blob: fbc6289346005c83eec22947fcb21a0e8f88e860 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_OPTIONAL_H_
#define BASE_OPTIONAL_H_
#include <type_traits>
#include <utility>
#include "base/logging.h"
namespace base {
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/in_place_t
struct in_place_t {};
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/nullopt_t
struct nullopt_t {
constexpr explicit nullopt_t(int) {}
};
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/in_place
constexpr in_place_t in_place = {};
// Specification:
// http://en.cppreference.com/w/cpp/utility/optional/nullopt
constexpr nullopt_t nullopt(0);
namespace internal {
template <typename T, bool = std::is_trivially_destructible<T>::value>
struct OptionalStorage {
// Initializing |empty_| here instead of using default member initializing
// to avoid errors in g++ 4.8.
constexpr OptionalStorage() : empty_('\0') {}
template <class... Args>
constexpr explicit OptionalStorage(in_place_t, Args&&... args)
: is_null_(false), value_(std::forward<Args>(args)...) {}
// When T is not trivially destructible we must call its
// destructor before deallocating its memory.
~OptionalStorage() {
if (!is_null_)
value_.~T();
}
bool is_null_ = true;
union {
// |empty_| exists so that the union will always be initialized, even when
// it doesn't contain a value. Union members must be initialized for the
// constructor to be 'constexpr'.
char empty_;
T value_;
};
};
template <typename T>
struct OptionalStorage<T, true> {
// Initializing |empty_| here instead of using default member initializing
// to avoid errors in g++ 4.8.
constexpr OptionalStorage() : empty_('\0') {}
template <class... Args>
constexpr explicit OptionalStorage(in_place_t, Args&&... args)
: is_null_(false), value_(std::forward<Args>(args)...) {}
// When T is trivially destructible (i.e. its destructor does nothing) there
// is no need to call it. Explicitly defaulting the destructor means it's not
// user-provided. Those two together make this destructor trivial.
~OptionalStorage() = default;
bool is_null_ = true;
union {
// |empty_| exists so that the union will always be initialized, even when
// it doesn't contain a value. Union members must be initialized for the
// constructor to be 'constexpr'.
char empty_;
T value_;
};
};
// Base class to support conditionally usable copy-/move- constructors
// and assign operators.
template <typename T>
class OptionalBase {
// This class provides implementation rather than public API, so everything
// should be hidden. Often we use composition, but we cannot in this case
// because of C++ language restriction.
protected:
constexpr OptionalBase() = default;
// TODO(dcheng): Make these constexpr iff T is trivially constructible.
OptionalBase(const OptionalBase& other) {
if (!other.storage_.is_null_)
Init(other.storage_.value_);
}
OptionalBase(OptionalBase&& other) {
if (!other.storage_.is_null_)
Init(std::move(other.storage_.value_));
}
template <class... Args>
constexpr explicit OptionalBase(in_place_t, Args&&... args)
: storage_(in_place, std::forward<Args>(args)...) {}
~OptionalBase() = default;
OptionalBase& operator=(const OptionalBase& other) {
if (other.storage_.is_null_) {
FreeIfNeeded();
return *this;
}
InitOrAssign(other.storage_.value_);
return *this;
}
OptionalBase& operator=(OptionalBase&& other) {
if (other.storage_.is_null_) {
FreeIfNeeded();
return *this;
}
InitOrAssign(std::move(other.storage_.value_));
return *this;
}
template <class... Args>
void Init(Args&&... args) {
DCHECK(storage_.is_null_);
new (&storage_.value_) T(std::forward<Args>(args)...);
storage_.is_null_ = false;
}
void InitOrAssign(const T& value) {
if (storage_.is_null_)
Init(value);
else
storage_.value_ = value;
}
void InitOrAssign(T&& value) {
if (storage_.is_null_)
Init(std::move(value));
else
storage_.value_ = std::move(value);
}
void FreeIfNeeded() {
if (storage_.is_null_)
return;
storage_.value_.~T();
storage_.is_null_ = true;
}
OptionalStorage<T> storage_;
};
} // namespace internal
// base::Optional is a Chromium version of the C++17 optional class:
// std::optional documentation:
// http://en.cppreference.com/w/cpp/utility/optional
// Chromium documentation:
// https://chromium.googlesource.com/chromium/src/+/master/docs/optional.md
//
// These are the differences between the specification and the implementation:
// - Constructors do not use 'constexpr' as it is a C++14 extension.
// - 'constexpr' might be missing in some places for reasons specified locally.
// - No exceptions are thrown, because they are banned from Chromium.
// - All the non-members are in the 'base' namespace instead of 'std'.
template <typename T>
class Optional : public internal::OptionalBase<T> {
public:
using value_type = T;
// Defer default/copy/move constructor implementation to OptionalBase.
// TODO(hidehiko): Implement conditional enabling.
constexpr Optional() = default;
Optional(const Optional& other) = default;
Optional(Optional&& other) = default;
constexpr Optional(nullopt_t) {}
constexpr Optional(const T& value)
: internal::OptionalBase<T>(in_place, value) {}
constexpr Optional(T&& value)
: internal::OptionalBase<T>(in_place, std::move(value)) {}
template <class... Args>
constexpr explicit Optional(in_place_t, Args&&... args)
: internal::OptionalBase<T>(in_place, std::forward<Args>(args)...) {}
template <
class U,
class... Args,
class = std::enable_if_t<std::is_constructible<value_type,
std::initializer_list<U>&,
Args...>::value>>
constexpr explicit Optional(in_place_t,
std::initializer_list<U> il,
Args&&... args)
: internal::OptionalBase<T>(in_place, il, std::forward<Args>(args)...) {}
~Optional() = default;
// Defer copy-/move- assign operator implementation to OptionalBase.
// TOOD(hidehiko): Implement conditional enabling.
Optional& operator=(const Optional& other) = default;
Optional& operator=(Optional&& other) = default;
Optional& operator=(nullopt_t) {
FreeIfNeeded();
return *this;
}
template <class U>
typename std::enable_if<std::is_same<std::decay_t<U>, T>::value,
Optional&>::type
operator=(U&& value) {
InitOrAssign(std::forward<U>(value));
return *this;
}
constexpr const T* operator->() const {
DCHECK(!storage_.is_null_);
return &value();
}
constexpr T* operator->() {
DCHECK(!storage_.is_null_);
return &value();
}
constexpr const T& operator*() const& { return value(); }
constexpr T& operator*() & { return value(); }
constexpr const T&& operator*() const&& { return std::move(value()); }
constexpr T&& operator*() && { return std::move(value()); }
constexpr explicit operator bool() const { return !storage_.is_null_; }
constexpr bool has_value() const { return !storage_.is_null_; }
constexpr T& value() & {
DCHECK(!storage_.is_null_);
return storage_.value_;
}
constexpr const T& value() const & {
DCHECK(!storage_.is_null_);
return storage_.value_;
}
constexpr T&& value() && {
DCHECK(!storage_.is_null_);
return std::move(storage_.value_);
}
constexpr const T&& value() const && {
DCHECK(!storage_.is_null_);
return std::move(storage_.value_);
}
template <class U>
constexpr T value_or(U&& default_value) const& {
// TODO(mlamouri): add the following assert when possible:
// static_assert(std::is_copy_constructible<T>::value,
// "T must be copy constructible");
static_assert(std::is_convertible<U, T>::value,
"U must be convertible to T");
return storage_.is_null_ ? static_cast<T>(std::forward<U>(default_value))
: value();
}
template <class U>
T value_or(U&& default_value) && {
// TODO(mlamouri): add the following assert when possible:
// static_assert(std::is_move_constructible<T>::value,
// "T must be move constructible");
static_assert(std::is_convertible<U, T>::value,
"U must be convertible to T");
return storage_.is_null_ ? static_cast<T>(std::forward<U>(default_value))
: std::move(value());
}
void swap(Optional& other) {
if (storage_.is_null_ && other.storage_.is_null_)
return;
if (storage_.is_null_ != other.storage_.is_null_) {
if (storage_.is_null_) {
Init(std::move(other.storage_.value_));
other.FreeIfNeeded();
} else {
other.Init(std::move(storage_.value_));
FreeIfNeeded();
}
return;
}
DCHECK(!storage_.is_null_ && !other.storage_.is_null_);
using std::swap;
swap(**this, *other);
}
void reset() {
FreeIfNeeded();
}
template <class... Args>
void emplace(Args&&... args) {
FreeIfNeeded();
Init(std::forward<Args>(args)...);
}
template <
class U,
class... Args,
class = std::enable_if_t<std::is_constructible<value_type,
std::initializer_list<U>&,
Args...>::value>>
T& emplace(std::initializer_list<U> il, Args&&... args) {
FreeIfNeeded();
Init(il, std::forward<Args>(args)...);
return storage_.value_;
}
private:
// Accessing template base class's protected member needs explicit
// declaration to do so.
using internal::OptionalBase<T>::FreeIfNeeded;
using internal::OptionalBase<T>::Init;
using internal::OptionalBase<T>::InitOrAssign;
using internal::OptionalBase<T>::storage_;
};
// Here after defines comparation operators. The definition follows
// http://en.cppreference.com/w/cpp/utility/optional/operator_cmp
// while bool() casting is replaced by has_value() to meet the chromium
// style guide.
template <class T, class U>
constexpr bool operator==(const Optional<T>& lhs, const Optional<U>& rhs) {
if (lhs.has_value() != rhs.has_value())
return false;
if (!lhs.has_value())
return true;
return *lhs == *rhs;
}
template <class T, class U>
constexpr bool operator!=(const Optional<T>& lhs, const Optional<U>& rhs) {
if (lhs.has_value() != rhs.has_value())
return true;
if (!lhs.has_value())
return false;
return *lhs != *rhs;
}
template <class T, class U>
constexpr bool operator<(const Optional<T>& lhs, const Optional<U>& rhs) {
if (!rhs.has_value())
return false;
if (!lhs.has_value())
return true;
return *lhs < *rhs;
}
template <class T, class U>
constexpr bool operator<=(const Optional<T>& lhs, const Optional<U>& rhs) {
if (!lhs.has_value())
return true;
if (!rhs.has_value())
return false;
return *lhs <= *rhs;
}
template <class T, class U>
constexpr bool operator>(const Optional<T>& lhs, const Optional<U>& rhs) {
if (!lhs.has_value())
return false;
if (!rhs.has_value())
return true;
return *lhs > *rhs;
}
template <class T, class U>
constexpr bool operator>=(const Optional<T>& lhs, const Optional<U>& rhs) {
if (!rhs.has_value())
return true;
if (!lhs.has_value())
return false;
return *lhs >= *rhs;
}
template <class T>
constexpr bool operator==(const Optional<T>& opt, nullopt_t) {
return !opt;
}
template <class T>
constexpr bool operator==(nullopt_t, const Optional<T>& opt) {
return !opt;
}
template <class T>
constexpr bool operator!=(const Optional<T>& opt, nullopt_t) {
return opt.has_value();
}
template <class T>
constexpr bool operator!=(nullopt_t, const Optional<T>& opt) {
return opt.has_value();
}
template <class T>
constexpr bool operator<(const Optional<T>& opt, nullopt_t) {
return false;
}
template <class T>
constexpr bool operator<(nullopt_t, const Optional<T>& opt) {
return opt.has_value();
}
template <class T>
constexpr bool operator<=(const Optional<T>& opt, nullopt_t) {
return !opt;
}
template <class T>
constexpr bool operator<=(nullopt_t, const Optional<T>& opt) {
return true;
}
template <class T>
constexpr bool operator>(const Optional<T>& opt, nullopt_t) {
return opt.has_value();
}
template <class T>
constexpr bool operator>(nullopt_t, const Optional<T>& opt) {
return false;
}
template <class T>
constexpr bool operator>=(const Optional<T>& opt, nullopt_t) {
return true;
}
template <class T>
constexpr bool operator>=(nullopt_t, const Optional<T>& opt) {
return !opt;
}
template <class T, class U>
constexpr bool operator==(const Optional<T>& opt, const U& value) {
return opt.has_value() ? *opt == value : false;
}
template <class T, class U>
constexpr bool operator==(const U& value, const Optional<T>& opt) {
return opt.has_value() ? value == *opt : false;
}
template <class T, class U>
constexpr bool operator!=(const Optional<T>& opt, const U& value) {
return opt.has_value() ? *opt != value : true;
}
template <class T, class U>
constexpr bool operator!=(const U& value, const Optional<T>& opt) {
return opt.has_value() ? value != *opt : true;
}
template <class T, class U>
constexpr bool operator<(const Optional<T>& opt, const U& value) {
return opt.has_value() ? *opt < value : true;
}
template <class T, class U>
constexpr bool operator<(const U& value, const Optional<T>& opt) {
return opt.has_value() ? value < *opt : false;
}
template <class T, class U>
constexpr bool operator<=(const Optional<T>& opt, const U& value) {
return opt.has_value() ? *opt <= value : true;
}
template <class T, class U>
constexpr bool operator<=(const U& value, const Optional<T>& opt) {
return opt.has_value() ? value <= *opt : false;
}
template <class T, class U>
constexpr bool operator>(const Optional<T>& opt, const U& value) {
return opt.has_value() ? *opt > value : false;
}
template <class T, class U>
constexpr bool operator>(const U& value, const Optional<T>& opt) {
return opt.has_value() ? value > *opt : true;
}
template <class T, class U>
constexpr bool operator>=(const Optional<T>& opt, const U& value) {
return opt.has_value() ? *opt >= value : false;
}
template <class T, class U>
constexpr bool operator>=(const U& value, const Optional<T>& opt) {
return opt.has_value() ? value >= *opt : true;
}
template <class T>
constexpr Optional<typename std::decay<T>::type> make_optional(T&& value) {
return Optional<typename std::decay<T>::type>(std::forward<T>(value));
}
template <class T, class U, class... Args>
constexpr Optional<T> make_optional(std::initializer_list<U> il,
Args&&... args) {
return Optional<T>(in_place, il, std::forward<Args>(args)...);
}
template <class T>
void swap(Optional<T>& lhs, Optional<T>& rhs) {
lhs.swap(rhs);
}
} // namespace base
namespace std {
template <class T>
struct hash<base::Optional<T>> {
size_t operator()(const base::Optional<T>& opt) const {
return opt == base::nullopt ? 0 : std::hash<T>()(*opt);
}
};
} // namespace std
#endif // BASE_OPTIONAL_H_