got_first_reply_->Wait();
CloseChannel();
Done();
}
WaitableEvent* got_first_reply_;
};
void NoHang(bool pump_during_send) {
WaitableEvent got_first_reply(false, false);
std::vector<Worker*> workers;
workers.push_back(new NoHangServer(&got_first_reply, pump_during_send));
workers.push_back(new NoHangClient(&got_first_reply));
RunTest(workers);
}
} // namespace
// Tests that caller doesn't hang if receiver dies
TEST_F(IPCSyncChannelTest, NoHang) {
NoHang(false);
NoHang(true);
}
//-----------------------------------------------------------------------------
namespace {
class UnblockServer : public Worker {
public:
UnblockServer(bool pump_during_send, bool delete_during_send)
: Worker(Channel::MODE_SERVER, "unblock_server"),
pump_during_send_(pump_during_send),
delete_during_send_(delete_during_send) { }
void Run() {
if (delete_during_send_) {
// Use custom code since race conditions mean the answer may or may not be
// available.
int answer = 0;
SyncMessage* msg = new SyncChannelTestMsg_AnswerToLife(&answer);
if (pump_during_send_)
msg->EnableMessagePumping();
Send(msg);
} else {
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
}
Done();
}
void OnDoubleDelay(int in, Message* reply_msg) {
SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, in * 2);
Send(reply_msg);
if (delete_during_send_)
ResetChannel();
}
bool pump_during_send_;
bool delete_during_send_;
};
class UnblockClient : public Worker {
public:
explicit UnblockClient(bool pump_during_send)
: Worker(Channel::MODE_CLIENT, "unblock_client"),
pump_during_send_(pump_during_send) { }
void OnAnswer(int* answer) {
SendDouble(pump_during_send_, true);
*answer = 42;
Done();
}
bool pump_during_send_;
};
void Unblock(bool server_pump, bool client_pump, bool delete_during_send) {
std::vector<Worker*> workers;
workers.push_back(new UnblockServer(server_pump, delete_during_send));
workers.push_back(new UnblockClient(client_pump));
RunTest(workers);
}
} // namespace
// Tests that the caller unblocks to answer a sync message from the receiver.
TEST_F(IPCSyncChannelTest, Unblock) {
Unblock(false, false, false);
Unblock(false, true, false);
Unblock(true, false, false);
Unblock(true, true, false);
}
//-----------------------------------------------------------------------------
// Tests that the the IPC::SyncChannel object can be deleted during a Send.
TEST_F(IPCSyncChannelTest, ChannelDeleteDuringSend) {
Unblock(false, false, true);
Unblock(false, true, true);
Unblock(true, false, true);
Unblock(true, true, true);
}
//-----------------------------------------------------------------------------
namespace {
class RecursiveServer : public Worker {
public:
explicit RecursiveServer(
bool expected_send_result, bool pump_first, bool pump_second)
: Worker(Channel::MODE_SERVER, "recursive_server"),
expected_send_result_(expected_send_result),
pump_first_(pump_first), pump_second_(pump_second) { }
void Run() {
SendDouble(pump_first_, expected_send_result_);
Done();
}
void OnDouble(int in, int* out) {
*out = in * 2;
SendAnswerToLife(pump_second_, base::kNoTimeout, expected_send_result_);
}
bool expected_send_result_, pump_first_, pump_second_;
};
class RecursiveClient : public Worker {
public:
explicit RecursiveClient(bool pump_during_send, bool close_channel)
: Worker(Channel::MODE_CLIENT, "recursive_client"),
pump_during_send_(pump_during_send), close_channel_(close_channel) { }
void OnDoubleDelay(int in, Message* reply_msg) {
SendDouble(pump_during_send_, !close_channel_);
if (close_channel_) {
delete reply_msg;
} else {
SyncChannelTestMsg_Double::WriteReplyParams(reply_msg, in * 2);
Send(reply_msg);
}
Done();
}
void OnAnswerDelay(Message* reply_msg) {
if (close_channel_) {
delete reply_msg;
CloseChannel();
} else {
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
}
}
bool pump_during_send_, close_channel_;
};
void Recursive(
bool server_pump_first, bool server_pump_second, bool client_pump) {
std::vector<Worker*> workers;
workers.push_back(
new RecursiveServer(true, server_pump_first, server_pump_second));
workers.push_back(new RecursiveClient(client_pump, false));
RunTest(workers);
}
} // namespace
// Tests a server calling Send while another Send is pending.
TEST_F(IPCSyncChannelTest, Recursive) {
Recursive(false, false, false);
Recursive(false, false, true);
Recursive(false, true, false);
Recursive(false, true, true);
Recursive(true, false, false);
Recursive(true, false, true);
Recursive(true, true, false);
Recursive(true, true, true);
}
//-----------------------------------------------------------------------------
namespace {
void RecursiveNoHang(
bool server_pump_first, bool server_pump_second, bool client_pump) {
std::vector<Worker*> workers;
workers.push_back(
new RecursiveServer(false, server_pump_first, server_pump_second));
workers.push_back(new RecursiveClient(client_pump, true));
RunTest(workers);
}
} // namespace
// Tests that if a caller makes a sync call during an existing sync call and
// the receiver dies, neither of the Send() calls hang.
TEST_F(IPCSyncChannelTest, RecursiveNoHang) {
RecursiveNoHang(false, false, false);
RecursiveNoHang(false, false, true);
RecursiveNoHang(false, true, false);
RecursiveNoHang(false, true, true);
RecursiveNoHang(true, false, false);
RecursiveNoHang(true, false, true);
RecursiveNoHang(true, true, false);
RecursiveNoHang(true, true, true);
}
//-----------------------------------------------------------------------------
namespace {
class MultipleServer1 : public Worker {
public:
explicit MultipleServer1(bool pump_during_send)
: Worker("test_channel1", Channel::MODE_SERVER),
pump_during_send_(pump_during_send) { }
void Run() {
SendDouble(pump_during_send_, true);
Done();
}
bool pump_during_send_;
};
class MultipleClient1 : public Worker {
public:
MultipleClient1(WaitableEvent* client1_msg_received,
WaitableEvent* client1_can_reply) :
Worker("test_channel1", Channel::MODE_CLIENT),
client1_msg_received_(client1_msg_received),
client1_can_reply_(client1_can_reply) { }
void OnDouble(int in, int* out) {
client1_msg_received_->Signal();
*out = in * 2;
client1_can_reply_->Wait();
Done();
}
private:
WaitableEvent *client1_msg_received_, *client1_can_reply_;
};
class MultipleServer2 : public Worker {
public:
MultipleServer2() : Worker("test_channel2", Channel::MODE_SERVER) { }
void OnAnswer(int* result) {
*result = 42;
Done();
}
};
class MultipleClient2 : public Worker {
public:
MultipleClient2(
WaitableEvent* client1_msg_received, WaitableEvent* client1_can_reply,
bool pump_during_send)
: Worker("test_channel2", Channel::MODE_CLIENT),
client1_msg_received_(client1_msg_received),
client1_can_reply_(client1_can_reply),
pump_during_send_(pump_during_send) { }
void Run() {
client1_msg_received_->Wait();
SendAnswerToLife(pump_during_send_, base::kNoTimeout, true);
client1_can_reply_->Signal();
Done();
}
private:
WaitableEvent *client1_msg_received_, *client1_can_reply_;
bool pump_during_send_;
};
void Multiple(bool server_pump, bool client_pump) {
std::vector<Worker*> workers;
// A shared worker thread so that server1 and server2 run on one thread.
base::Thread worker_thread("Multiple");
ASSERT_TRUE(worker_thread.Start());
// Server1 sends a sync msg to client1, which blocks the reply until
// server2 (which runs on the same worker thread as server1) responds
// to a sync msg from client2.
WaitableEvent client1_msg_received(false, false);
WaitableEvent client1_can_reply(false, false);
Worker* worker;
worker = new MultipleServer2();
worker->OverrideThread(&worker_thread);
workers.push_back(worker);
worker = new MultipleClient2(
&client1_msg_received, &client1_can_reply, client_pump);
workers.push_back(worker);
worker = new MultipleServer1(server_pump);
worker->OverrideThread(&worker_thread);
workers.push_back(worker);
worker = new MultipleClient1(
&client1_msg_received, &client1_can_reply);
workers.push_back(worker);
RunTest(workers);
}
} // namespace
// Tests that multiple SyncObjects on the same listener thread can unblock each
// other.
TEST_F(IPCSyncChannelTest, Multiple) {
Multiple(false, false);
Multiple(false, true);
Multiple(true, false);
Multiple(true, true);
}
//-----------------------------------------------------------------------------
namespace {
// This class provides server side functionality to test the case where
// multiple sync channels are in use on the same thread on the client and
// nested calls are issued.
class QueuedReplyServer : public Worker {
public:
QueuedReplyServer(base::Thread* listener_thread,
const std::string& channel_name,
const std::string& reply_text)
: Worker(channel_name, Channel::MODE_SERVER),
reply_text_(reply_text) {
Worker::OverrideThread(listener_thread);
}
virtual void OnNestedTestMsg(Message* reply_msg) {
LOG(INFO) << __FUNCTION__ << " Sending reply: "
<< reply_text_.c_str();
SyncChannelNestedTestMsg_String::WriteReplyParams(
reply_msg, reply_text_);
Send(reply_msg);
Done();
}
private:
std::string reply_text_;
};
// The QueuedReplyClient class provides functionality to test the case where
// multiple sync channels are in use on the same thread and they make nested
// sync calls, i.e. while the first channel waits for a response it makes a
// sync call on another channel.
// The callstack should unwind correctly, i.e. the outermost call should
// complete first, and so on.
class QueuedReplyClient : public Worker {
public:
QueuedReplyClient(base::Thread* listener_thread,
const std::string& channel_name,
const std::string& expected_text,
bool pump_during_send)
: Worker(channel_name, Channel::MODE_CLIENT),
pump_during_send_(pump_during_send),
expected_text_(expected_text) {
Worker::OverrideThread(listener_thread);
}
virtual void Run() {
std::string response;
SyncMessage* msg = new SyncChannelNestedTestMsg_String(&response);
if (pump_during_send_)
msg->EnableMessagePumping();
bool result = Send(msg);
DCHECK(result);
DCHECK_EQ(response, expected_text_);
LOG(INFO) << __FUNCTION__ << " Received reply: "
<< response.c_str();
Done();
}
private:
bool pump_during_send_;
std::string expected_text_;
};
void QueuedReply(bool client_pump) {
std::vector<Worker*> workers;
// A shared worker thread for servers
base::Thread server_worker_thread("QueuedReply_ServerListener");
ASSERT_TRUE(server_worker_thread.Start());
base::Thread client_worker_thread("QueuedReply_ClientListener");
ASSERT_TRUE(client_worker_thread.Start());
Worker* worker;
worker = new QueuedReplyServer(&server_worker_thread,
"QueuedReply_Server1",
"Got first message");
workers.push_back(worker);
worker = new QueuedReplyServer(&server_worker_thread,
"QueuedReply_Server2",
"Got second message");
workers.push_back(worker);
worker = new QueuedReplyClient(&client_worker_thread,
"QueuedReply_Server1",
"Got first message",
client_pump);
workers.push_back(worker);
worker = new QueuedReplyClient(&client_worker_thread,
"QueuedReply_Server2",
"Got second message",
client_pump);
workers.push_back(worker);
RunTest(workers);
}
} // namespace
// While a blocking send is in progress, the listener thread might answer other
// synchronous messages. This tests that if during the response to another
// message the reply to the original messages comes, it is queued up correctly
// and the original Send is unblocked later.
// We also test that the send call stacks unwind correctly when the channel
// pumps messages while waiting for a response.
TEST_F(IPCSyncChannelTest, QueuedReply) {
QueuedReply(false);
QueuedReply(true);
}
//-----------------------------------------------------------------------------
namespace {
class BadServer : public Worker {
public:
explicit BadServer(bool pump_during_send)
: Worker(Channel::MODE_SERVER, "simpler_server"),
pump_during_send_(pump_during_send) { }
void Run() {
int answer = 0;
SyncMessage* msg = new SyncMessage(
MSG_ROUTING_CONTROL, SyncChannelTestMsg_Double::ID,
Message::PRIORITY_NORMAL, NULL);
if (pump_during_send_)
msg->EnableMessagePumping();
// Temporarily set the minimum logging very high so that the assertion
// in ipc_message_utils doesn't fire.
int log_level = logging::GetMinLogLevel();
logging::SetMinLogLevel(kint32max);
bool result = Send(msg);
logging::SetMinLogLevel(log_level);
DCHECK(!result);
// Need to send another message to get the client to call Done().
result = Send(new SyncChannelTestMsg_AnswerToLife(&answer));
DCHECK(result);
DCHECK_EQ(answer, 42);
Done();
}
bool pump_during_send_;
};
void BadMessage(bool pump_during_send) {
std::vector<Worker*> workers;
workers.push_back(new BadServer(pump_during_send));
workers.push_back(new SimpleClient());
RunTest(workers);
}
} // namespace
// Tests that if a message is not serialized correctly, the Send() will fail.
TEST_F(IPCSyncChannelTest, BadMessage) {
BadMessage(false);
BadMessage(true);
}
//-----------------------------------------------------------------------------
namespace {
class ChattyClient : public Worker {
public:
ChattyClient() :
Worker(Channel::MODE_CLIENT, "chatty_client") { }
void OnAnswer(int* answer) {
// The PostMessage limit is 10k. Send 20% more than that.
const int kMessageLimit = 10000;
const int kMessagesToSend = kMessageLimit * 120 / 100;
for (int i = 0; i < kMessagesToSend; ++i) {
if (!SendDouble(false, true))
break;
}
*answer = 42;
Done();
}
};
void ChattyServer(bool pump_during_send) {
std::vector<Worker*> workers;
workers.push_back(new UnblockServer(pump_during_send, false));
workers.push_back(new ChattyClient());
RunTest(workers);
}
} // namespace
// Tests http://b/1093251 - that sending lots of sync messages while
// the receiver is waiting for a sync reply does not overflow the PostMessage
// queue.
TEST_F(IPCSyncChannelTest, ChattyServer) {
ChattyServer(false);
ChattyServer(true);
}
//------------------------------------------------------------------------------
namespace {
class TimeoutServer : public Worker {
public:
TimeoutServer(int timeout_ms,
std::vector<bool> timeout_seq,
bool pump_during_send)
: Worker(Channel::MODE_SERVER, "timeout_server"),
timeout_ms_(timeout_ms),
timeout_seq_(timeout_seq),
pump_during_send_(pump_during_send) {
}
void Run() {
for (std::vector<bool>::const_iterator iter = timeout_seq_.begin();
iter != timeout_seq_.end(); ++iter) {
SendAnswerToLife(pump_during_send_, timeout_ms_, !*iter);
}
Done();
}
private:
int timeout_ms_;
std::vector<bool> timeout_seq_;
bool pump_during_send_;
};
class UnresponsiveClient : public Worker {
public:
explicit UnresponsiveClient(std::vector<bool> timeout_seq)
: Worker(Channel::MODE_CLIENT, "unresponsive_client"),
timeout_seq_(timeout_seq) {
}
void OnAnswerDelay(Message* reply_msg) {
DCHECK(!timeout_seq_.empty());
if (!timeout_seq_[0]) {
SyncChannelTestMsg_AnswerToLife::WriteReplyParams(reply_msg, 42);
Send(reply_msg);
} else {
// Don't reply.
delete reply_msg;
}
timeout_seq_.erase(timeout_seq_.begin());
if (timeout_seq_.empty())
Done();
}
private:
// Whether we should time-out or respond to the various messages we receive.
std::vector<bool> timeout_seq_;
};
void SendWithTimeoutOK(bool pump_during_send) {
std::vector<Worker*> workers;
std::vector<bool> timeout_seq;
timeout_seq.push_back(false);
timeout_seq.push_back(false);
timeout_seq.push_back(false);
workers.push_back(new TimeoutServer(5000, timeout_seq, pump_during_send));
workers.push_back(new SimpleClient());
RunTest(workers);
}
void SendWithTimeoutTimeout(bool pump_during_send) {
std::vector<Worker*> workers;
std::vector<bool> timeout_seq;
timeout_seq.push_back(true);
timeout_seq.push_back(false);
timeout_seq.push_back(false);
workers.push_back(new TimeoutServer(100, timeout_seq, pump_during_send));
workers.push_back(new UnresponsiveClient(timeout_seq));
RunTest(workers);
}
void SendWithTimeoutMixedOKAndTimeout(bool pump_during_send) {
std::vector<Worker*> workers;
std::vector<bool> timeout_seq;
timeout_seq.push_back(true);
timeout_seq.push_back(false);
timeout_seq.push_back(false);
timeout_seq.push_back(true);
timeout_seq.push_back(false);
workers.push_back(new TimeoutServer(100, timeout_seq, pump_during_send));
workers.push_back(new UnresponsiveClient(timeout_seq));
RunTest(workers);
}
} // namespace
// Tests that SendWithTimeout does not time-out if the response comes back fast
// enough.
TEST_F(IPCSyncChannelTest, SendWithTimeoutOK) {
SendWithTimeoutOK(false);
SendWithTimeoutOK(true);
}
// Tests that SendWithTimeout does time-out.
TEST_F(IPCSyncChannelTest, SendWithTimeoutTimeout) {
SendWithTimeoutTimeout(false);
SendWithTimeoutTimeout(true);
}
// Sends some message that time-out and some that succeed.
TEST_F(IPCSyncChannelTest, SendWithTimeoutMixedOKAndTimeout) {
SendWithTimeoutMixedOKAndTimeout(false);
SendWithTimeoutMixedOKAndTimeout(true);
}
//------------------------------------------------------------------------------
namespace {
class NestedTask : public Task {
public:
explicit NestedTask(Worker* server) : server_(server) { }
void Run() {
// Sleep a bit so that we wake up after the reply has been received.
PlatformThread::Sleep(250);
server_->SendAnswerToLife(true, base::kNoTimeout, true);
}
Worker* server_;
};
static bool timeout_occured = false;
class TimeoutTask : public Task {
public:
void Run() {
timeout_occured = true;
}
};
class DoneEventRaceServer : public Worker {
public:
DoneEventRaceServer()
: Worker(Channel::MODE_SERVER, "done_event_race_server") { }
void Run() {
MessageLoop::current()->PostTask(FROM_HERE, new NestedTask(this));
MessageLoop::current()->PostDelayedTask(FROM_HERE, new TimeoutTask(), 9000);
// Even though we have a timeout on the Send, it will succeed since for this
// bug, the reply message comes back and is deserialized, however the done
// event wasn't set. So we indirectly use the timeout task to notice if a
// timeout occurred.
SendAnswerToLife(true, 10000, true);
DCHECK(!timeout_occured);
Done();
}
};
} // namespace
// Tests http://b/1474092 - that if after the done_event is set but before
// OnObjectSignaled is called another message is sent out, then after its
// reply comes back OnObjectSignaled will be called for the first message.
TEST_F(IPCSyncChannelTest, DoneEventRace) {
std::vector<Worker*> workers;
workers.push_back(new DoneEventRaceServer());
workers.push_back(new SimpleClient());
RunTest(workers);
}
//-----------------------------------------------------------------------------
namespace {
class TestSyncMessageFilter : public IPC::SyncMessageFilter {
public:
TestSyncMessageFilter(base::WaitableEvent* shutdown_event, Worker* worker)
: SyncMessageFilter(shutdown_event),
worker_(worker),
thread_("helper_thread") {
base::Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_DEFAULT;
thread_.StartWithOptions(options);
}
virtual void OnFilterAdded(Channel* channel) {
SyncMessageFilter::OnFilterAdded(channel);
thread_.message_loop()->PostTask(FROM_HERE, NewRunnableMethod(
this, &TestSyncMessageFilter::SendMessageOnHelperThread));
}
void SendMessageOnHelperThread() {
int answer = 0;
bool result = Send(new SyncChannelTestMsg_AnswerToLife(&answer));
DCHECK(result);
DCHECK_EQ(answer, 42);
worker_->Done();
}
Worker* worker_;
base::Thread thread_;
};
class SyncMessageFilterServer : public Worker {
public:
SyncMessageFilterServer()
: Worker(Channel::MODE_SERVER, "sync_message_filter_server") {
filter_ = new TestSyncMessageFilter(shutdown_event(), this);
}
void Run() {
channel()->AddFilter(filter_.get());
}
scoped_refptr<TestSyncMessageFilter> filter_;
};
} // namespace
// Tests basic synchronous call
TEST_F(IPCSyncChannelTest, SyncMessageFilter) {
std::vector<Worker*> workers;
workers.push_back(new SyncMessageFilterServer());
workers.push_back(new SimpleClient());
RunTest(workers);
}