| // Copyright 2010 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cc/output/gl_renderer.h" |
| |
| #include <algorithm> |
| #include <limits> |
| #include <set> |
| #include <string> |
| #include <vector> |
| |
| #include "base/logging.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "base/strings/string_split.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/stringprintf.h" |
| #include "build/build_config.h" |
| #include "base/trace_event/trace_event.h" |
| #include "cc/base/math_util.h" |
| #include "cc/output/compositor_frame.h" |
| #include "cc/output/compositor_frame_metadata.h" |
| #include "cc/output/context_provider.h" |
| #include "cc/output/copy_output_request.h" |
| #include "cc/output/dynamic_geometry_binding.h" |
| #include "cc/output/gl_frame_data.h" |
| #include "cc/output/output_surface.h" |
| #include "cc/output/render_surface_filters.h" |
| #include "cc/output/static_geometry_binding.h" |
| #include "cc/quads/draw_polygon.h" |
| #include "cc/quads/picture_draw_quad.h" |
| #include "cc/quads/render_pass.h" |
| #include "cc/quads/stream_video_draw_quad.h" |
| #include "cc/quads/texture_draw_quad.h" |
| #include "cc/resources/layer_quad.h" |
| #include "cc/resources/scoped_gpu_raster.h" |
| #include "cc/resources/scoped_resource.h" |
| #include "cc/resources/texture_mailbox_deleter.h" |
| #include "gpu/GLES2/gl2extchromium.h" |
| #include "gpu/command_buffer/client/context_support.h" |
| #include "gpu/command_buffer/client/gles2_interface.h" |
| #include "gpu/command_buffer/common/gpu_memory_allocation.h" |
| #include "third_party/skia/include/core/SkBitmap.h" |
| #include "third_party/skia/include/core/SkColor.h" |
| #include "third_party/skia/include/core/SkColorFilter.h" |
| #include "third_party/skia/include/core/SkImage.h" |
| #include "third_party/skia/include/core/SkSurface.h" |
| #include "third_party/skia/include/gpu/GrContext.h" |
| #include "third_party/skia/include/gpu/GrTexture.h" |
| #include "third_party/skia/include/gpu/SkGrTexturePixelRef.h" |
| #include "third_party/skia/include/gpu/gl/GrGLInterface.h" |
| #include "ui/gfx/geometry/quad_f.h" |
| #include "ui/gfx/geometry/rect_conversions.h" |
| |
| using gpu::gles2::GLES2Interface; |
| |
| namespace cc { |
| namespace { |
| |
| bool NeedsIOSurfaceReadbackWorkaround() { |
| #if defined(OS_MACOSX) |
| // This isn't strictly required in DumpRenderTree-mode when Mesa is used, |
| // but it doesn't seem to hurt. |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| Float4 UVTransform(const TextureDrawQuad* quad) { |
| gfx::PointF uv0 = quad->uv_top_left; |
| gfx::PointF uv1 = quad->uv_bottom_right; |
| Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}}; |
| if (quad->flipped) { |
| xform.data[1] = 1.0f - xform.data[1]; |
| xform.data[3] = -xform.data[3]; |
| } |
| return xform; |
| } |
| |
| Float4 PremultipliedColor(SkColor color) { |
| const float factor = 1.0f / 255.0f; |
| const float alpha = SkColorGetA(color) * factor; |
| |
| Float4 result = { |
| {SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha, |
| SkColorGetB(color) * factor * alpha, alpha}}; |
| return result; |
| } |
| |
| SamplerType SamplerTypeFromTextureTarget(GLenum target) { |
| switch (target) { |
| case GL_TEXTURE_2D: |
| return SAMPLER_TYPE_2D; |
| case GL_TEXTURE_RECTANGLE_ARB: |
| return SAMPLER_TYPE_2D_RECT; |
| case GL_TEXTURE_EXTERNAL_OES: |
| return SAMPLER_TYPE_EXTERNAL_OES; |
| default: |
| NOTREACHED(); |
| return SAMPLER_TYPE_2D; |
| } |
| } |
| |
| BlendMode BlendModeFromSkXfermode(SkXfermode::Mode mode) { |
| switch (mode) { |
| case SkXfermode::kSrcOver_Mode: |
| return BLEND_MODE_NORMAL; |
| case SkXfermode::kScreen_Mode: |
| return BLEND_MODE_SCREEN; |
| case SkXfermode::kOverlay_Mode: |
| return BLEND_MODE_OVERLAY; |
| case SkXfermode::kDarken_Mode: |
| return BLEND_MODE_DARKEN; |
| case SkXfermode::kLighten_Mode: |
| return BLEND_MODE_LIGHTEN; |
| case SkXfermode::kColorDodge_Mode: |
| return BLEND_MODE_COLOR_DODGE; |
| case SkXfermode::kColorBurn_Mode: |
| return BLEND_MODE_COLOR_BURN; |
| case SkXfermode::kHardLight_Mode: |
| return BLEND_MODE_HARD_LIGHT; |
| case SkXfermode::kSoftLight_Mode: |
| return BLEND_MODE_SOFT_LIGHT; |
| case SkXfermode::kDifference_Mode: |
| return BLEND_MODE_DIFFERENCE; |
| case SkXfermode::kExclusion_Mode: |
| return BLEND_MODE_EXCLUSION; |
| case SkXfermode::kMultiply_Mode: |
| return BLEND_MODE_MULTIPLY; |
| case SkXfermode::kHue_Mode: |
| return BLEND_MODE_HUE; |
| case SkXfermode::kSaturation_Mode: |
| return BLEND_MODE_SATURATION; |
| case SkXfermode::kColor_Mode: |
| return BLEND_MODE_COLOR; |
| case SkXfermode::kLuminosity_Mode: |
| return BLEND_MODE_LUMINOSITY; |
| default: |
| NOTREACHED(); |
| return BLEND_MODE_NONE; |
| } |
| } |
| |
| // Smallest unit that impact anti-aliasing output. We use this to |
| // determine when anti-aliasing is unnecessary. |
| const float kAntiAliasingEpsilon = 1.0f / 1024.0f; |
| |
| // Block or crash if the number of pending sync queries reach this high as |
| // something is seriously wrong on the service side if this happens. |
| const size_t kMaxPendingSyncQueries = 16; |
| |
| } // anonymous namespace |
| |
| static GLint GetActiveTextureUnit(GLES2Interface* gl) { |
| GLint active_unit = 0; |
| gl->GetIntegerv(GL_ACTIVE_TEXTURE, &active_unit); |
| return active_unit; |
| } |
| |
| class GLRenderer::ScopedUseGrContext { |
| public: |
| static scoped_ptr<ScopedUseGrContext> Create(GLRenderer* renderer, |
| DrawingFrame* frame) { |
| return make_scoped_ptr(new ScopedUseGrContext(renderer, frame)); |
| } |
| |
| ~ScopedUseGrContext() { |
| // Pass context control back to GLrenderer. |
| scoped_gpu_raster_ = nullptr; |
| renderer_->RestoreGLState(); |
| renderer_->RestoreFramebuffer(frame_); |
| } |
| |
| GrContext* context() const { |
| return renderer_->output_surface_->context_provider()->GrContext(); |
| } |
| |
| private: |
| ScopedUseGrContext(GLRenderer* renderer, DrawingFrame* frame) |
| : scoped_gpu_raster_( |
| new ScopedGpuRaster(renderer->output_surface_->context_provider())), |
| renderer_(renderer), |
| frame_(frame) { |
| // scoped_gpu_raster_ passes context control to Skia. |
| } |
| |
| scoped_ptr<ScopedGpuRaster> scoped_gpu_raster_; |
| GLRenderer* renderer_; |
| DrawingFrame* frame_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ScopedUseGrContext); |
| }; |
| |
| struct GLRenderer::PendingAsyncReadPixels { |
| PendingAsyncReadPixels() : buffer(0) {} |
| |
| scoped_ptr<CopyOutputRequest> copy_request; |
| base::CancelableClosure finished_read_pixels_callback; |
| unsigned buffer; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels); |
| }; |
| |
| class GLRenderer::SyncQuery { |
| public: |
| explicit SyncQuery(gpu::gles2::GLES2Interface* gl) |
| : gl_(gl), query_id_(0u), is_pending_(false), weak_ptr_factory_(this) { |
| gl_->GenQueriesEXT(1, &query_id_); |
| } |
| virtual ~SyncQuery() { gl_->DeleteQueriesEXT(1, &query_id_); } |
| |
| scoped_refptr<ResourceProvider::Fence> Begin() { |
| DCHECK(!IsPending()); |
| // Invalidate weak pointer held by old fence. |
| weak_ptr_factory_.InvalidateWeakPtrs(); |
| // Note: In case the set of drawing commands issued before End() do not |
| // depend on the query, defer BeginQueryEXT call until Set() is called and |
| // query is required. |
| return make_scoped_refptr<ResourceProvider::Fence>( |
| new Fence(weak_ptr_factory_.GetWeakPtr())); |
| } |
| |
| void Set() { |
| if (is_pending_) |
| return; |
| |
| // Note: BeginQueryEXT on GL_COMMANDS_COMPLETED_CHROMIUM is effectively a |
| // noop relative to GL, so it doesn't matter where it happens but we still |
| // make sure to issue this command when Set() is called (prior to issuing |
| // any drawing commands that depend on query), in case some future extension |
| // can take advantage of this. |
| gl_->BeginQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM, query_id_); |
| is_pending_ = true; |
| } |
| |
| void End() { |
| if (!is_pending_) |
| return; |
| |
| gl_->EndQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM); |
| } |
| |
| bool IsPending() { |
| if (!is_pending_) |
| return false; |
| |
| unsigned result_available = 1; |
| gl_->GetQueryObjectuivEXT( |
| query_id_, GL_QUERY_RESULT_AVAILABLE_EXT, &result_available); |
| is_pending_ = !result_available; |
| return is_pending_; |
| } |
| |
| void Wait() { |
| if (!is_pending_) |
| return; |
| |
| unsigned result = 0; |
| gl_->GetQueryObjectuivEXT(query_id_, GL_QUERY_RESULT_EXT, &result); |
| is_pending_ = false; |
| } |
| |
| private: |
| class Fence : public ResourceProvider::Fence { |
| public: |
| explicit Fence(base::WeakPtr<GLRenderer::SyncQuery> query) |
| : query_(query) {} |
| |
| // Overridden from ResourceProvider::Fence: |
| void Set() override { |
| DCHECK(query_); |
| query_->Set(); |
| } |
| bool HasPassed() override { return !query_ || !query_->IsPending(); } |
| void Wait() override { |
| if (query_) |
| query_->Wait(); |
| } |
| |
| private: |
| ~Fence() override {} |
| |
| base::WeakPtr<SyncQuery> query_; |
| |
| DISALLOW_COPY_AND_ASSIGN(Fence); |
| }; |
| |
| gpu::gles2::GLES2Interface* gl_; |
| unsigned query_id_; |
| bool is_pending_; |
| base::WeakPtrFactory<SyncQuery> weak_ptr_factory_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SyncQuery); |
| }; |
| |
| scoped_ptr<GLRenderer> GLRenderer::Create( |
| RendererClient* client, |
| const RendererSettings* settings, |
| OutputSurface* output_surface, |
| ResourceProvider* resource_provider, |
| TextureMailboxDeleter* texture_mailbox_deleter, |
| int highp_threshold_min) { |
| return make_scoped_ptr(new GLRenderer(client, |
| settings, |
| output_surface, |
| resource_provider, |
| texture_mailbox_deleter, |
| highp_threshold_min)); |
| } |
| |
| GLRenderer::GLRenderer(RendererClient* client, |
| const RendererSettings* settings, |
| OutputSurface* output_surface, |
| ResourceProvider* resource_provider, |
| TextureMailboxDeleter* texture_mailbox_deleter, |
| int highp_threshold_min) |
| : DirectRenderer(client, settings, output_surface, resource_provider), |
| offscreen_framebuffer_id_(0), |
| shared_geometry_quad_(QuadVertexRect()), |
| gl_(output_surface->context_provider()->ContextGL()), |
| context_support_(output_surface->context_provider()->ContextSupport()), |
| texture_mailbox_deleter_(texture_mailbox_deleter), |
| is_backbuffer_discarded_(false), |
| is_scissor_enabled_(false), |
| scissor_rect_needs_reset_(true), |
| stencil_shadow_(false), |
| blend_shadow_(false), |
| highp_threshold_min_(highp_threshold_min), |
| highp_threshold_cache_(0), |
| use_sync_query_(false), |
| on_demand_tile_raster_resource_id_(0), |
| bound_geometry_(NO_BINDING) { |
| DCHECK(gl_); |
| DCHECK(context_support_); |
| |
| ContextProvider::Capabilities context_caps = |
| output_surface_->context_provider()->ContextCapabilities(); |
| |
| capabilities_.using_partial_swap = |
| settings_->partial_swap_enabled && context_caps.gpu.post_sub_buffer; |
| |
| DCHECK(!context_caps.gpu.iosurface || context_caps.gpu.texture_rectangle); |
| |
| capabilities_.using_egl_image = context_caps.gpu.egl_image_external; |
| |
| capabilities_.max_texture_size = resource_provider_->max_texture_size(); |
| capabilities_.best_texture_format = resource_provider_->best_texture_format(); |
| |
| // The updater can access textures while the GLRenderer is using them. |
| capabilities_.allow_partial_texture_updates = true; |
| |
| capabilities_.using_image = context_caps.gpu.image; |
| |
| capabilities_.using_discard_framebuffer = |
| context_caps.gpu.discard_framebuffer; |
| |
| capabilities_.allow_rasterize_on_demand = true; |
| |
| use_sync_query_ = context_caps.gpu.sync_query; |
| use_blend_equation_advanced_ = context_caps.gpu.blend_equation_advanced; |
| use_blend_equation_advanced_coherent_ = |
| context_caps.gpu.blend_equation_advanced_coherent; |
| |
| InitializeSharedObjects(); |
| } |
| |
| GLRenderer::~GLRenderer() { |
| while (!pending_async_read_pixels_.empty()) { |
| PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back(); |
| pending_read->finished_read_pixels_callback.Cancel(); |
| pending_async_read_pixels_.pop_back(); |
| } |
| |
| in_use_overlay_resources_.clear(); |
| |
| CleanupSharedObjects(); |
| } |
| |
| const RendererCapabilitiesImpl& GLRenderer::Capabilities() const { |
| return capabilities_; |
| } |
| |
| void GLRenderer::DebugGLCall(GLES2Interface* gl, |
| const char* command, |
| const char* file, |
| int line) { |
| GLuint error = gl->GetError(); |
| if (error != GL_NO_ERROR) |
| LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line |
| << "\n\tcommand: " << command << ", error " |
| << static_cast<int>(error) << "\n"; |
| } |
| |
| void GLRenderer::DidChangeVisibility() { |
| EnforceMemoryPolicy(); |
| |
| context_support_->SetSurfaceVisible(visible()); |
| } |
| |
| void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); } |
| |
| void GLRenderer::DiscardPixels(bool has_external_stencil_test, |
| bool draw_rect_covers_full_surface) { |
| if (has_external_stencil_test || !draw_rect_covers_full_surface || |
| !capabilities_.using_discard_framebuffer) |
| return; |
| bool using_default_framebuffer = |
| !current_framebuffer_lock_ && |
| output_surface_->capabilities().uses_default_gl_framebuffer; |
| GLenum attachments[] = {static_cast<GLenum>( |
| using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)}; |
| gl_->DiscardFramebufferEXT( |
| GL_FRAMEBUFFER, arraysize(attachments), attachments); |
| } |
| |
| void GLRenderer::ClearFramebuffer(DrawingFrame* frame, |
| bool has_external_stencil_test) { |
| // It's unsafe to clear when we have a stencil test because glClear ignores |
| // stencil. |
| if (has_external_stencil_test) { |
| DCHECK(!frame->current_render_pass->has_transparent_background); |
| return; |
| } |
| |
| // On DEBUG builds, opaque render passes are cleared to blue to easily see |
| // regions that were not drawn on the screen. |
| if (frame->current_render_pass->has_transparent_background) |
| GLC(gl_, gl_->ClearColor(0, 0, 0, 0)); |
| else |
| GLC(gl_, gl_->ClearColor(0, 0, 1, 1)); |
| |
| bool always_clear = false; |
| #ifndef NDEBUG |
| always_clear = true; |
| #endif |
| if (always_clear || frame->current_render_pass->has_transparent_background) { |
| GLbitfield clear_bits = GL_COLOR_BUFFER_BIT; |
| if (always_clear) |
| clear_bits |= GL_STENCIL_BUFFER_BIT; |
| gl_->Clear(clear_bits); |
| } |
| } |
| |
| static ResourceProvider::ResourceId WaitOnResourceSyncPoints( |
| ResourceProvider* resource_provider, |
| ResourceProvider::ResourceId resource_id) { |
| resource_provider->WaitSyncPointIfNeeded(resource_id); |
| return resource_id; |
| } |
| |
| void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) { |
| TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame"); |
| |
| scoped_refptr<ResourceProvider::Fence> read_lock_fence; |
| if (use_sync_query_) { |
| // Block until oldest sync query has passed if the number of pending queries |
| // ever reach kMaxPendingSyncQueries. |
| if (pending_sync_queries_.size() >= kMaxPendingSyncQueries) { |
| LOG(ERROR) << "Reached limit of pending sync queries."; |
| |
| pending_sync_queries_.front()->Wait(); |
| DCHECK(!pending_sync_queries_.front()->IsPending()); |
| } |
| |
| while (!pending_sync_queries_.empty()) { |
| if (pending_sync_queries_.front()->IsPending()) |
| break; |
| |
| available_sync_queries_.push_back(pending_sync_queries_.take_front()); |
| } |
| |
| current_sync_query_ = available_sync_queries_.empty() |
| ? make_scoped_ptr(new SyncQuery(gl_)) |
| : available_sync_queries_.take_front(); |
| |
| read_lock_fence = current_sync_query_->Begin(); |
| } else { |
| read_lock_fence = |
| make_scoped_refptr(new ResourceProvider::SynchronousFence(gl_)); |
| } |
| resource_provider_->SetReadLockFence(read_lock_fence.get()); |
| |
| // Insert WaitSyncPointCHROMIUM on quad resources prior to drawing the frame, |
| // so that drawing can proceed without GL context switching interruptions. |
| DrawQuad::ResourceIteratorCallback wait_on_resource_syncpoints_callback = |
| base::Bind(&WaitOnResourceSyncPoints, resource_provider_); |
| |
| for (const auto& pass : *frame->render_passes_in_draw_order) { |
| for (const auto& quad : pass->quad_list) |
| quad->IterateResources(wait_on_resource_syncpoints_callback); |
| } |
| |
| // TODO(enne): Do we need to reinitialize all of this state per frame? |
| ReinitializeGLState(); |
| } |
| |
| void GLRenderer::DoNoOp() { |
| GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0)); |
| GLC(gl_, gl_->Flush()); |
| } |
| |
| void GLRenderer::DoDrawQuad(DrawingFrame* frame, |
| const DrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| DCHECK(quad->rect.Contains(quad->visible_rect)); |
| if (quad->material != DrawQuad::TEXTURE_CONTENT) { |
| FlushTextureQuadCache(SHARED_BINDING); |
| } |
| |
| switch (quad->material) { |
| case DrawQuad::INVALID: |
| NOTREACHED(); |
| break; |
| case DrawQuad::CHECKERBOARD: |
| DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad), |
| clip_region); |
| break; |
| case DrawQuad::DEBUG_BORDER: |
| DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad)); |
| break; |
| case DrawQuad::IO_SURFACE_CONTENT: |
| DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad), |
| clip_region); |
| break; |
| case DrawQuad::PICTURE_CONTENT: |
| // PictureDrawQuad should only be used for resourceless software draws. |
| NOTREACHED(); |
| break; |
| case DrawQuad::RENDER_PASS: |
| DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad), |
| clip_region); |
| break; |
| case DrawQuad::SOLID_COLOR: |
| DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad), |
| clip_region); |
| break; |
| case DrawQuad::STREAM_VIDEO_CONTENT: |
| DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad), |
| clip_region); |
| break; |
| case DrawQuad::SURFACE_CONTENT: |
| // Surface content should be fully resolved to other quad types before |
| // reaching a direct renderer. |
| NOTREACHED(); |
| break; |
| case DrawQuad::TEXTURE_CONTENT: |
| EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad), |
| clip_region); |
| break; |
| case DrawQuad::TILED_CONTENT: |
| DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad), clip_region); |
| break; |
| case DrawQuad::YUV_VIDEO_CONTENT: |
| DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad), |
| clip_region); |
| break; |
| } |
| } |
| |
| void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame, |
| const CheckerboardDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| // TODO(enne) For now since checkerboards shouldn't be part of a 3D |
| // context, clipping regions aren't supported so we skip drawing them |
| // if this becomes the case. |
| if (clip_region) { |
| return; |
| } |
| SetBlendEnabled(quad->ShouldDrawWithBlending()); |
| |
| const TileCheckerboardProgram* program = GetTileCheckerboardProgram(); |
| DCHECK(program && (program->initialized() || IsContextLost())); |
| SetUseProgram(program->program()); |
| |
| SkColor color = quad->color; |
| GLC(gl_, |
| gl_->Uniform4f(program->fragment_shader().color_location(), |
| SkColorGetR(color) * (1.0f / 255.0f), |
| SkColorGetG(color) * (1.0f / 255.0f), |
| SkColorGetB(color) * (1.0f / 255.0f), |
| 1)); |
| |
| const int kCheckerboardWidth = 16; |
| float frequency = 1.0f / kCheckerboardWidth; |
| |
| gfx::Rect tile_rect = quad->rect; |
| float tex_offset_x = |
| static_cast<int>(tile_rect.x() / quad->scale) % kCheckerboardWidth; |
| float tex_offset_y = |
| static_cast<int>(tile_rect.y() / quad->scale) % kCheckerboardWidth; |
| float tex_scale_x = tile_rect.width() / quad->scale; |
| float tex_scale_y = tile_rect.height() / quad->scale; |
| GLC(gl_, |
| gl_->Uniform4f(program->fragment_shader().tex_transform_location(), |
| tex_offset_x, |
| tex_offset_y, |
| tex_scale_x, |
| tex_scale_y)); |
| |
| GLC(gl_, |
| gl_->Uniform1f(program->fragment_shader().frequency_location(), |
| frequency)); |
| |
| SetShaderOpacity(quad->opacity(), |
| program->fragment_shader().alpha_location()); |
| DrawQuadGeometry(frame, |
| quad->quadTransform(), |
| quad->rect, |
| program->vertex_shader().matrix_location()); |
| } |
| |
| // This function does not handle 3D sorting right now, since the debug border |
| // quads are just drawn as their original quads and not in split pieces. This |
| // results in some debug border quads drawing over foreground quads. |
| void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame, |
| const DebugBorderDrawQuad* quad) { |
| SetBlendEnabled(quad->ShouldDrawWithBlending()); |
| |
| static float gl_matrix[16]; |
| const DebugBorderProgram* program = GetDebugBorderProgram(); |
| DCHECK(program && (program->initialized() || IsContextLost())); |
| SetUseProgram(program->program()); |
| |
| // Use the full quad_rect for debug quads to not move the edges based on |
| // partial swaps. |
| gfx::Rect layer_rect = quad->rect; |
| gfx::Transform render_matrix; |
| QuadRectTransform(&render_matrix, quad->quadTransform(), layer_rect); |
| GLRenderer::ToGLMatrix(&gl_matrix[0], |
| frame->projection_matrix * render_matrix); |
| GLC(gl_, |
| gl_->UniformMatrix4fv( |
| program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0])); |
| |
| SkColor color = quad->color; |
| float alpha = SkColorGetA(color) * (1.0f / 255.0f); |
| |
| GLC(gl_, |
| gl_->Uniform4f(program->fragment_shader().color_location(), |
| (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, |
| (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, |
| (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, |
| alpha)); |
| |
| GLC(gl_, gl_->LineWidth(quad->width)); |
| |
| // The indices for the line are stored in the same array as the triangle |
| // indices. |
| GLC(gl_, gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0)); |
| } |
| |
| static skia::RefPtr<SkImage> ApplyImageFilter( |
| scoped_ptr<GLRenderer::ScopedUseGrContext> use_gr_context, |
| ResourceProvider* resource_provider, |
| const gfx::Rect& rect, |
| const gfx::Vector2dF& scale, |
| SkImageFilter* filter, |
| ScopedResource* source_texture_resource) { |
| if (!filter) |
| return skia::RefPtr<SkImage>(); |
| |
| if (!use_gr_context) |
| return skia::RefPtr<SkImage>(); |
| |
| ResourceProvider::ScopedReadLockGL lock(resource_provider, |
| source_texture_resource->id()); |
| |
| // Wrap the source texture in a Ganesh platform texture. |
| GrBackendTextureDesc backend_texture_description; |
| backend_texture_description.fWidth = source_texture_resource->size().width(); |
| backend_texture_description.fHeight = |
| source_texture_resource->size().height(); |
| backend_texture_description.fConfig = kSkia8888_GrPixelConfig; |
| backend_texture_description.fTextureHandle = lock.texture_id(); |
| backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin; |
| skia::RefPtr<GrTexture> texture = |
| skia::AdoptRef(use_gr_context->context()->wrapBackendTexture( |
| backend_texture_description)); |
| if (!texture) { |
| TRACE_EVENT_INSTANT0("cc", |
| "ApplyImageFilter wrap background texture failed", |
| TRACE_EVENT_SCOPE_THREAD); |
| return skia::RefPtr<SkImage>(); |
| } |
| |
| SkImageInfo info = |
| SkImageInfo::MakeN32Premul(source_texture_resource->size().width(), |
| source_texture_resource->size().height()); |
| // Place the platform texture inside an SkBitmap. |
| SkBitmap source; |
| source.setInfo(info); |
| skia::RefPtr<SkGrPixelRef> pixel_ref = |
| skia::AdoptRef(new SkGrPixelRef(info, texture.get())); |
| source.setPixelRef(pixel_ref.get()); |
| |
| // Create a scratch texture for backing store. |
| GrTextureDesc desc; |
| desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit; |
| desc.fSampleCnt = 0; |
| desc.fWidth = source.width(); |
| desc.fHeight = source.height(); |
| desc.fConfig = kSkia8888_GrPixelConfig; |
| desc.fOrigin = kBottomLeft_GrSurfaceOrigin; |
| skia::RefPtr<GrTexture> backing_store = |
| skia::AdoptRef(use_gr_context->context()->refScratchTexture( |
| desc, GrContext::kExact_ScratchTexMatch)); |
| if (!backing_store) { |
| TRACE_EVENT_INSTANT0("cc", |
| "ApplyImageFilter scratch texture allocation failed", |
| TRACE_EVENT_SCOPE_THREAD); |
| return skia::RefPtr<SkImage>(); |
| } |
| |
| // Create surface to draw into. |
| skia::RefPtr<SkSurface> surface = skia::AdoptRef( |
| SkSurface::NewRenderTargetDirect(backing_store->asRenderTarget())); |
| skia::RefPtr<SkCanvas> canvas = skia::SharePtr(surface->getCanvas()); |
| |
| // Draw the source bitmap through the filter to the canvas. |
| SkPaint paint; |
| paint.setImageFilter(filter); |
| canvas->clear(SK_ColorTRANSPARENT); |
| |
| // The origin of the filter is top-left and the origin of the source is |
| // bottom-left, but the orientation is the same, so we must translate the |
| // filter so that it renders at the bottom of the texture to avoid |
| // misregistration. |
| int y_translate = source.height() - rect.height() - rect.origin().y(); |
| canvas->translate(-rect.origin().x(), y_translate); |
| canvas->scale(scale.x(), scale.y()); |
| canvas->drawSprite(source, 0, 0, &paint); |
| |
| skia::RefPtr<SkImage> image = skia::AdoptRef(surface->newImageSnapshot()); |
| if (!image || !image->getTexture()) { |
| return skia::RefPtr<SkImage>(); |
| } |
| |
| // Flush the GrContext to ensure all buffered GL calls are drawn to the |
| // backing store before we access and return it, and have cc begin using the |
| // GL context again. |
| canvas->flush(); |
| |
| return image; |
| } |
| |
| bool GLRenderer::CanApplyBlendModeUsingBlendFunc(SkXfermode::Mode blend_mode) { |
| return use_blend_equation_advanced_ || |
| blend_mode == SkXfermode::kScreen_Mode || |
| blend_mode == SkXfermode::kSrcOver_Mode; |
| } |
| |
| void GLRenderer::ApplyBlendModeUsingBlendFunc(SkXfermode::Mode blend_mode) { |
| DCHECK(CanApplyBlendModeUsingBlendFunc(blend_mode)); |
| |
| // Any modes set here must be reset in RestoreBlendFuncToDefault |
| if (use_blend_equation_advanced_) { |
| GLenum equation = GL_FUNC_ADD; |
| |
| switch (blend_mode) { |
| case SkXfermode::kScreen_Mode: |
| equation = GL_SCREEN_KHR; |
| break; |
| case SkXfermode::kOverlay_Mode: |
| equation = GL_OVERLAY_KHR; |
| break; |
| case SkXfermode::kDarken_Mode: |
| equation = GL_DARKEN_KHR; |
| break; |
| case SkXfermode::kLighten_Mode: |
| equation = GL_LIGHTEN_KHR; |
| break; |
| case SkXfermode::kColorDodge_Mode: |
| equation = GL_COLORDODGE_KHR; |
| break; |
| case SkXfermode::kColorBurn_Mode: |
| equation = GL_COLORBURN_KHR; |
| break; |
| case SkXfermode::kHardLight_Mode: |
| equation = GL_HARDLIGHT_KHR; |
| break; |
| case SkXfermode::kSoftLight_Mode: |
| equation = GL_SOFTLIGHT_KHR; |
| break; |
| case SkXfermode::kDifference_Mode: |
| equation = GL_DIFFERENCE_KHR; |
| break; |
| case SkXfermode::kExclusion_Mode: |
| equation = GL_EXCLUSION_KHR; |
| break; |
| case SkXfermode::kMultiply_Mode: |
| equation = GL_MULTIPLY_KHR; |
| break; |
| case SkXfermode::kHue_Mode: |
| equation = GL_HSL_HUE_KHR; |
| break; |
| case SkXfermode::kSaturation_Mode: |
| equation = GL_HSL_SATURATION_KHR; |
| break; |
| case SkXfermode::kColor_Mode: |
| equation = GL_HSL_COLOR_KHR; |
| break; |
| case SkXfermode::kLuminosity_Mode: |
| equation = GL_HSL_LUMINOSITY_KHR; |
| break; |
| default: |
| return; |
| } |
| |
| GLC(gl_, gl_->BlendEquation(equation)); |
| } else { |
| if (blend_mode == SkXfermode::kScreen_Mode) { |
| GLC(gl_, gl_->BlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ONE)); |
| } |
| } |
| } |
| |
| void GLRenderer::RestoreBlendFuncToDefault(SkXfermode::Mode blend_mode) { |
| if (blend_mode == SkXfermode::kSrcOver_Mode) |
| return; |
| |
| if (use_blend_equation_advanced_) { |
| GLC(gl_, gl_->BlendEquation(GL_FUNC_ADD)); |
| } else { |
| GLC(gl_, gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA)); |
| } |
| } |
| |
| bool GLRenderer::ShouldApplyBackgroundFilters(DrawingFrame* frame, |
| const RenderPassDrawQuad* quad) { |
| if (quad->background_filters.IsEmpty()) |
| return false; |
| |
| // TODO(danakj): We only allow background filters on an opaque render surface |
| // because other surfaces may contain translucent pixels, and the contents |
| // behind those translucent pixels wouldn't have the filter applied. |
| if (frame->current_render_pass->has_transparent_background) |
| return false; |
| |
| // TODO(ajuma): Add support for reference filters once |
| // FilterOperations::GetOutsets supports reference filters. |
| if (quad->background_filters.HasReferenceFilter()) |
| return false; |
| return true; |
| } |
| |
| // This takes a gfx::Rect and a clip region quad in the same space, |
| // and returns a quad with the same proportions in the space -0.5->0.5. |
| bool GetScaledRegion(const gfx::Rect& rect, |
| const gfx::QuadF* clip, |
| gfx::QuadF* scaled_region) { |
| if (!clip) |
| return false; |
| |
| gfx::PointF p1(((clip->p1().x() - rect.x()) / rect.width()) - 0.5f, |
| ((clip->p1().y() - rect.y()) / rect.height()) - 0.5f); |
| gfx::PointF p2(((clip->p2().x() - rect.x()) / rect.width()) - 0.5f, |
| ((clip->p2().y() - rect.y()) / rect.height()) - 0.5f); |
| gfx::PointF p3(((clip->p3().x() - rect.x()) / rect.width()) - 0.5f, |
| ((clip->p3().y() - rect.y()) / rect.height()) - 0.5f); |
| gfx::PointF p4(((clip->p4().x() - rect.x()) / rect.width()) - 0.5f, |
| ((clip->p4().y() - rect.y()) / rect.height()) - 0.5f); |
| *scaled_region = gfx::QuadF(p1, p2, p3, p4); |
| return true; |
| } |
| |
| // This takes a gfx::Rect and a clip region quad in the same space, |
| // and returns the proportional uv's in the space 0->1. |
| bool GetScaledUVs(const gfx::Rect& rect, const gfx::QuadF* clip, float uvs[8]) { |
| if (!clip) |
| return false; |
| |
| uvs[0] = ((clip->p1().x() - rect.x()) / rect.width()); |
| uvs[1] = ((clip->p1().y() - rect.y()) / rect.height()); |
| uvs[2] = ((clip->p2().x() - rect.x()) / rect.width()); |
| uvs[3] = ((clip->p2().y() - rect.y()) / rect.height()); |
| uvs[4] = ((clip->p3().x() - rect.x()) / rect.width()); |
| uvs[5] = ((clip->p3().y() - rect.y()) / rect.height()); |
| uvs[6] = ((clip->p4().x() - rect.x()) / rect.width()); |
| uvs[7] = ((clip->p4().y() - rect.y()) / rect.height()); |
| return true; |
| } |
| |
| gfx::Rect GLRenderer::GetBackdropBoundingBoxForRenderPassQuad( |
| DrawingFrame* frame, |
| const RenderPassDrawQuad* quad, |
| const gfx::Transform& contents_device_transform, |
| const gfx::QuadF* clip_region, |
| bool use_aa) { |
| gfx::QuadF scaled_region; |
| if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) { |
| scaled_region = SharedGeometryQuad().BoundingBox(); |
| } |
| |
| gfx::Rect backdrop_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect( |
| contents_device_transform, scaled_region.BoundingBox())); |
| |
| if (ShouldApplyBackgroundFilters(frame, quad)) { |
| int top, right, bottom, left; |
| quad->background_filters.GetOutsets(&top, &right, &bottom, &left); |
| backdrop_rect.Inset(-left, -top, -right, -bottom); |
| } |
| |
| if (!backdrop_rect.IsEmpty() && use_aa) { |
| const int kOutsetForAntialiasing = 1; |
| backdrop_rect.Inset(-kOutsetForAntialiasing, -kOutsetForAntialiasing); |
| } |
| |
| backdrop_rect.Intersect(MoveFromDrawToWindowSpace( |
| frame, frame->current_render_pass->output_rect)); |
| return backdrop_rect; |
| } |
| |
| scoped_ptr<ScopedResource> GLRenderer::GetBackdropTexture( |
| const gfx::Rect& bounding_rect) { |
| scoped_ptr<ScopedResource> device_background_texture = |
| ScopedResource::Create(resource_provider_); |
| // CopyTexImage2D fails when called on a texture having immutable storage. |
| device_background_texture->Allocate( |
| bounding_rect.size(), ResourceProvider::TEXTURE_HINT_DEFAULT, RGBA_8888); |
| { |
| ResourceProvider::ScopedWriteLockGL lock(resource_provider_, |
| device_background_texture->id()); |
| GetFramebufferTexture( |
| lock.texture_id(), device_background_texture->format(), bounding_rect); |
| } |
| return device_background_texture.Pass(); |
| } |
| |
| skia::RefPtr<SkImage> GLRenderer::ApplyBackgroundFilters( |
| DrawingFrame* frame, |
| const RenderPassDrawQuad* quad, |
| ScopedResource* background_texture) { |
| DCHECK(ShouldApplyBackgroundFilters(frame, quad)); |
| skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter( |
| quad->background_filters, background_texture->size()); |
| |
| skia::RefPtr<SkImage> background_with_filters = ApplyImageFilter( |
| ScopedUseGrContext::Create(this, frame), resource_provider_, quad->rect, |
| quad->filters_scale, filter.get(), background_texture); |
| return background_with_filters; |
| } |
| |
| void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame, |
| const RenderPassDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| ScopedResource* contents_texture = |
| render_pass_textures_.get(quad->render_pass_id); |
| if (!contents_texture || !contents_texture->id()) |
| return; |
| |
| gfx::Transform quad_rect_matrix; |
| QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect); |
| gfx::Transform contents_device_transform = |
| frame->window_matrix * frame->projection_matrix * quad_rect_matrix; |
| contents_device_transform.FlattenTo2d(); |
| |
| // Can only draw surface if device matrix is invertible. |
| if (!contents_device_transform.IsInvertible()) |
| return; |
| |
| gfx::QuadF surface_quad = SharedGeometryQuad(); |
| float edge[24]; |
| bool use_aa = settings_->allow_antialiasing && |
| ShouldAntialiasQuad(contents_device_transform, quad, |
| settings_->force_antialiasing); |
| |
| SetupQuadForClippingAndAntialiasing(contents_device_transform, quad, use_aa, |
| clip_region, &surface_quad, edge); |
| SkXfermode::Mode blend_mode = quad->shared_quad_state->blend_mode; |
| bool use_shaders_for_blending = |
| !CanApplyBlendModeUsingBlendFunc(blend_mode) || |
| ShouldApplyBackgroundFilters(frame, quad) || |
| settings_->force_blending_with_shaders; |
| |
| scoped_ptr<ScopedResource> background_texture; |
| skia::RefPtr<SkImage> background_image; |
| gfx::Rect background_rect; |
| if (use_shaders_for_blending) { |
| // Compute a bounding box around the pixels that will be visible through |
| // the quad. |
| background_rect = GetBackdropBoundingBoxForRenderPassQuad( |
| frame, quad, contents_device_transform, clip_region, use_aa); |
| |
| if (!background_rect.IsEmpty()) { |
| // The pixels from the filtered background should completely replace the |
| // current pixel values. |
| if (blend_enabled()) |
| SetBlendEnabled(false); |
| |
| // Read the pixels in the bounding box into a buffer R. |
| // This function allocates a texture, which should contribute to the |
| // amount of memory used by render surfaces: |
| // LayerTreeHost::CalculateMemoryForRenderSurfaces. |
| background_texture = GetBackdropTexture(background_rect); |
| |
| if (ShouldApplyBackgroundFilters(frame, quad) && background_texture) { |
| // Apply the background filters to R, so that it is applied in the |
| // pixels' coordinate space. |
| background_image = |
| ApplyBackgroundFilters(frame, quad, background_texture.get()); |
| } |
| } |
| |
| if (!background_texture) { |
| // Something went wrong with reading the backdrop. |
| DCHECK(!background_image); |
| use_shaders_for_blending = false; |
| } else if (background_image) { |
| // Reset original background texture if there is not any mask |
| if (!quad->mask_resource_id) |
| background_texture.reset(); |
| } else if (CanApplyBlendModeUsingBlendFunc(blend_mode) && |
| ShouldApplyBackgroundFilters(frame, quad)) { |
| // Something went wrong with applying background filters to the backdrop. |
| use_shaders_for_blending = false; |
| background_texture.reset(); |
| } |
| } |
| // Need original background texture for mask? |
| bool mask_for_background = |
| background_texture && // Have original background texture |
| background_image && // Have filtered background texture |
| quad->mask_resource_id; // Have mask texture |
| SetBlendEnabled( |
| !use_shaders_for_blending && |
| (quad->ShouldDrawWithBlending() || !IsDefaultBlendMode(blend_mode))); |
| |
| // TODO(senorblanco): Cache this value so that we don't have to do it for both |
| // the surface and its replica. Apply filters to the contents texture. |
| skia::RefPtr<SkImage> filter_image; |
| SkScalar color_matrix[20]; |
| bool use_color_matrix = false; |
| if (!quad->filters.IsEmpty()) { |
| skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter( |
| quad->filters, contents_texture->size()); |
| if (filter) { |
| skia::RefPtr<SkColorFilter> cf; |
| |
| { |
| SkColorFilter* colorfilter_rawptr = NULL; |
| filter->asColorFilter(&colorfilter_rawptr); |
| cf = skia::AdoptRef(colorfilter_rawptr); |
| } |
| |
| if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) { |
| // We have a single color matrix as a filter; apply it locally |
| // in the compositor. |
| use_color_matrix = true; |
| } else { |
| filter_image = ApplyImageFilter( |
| ScopedUseGrContext::Create(this, frame), resource_provider_, |
| quad->rect, quad->filters_scale, filter.get(), contents_texture); |
| } |
| } |
| } |
| |
| scoped_ptr<ResourceProvider::ScopedSamplerGL> mask_resource_lock; |
| unsigned mask_texture_id = 0; |
| SamplerType mask_sampler = SAMPLER_TYPE_NA; |
| if (quad->mask_resource_id) { |
| mask_resource_lock.reset(new ResourceProvider::ScopedSamplerGL( |
| resource_provider_, quad->mask_resource_id, GL_TEXTURE1, GL_LINEAR)); |
| mask_texture_id = mask_resource_lock->texture_id(); |
| mask_sampler = SamplerTypeFromTextureTarget(mask_resource_lock->target()); |
| } |
| |
| scoped_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock; |
| if (filter_image) { |
| GrTexture* texture = filter_image->getTexture(); |
| DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); |
| gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle()); |
| } else { |
| contents_resource_lock = |
| make_scoped_ptr(new ResourceProvider::ScopedSamplerGL( |
| resource_provider_, contents_texture->id(), GL_LINEAR)); |
| DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), |
| contents_resource_lock->target()); |
| } |
| |
| if (!use_shaders_for_blending) { |
| if (!use_blend_equation_advanced_coherent_ && use_blend_equation_advanced_) |
| GLC(gl_, gl_->BlendBarrierKHR()); |
| |
| ApplyBlendModeUsingBlendFunc(blend_mode); |
| } |
| |
| TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( |
| gl_, |
| &highp_threshold_cache_, |
| highp_threshold_min_, |
| quad->shared_quad_state->visible_content_rect.bottom_right()); |
| |
| ShaderLocations locations; |
| |
| DCHECK_EQ(background_texture || background_image, use_shaders_for_blending); |
| BlendMode shader_blend_mode = use_shaders_for_blending |
| ? BlendModeFromSkXfermode(blend_mode) |
| : BLEND_MODE_NONE; |
| |
| if (use_aa && mask_texture_id && !use_color_matrix) { |
| const RenderPassMaskProgramAA* program = GetRenderPassMaskProgramAA( |
| tex_coord_precision, mask_sampler, |
| shader_blend_mode, mask_for_background); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } else if (!use_aa && mask_texture_id && !use_color_matrix) { |
| const RenderPassMaskProgram* program = GetRenderPassMaskProgram( |
| tex_coord_precision, mask_sampler, |
| shader_blend_mode, mask_for_background); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } else if (use_aa && !mask_texture_id && !use_color_matrix) { |
| const RenderPassProgramAA* program = |
| GetRenderPassProgramAA(tex_coord_precision, shader_blend_mode); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } else if (use_aa && mask_texture_id && use_color_matrix) { |
| const RenderPassMaskColorMatrixProgramAA* program = |
| GetRenderPassMaskColorMatrixProgramAA( |
| tex_coord_precision, mask_sampler, |
| shader_blend_mode, mask_for_background); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } else if (use_aa && !mask_texture_id && use_color_matrix) { |
| const RenderPassColorMatrixProgramAA* program = |
| GetRenderPassColorMatrixProgramAA(tex_coord_precision, |
| shader_blend_mode); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } else if (!use_aa && mask_texture_id && use_color_matrix) { |
| const RenderPassMaskColorMatrixProgram* program = |
| GetRenderPassMaskColorMatrixProgram( |
| tex_coord_precision, mask_sampler, |
| shader_blend_mode, mask_for_background); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } else if (!use_aa && !mask_texture_id && use_color_matrix) { |
| const RenderPassColorMatrixProgram* program = |
| GetRenderPassColorMatrixProgram(tex_coord_precision, shader_blend_mode); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } else { |
| const RenderPassProgram* program = |
| GetRenderPassProgram(tex_coord_precision, shader_blend_mode); |
| SetUseProgram(program->program()); |
| program->vertex_shader().FillLocations(&locations); |
| program->fragment_shader().FillLocations(&locations); |
| GLC(gl_, gl_->Uniform1i(locations.sampler, 0)); |
| } |
| float tex_scale_x = |
| quad->rect.width() / static_cast<float>(contents_texture->size().width()); |
| float tex_scale_y = quad->rect.height() / |
| static_cast<float>(contents_texture->size().height()); |
| DCHECK_LE(tex_scale_x, 1.0f); |
| DCHECK_LE(tex_scale_y, 1.0f); |
| |
| DCHECK(locations.tex_transform != -1 || IsContextLost()); |
| // Flip the content vertically in the shader, as the RenderPass input |
| // texture is already oriented the same way as the framebuffer, but the |
| // projection transform does a flip. |
| GLC(gl_, |
| gl_->Uniform4f(locations.tex_transform, |
| 0.0f, |
| tex_scale_y, |
| tex_scale_x, |
| -tex_scale_y)); |
| |
| GLint last_texture_unit = 0; |
| if (locations.mask_sampler != -1) { |
| DCHECK_NE(locations.mask_tex_coord_scale, 1); |
| DCHECK_NE(locations.mask_tex_coord_offset, 1); |
| GLC(gl_, gl_->Uniform1i(locations.mask_sampler, 1)); |
| |
| gfx::RectF mask_uv_rect = quad->MaskUVRect(); |
| if (mask_sampler != SAMPLER_TYPE_2D) { |
| mask_uv_rect.Scale(quad->mask_texture_size.width(), |
| quad->mask_texture_size.height()); |
| } |
| |
| // Mask textures are oriented vertically flipped relative to the framebuffer |
| // and the RenderPass contents texture, so we flip the tex coords from the |
| // RenderPass texture to find the mask texture coords. |
| GLC(gl_, |
| gl_->Uniform2f(locations.mask_tex_coord_offset, |
| mask_uv_rect.x(), |
| mask_uv_rect.bottom())); |
| GLC(gl_, |
| gl_->Uniform2f(locations.mask_tex_coord_scale, |
| mask_uv_rect.width() / tex_scale_x, |
| -mask_uv_rect.height() / tex_scale_y)); |
| |
| last_texture_unit = 1; |
| } |
| |
| if (locations.edge != -1) |
| GLC(gl_, gl_->Uniform3fv(locations.edge, 8, edge)); |
| |
| if (locations.viewport != -1) { |
| float viewport[4] = {static_cast<float>(viewport_.x()), |
| static_cast<float>(viewport_.y()), |
| static_cast<float>(viewport_.width()), |
| static_cast<float>(viewport_.height()), }; |
| GLC(gl_, gl_->Uniform4fv(locations.viewport, 1, viewport)); |
| } |
| |
| if (locations.color_matrix != -1) { |
| float matrix[16]; |
| for (int i = 0; i < 4; ++i) { |
| for (int j = 0; j < 4; ++j) |
| matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]); |
| } |
| GLC(gl_, |
| gl_->UniformMatrix4fv(locations.color_matrix, 1, false, matrix)); |
| } |
| static const float kScale = 1.0f / 255.0f; |
| if (locations.color_offset != -1) { |
| float offset[4]; |
| for (int i = 0; i < 4; ++i) |
| offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale; |
| |
| GLC(gl_, gl_->Uniform4fv(locations.color_offset, 1, offset)); |
| } |
| |
| scoped_ptr<ResourceProvider::ScopedSamplerGL> shader_background_sampler_lock; |
| if (locations.backdrop != -1) { |
| DCHECK(background_texture || background_image); |
| DCHECK_NE(locations.backdrop, 0); |
| DCHECK_NE(locations.backdrop_rect, 0); |
| |
| GLC(gl_, gl_->Uniform1i(locations.backdrop, ++last_texture_unit)); |
| |
| GLC(gl_, |
| gl_->Uniform4f(locations.backdrop_rect, |
| background_rect.x(), |
| background_rect.y(), |
| background_rect.width(), |
| background_rect.height())); |
| |
| if (background_image) { |
| GrTexture* texture = background_image->getTexture(); |
| GLC(gl_, gl_->ActiveTexture(GL_TEXTURE0 + last_texture_unit)); |
| gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle()); |
| GLC(gl_, gl_->ActiveTexture(GL_TEXTURE0)); |
| if (mask_for_background) |
| GLC(gl_, gl_->Uniform1i(locations.original_backdrop, |
| ++last_texture_unit)); |
| } |
| if (background_texture) { |
| shader_background_sampler_lock = make_scoped_ptr( |
| new ResourceProvider::ScopedSamplerGL(resource_provider_, |
| background_texture->id(), |
| GL_TEXTURE0 + last_texture_unit, |
| GL_LINEAR)); |
| DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), |
| shader_background_sampler_lock->target()); |
| } |
| } |
| |
| SetShaderOpacity(quad->opacity(), locations.alpha); |
| SetShaderQuadF(surface_quad, locations.quad); |
| DrawQuadGeometry( |
| frame, quad->quadTransform(), quad->rect, locations.matrix); |
| |
| // Flush the compositor context before the filter bitmap goes out of |
| // scope, so the draw gets processed before the filter texture gets deleted. |
| if (filter_image) |
| GLC(gl_, gl_->Flush()); |
| |
| if (!use_shaders_for_blending) |
| RestoreBlendFuncToDefault(blend_mode); |
| } |
| |
| struct SolidColorProgramUniforms { |
| unsigned program; |
| unsigned matrix_location; |
| unsigned viewport_location; |
| unsigned quad_location; |
| unsigned edge_location; |
| unsigned color_location; |
| }; |
| |
| template <class T> |
| static void SolidColorUniformLocation(T program, |
| SolidColorProgramUniforms* uniforms) { |
| uniforms->program = program->program(); |
| uniforms->matrix_location = program->vertex_shader().matrix_location(); |
| uniforms->viewport_location = program->vertex_shader().viewport_location(); |
| uniforms->quad_location = program->vertex_shader().quad_location(); |
| uniforms->edge_location = program->vertex_shader().edge_location(); |
| uniforms->color_location = program->fragment_shader().color_location(); |
| } |
| |
| namespace { |
| // These functions determine if a quad, clipped by a clip_region contains |
| // the entire {top|bottom|left|right} edge. |
| bool is_top(const gfx::QuadF* clip_region, const DrawQuad* quad) { |
| if (!quad->IsTopEdge()) |
| return false; |
| if (!clip_region) |
| return true; |
| |
| return std::abs(clip_region->p1().y()) < kAntiAliasingEpsilon && |
| std::abs(clip_region->p2().y()) < kAntiAliasingEpsilon; |
| } |
| |
| bool is_bottom(const gfx::QuadF* clip_region, const DrawQuad* quad) { |
| if (!quad->IsBottomEdge()) |
| return false; |
| if (!clip_region) |
| return true; |
| |
| return std::abs(clip_region->p3().y() - |
| quad->shared_quad_state->content_bounds.height()) < |
| kAntiAliasingEpsilon && |
| std::abs(clip_region->p4().y() - |
| quad->shared_quad_state->content_bounds.height()) < |
| kAntiAliasingEpsilon; |
| } |
| |
| bool is_left(const gfx::QuadF* clip_region, const DrawQuad* quad) { |
| if (!quad->IsLeftEdge()) |
| return false; |
| if (!clip_region) |
| return true; |
| |
| return std::abs(clip_region->p1().x()) < kAntiAliasingEpsilon && |
| std::abs(clip_region->p4().x()) < kAntiAliasingEpsilon; |
| } |
| |
| bool is_right(const gfx::QuadF* clip_region, const DrawQuad* quad) { |
| if (!quad->IsRightEdge()) |
| return false; |
| if (!clip_region) |
| return true; |
| |
| return std::abs(clip_region->p2().x() - |
| quad->shared_quad_state->content_bounds.width()) < |
| kAntiAliasingEpsilon && |
| std::abs(clip_region->p3().x() - |
| quad->shared_quad_state->content_bounds.width()) < |
| kAntiAliasingEpsilon; |
| } |
| } // anonymous namespace |
| |
| static gfx::QuadF GetDeviceQuadWithAntialiasingOnExteriorEdges( |
| const LayerQuad& device_layer_edges, |
| const gfx::Transform& device_transform, |
| const gfx::QuadF* clip_region, |
| const DrawQuad* quad) { |
| gfx::RectF tile_rect = quad->visible_rect; |
| gfx::QuadF tile_quad(tile_rect); |
| |
| if (clip_region) { |
| if (quad->material != DrawQuad::RENDER_PASS) { |
| tile_quad = *clip_region; |
| } else { |
| GetScaledRegion(quad->rect, clip_region, &tile_quad); |
| } |
| } |
| |
| gfx::PointF bottom_right = tile_quad.p3(); |
| gfx::PointF bottom_left = tile_quad.p4(); |
| gfx::PointF top_left = tile_quad.p1(); |
| gfx::PointF top_right = tile_quad.p2(); |
| bool clipped = false; |
| |
| // Map points to device space. We ignore |clipped|, since the result of |
| // |MapPoint()| still produces a valid point to draw the quad with. When |
| // clipped, the point will be outside of the viewport. See crbug.com/416367. |
| bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped); |
| bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped); |
| top_left = MathUtil::MapPoint(device_transform, top_left, &clipped); |
| top_right = MathUtil::MapPoint(device_transform, top_right, &clipped); |
| |
| LayerQuad::Edge bottom_edge(bottom_right, bottom_left); |
| LayerQuad::Edge left_edge(bottom_left, top_left); |
| LayerQuad::Edge top_edge(top_left, top_right); |
| LayerQuad::Edge right_edge(top_right, bottom_right); |
| |
| // Only apply anti-aliasing to edges not clipped by culling or scissoring. |
| // If an edge is degenerate we do not want to replace it with a "proper" edge |
| // as that will cause the quad to possibly expand is strange ways. |
| if (!top_edge.degenerate() && is_top(clip_region, quad) && |
| tile_rect.y() == quad->rect.y()) { |
| top_edge = device_layer_edges.top(); |
| } |
| if (!left_edge.degenerate() && is_left(clip_region, quad) && |
| tile_rect.x() == quad->rect.x()) { |
| left_edge = device_layer_edges.left(); |
| } |
| if (!right_edge.degenerate() && is_right(clip_region, quad) && |
| tile_rect.right() == quad->rect.right()) { |
| right_edge = device_layer_edges.right(); |
| } |
| if (!bottom_edge.degenerate() && is_bottom(clip_region, quad) && |
| tile_rect.bottom() == quad->rect.bottom()) { |
| bottom_edge = device_layer_edges.bottom(); |
| } |
| |
| float sign = tile_quad.IsCounterClockwise() ? -1 : 1; |
| bottom_edge.scale(sign); |
| left_edge.scale(sign); |
| top_edge.scale(sign); |
| right_edge.scale(sign); |
| |
| // Create device space quad. |
| return LayerQuad(left_edge, top_edge, right_edge, bottom_edge).ToQuadF(); |
| } |
| |
| float GetTotalQuadError(const gfx::QuadF* clipped_quad, |
| const gfx::QuadF* ideal_rect) { |
| return (clipped_quad->p1() - ideal_rect->p1()).LengthSquared() + |
| (clipped_quad->p2() - ideal_rect->p2()).LengthSquared() + |
| (clipped_quad->p3() - ideal_rect->p3()).LengthSquared() + |
| (clipped_quad->p4() - ideal_rect->p4()).LengthSquared(); |
| } |
| |
| // Attempt to rotate the clipped quad until it lines up the most |
| // correctly. This is necessary because we check the edges of this |
| // quad against the expected left/right/top/bottom for anti-aliasing. |
| void AlignQuadToBoundingBox(gfx::QuadF* clipped_quad) { |
| gfx::QuadF bounding_quad = gfx::QuadF(clipped_quad->BoundingBox()); |
| gfx::QuadF best_rotation = *clipped_quad; |
| float least_error_amount = GetTotalQuadError(clipped_quad, &bounding_quad); |
| for (size_t i = 1; i < 4; ++i) { |
| clipped_quad->Realign(1); |
| float new_error = GetTotalQuadError(clipped_quad, &bounding_quad); |
| if (new_error < least_error_amount) { |
| least_error_amount = new_error; |
| best_rotation = *clipped_quad; |
| } |
| } |
| *clipped_quad = best_rotation; |
| } |
| |
| // static |
| bool GLRenderer::ShouldAntialiasQuad(const gfx::Transform& device_transform, |
| const DrawQuad* quad, |
| bool force_antialiasing) { |
| bool is_render_pass_quad = (quad->material == DrawQuad::RENDER_PASS); |
| // For render pass quads, |device_transform| already contains quad's rect. |
| // TODO(rosca@adobe.com): remove branching on is_render_pass_quad |
| // crbug.com/429702 |
| if (!is_render_pass_quad && !quad->IsEdge()) |
| return false; |
| gfx::RectF content_rect = |
| is_render_pass_quad ? QuadVertexRect() : quad->visibleContentRect(); |
| |
| bool clipped = false; |
| gfx::QuadF device_layer_quad = |
| MathUtil::MapQuad(device_transform, gfx::QuadF(content_rect), &clipped); |
| |
| if (device_layer_quad.BoundingBox().IsEmpty()) |
| return false; |
| |
| bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear(); |
| bool is_nearest_rect_within_epsilon = |
| is_axis_aligned_in_target && |
| gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(), |
| kAntiAliasingEpsilon); |
| // AAing clipped quads is not supported by the code yet. |
| bool use_aa = !clipped && !is_nearest_rect_within_epsilon; |
| return use_aa || force_antialiasing; |
| } |
| |
| // static |
| void GLRenderer::SetupQuadForClippingAndAntialiasing( |
| const gfx::Transform& device_transform, |
| const DrawQuad* quad, |
| bool use_aa, |
| const gfx::QuadF* clip_region, |
| gfx::QuadF* local_quad, |
| float edge[24]) { |
| bool is_render_pass_quad = (quad->material == DrawQuad::RENDER_PASS); |
| gfx::QuadF rotated_clip; |
| const gfx::QuadF* local_clip_region = clip_region; |
| if (local_clip_region) { |
| rotated_clip = *clip_region; |
| AlignQuadToBoundingBox(&rotated_clip); |
| local_clip_region = &rotated_clip; |
| } |
| |
| gfx::QuadF content_rect = is_render_pass_quad |
| ? gfx::QuadF(QuadVertexRect()) |
| : gfx::QuadF(quad->visibleContentRect()); |
| if (!use_aa) { |
| if (local_clip_region) { |
| if (!is_render_pass_quad) { |
| content_rect = *local_clip_region; |
| } else { |
| GetScaledRegion(quad->rect, local_clip_region, &content_rect); |
| } |
| *local_quad = content_rect; |
| } |
| return; |
| } |
| bool clipped = false; |
| gfx::QuadF device_layer_quad = |
| MathUtil::MapQuad(device_transform, content_rect, &clipped); |
| |
| LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox())); |
| device_layer_bounds.InflateAntiAliasingDistance(); |
| |
| LayerQuad device_layer_edges(device_layer_quad); |
| device_layer_edges.InflateAntiAliasingDistance(); |
| |
| device_layer_edges.ToFloatArray(edge); |
| device_layer_bounds.ToFloatArray(&edge[12]); |
| |
| // If we have a clip region then we are split, and therefore |
| // by necessity, at least one of our edges is not an external |
| // one. |
| bool is_full_rect = quad->visible_rect == quad->rect; |
| |
| bool region_contains_all_outside_edges = |
| is_full_rect && |
| (is_top(local_clip_region, quad) && is_left(local_clip_region, quad) && |
| is_bottom(local_clip_region, quad) && is_right(local_clip_region, quad)); |
| |
| bool use_aa_on_all_four_edges = |
| !local_clip_region && |
| (is_render_pass_quad || region_contains_all_outside_edges); |
| |
| gfx::QuadF device_quad = |
| use_aa_on_all_four_edges |
| ? device_layer_edges.ToQuadF() |
| : GetDeviceQuadWithAntialiasingOnExteriorEdges( |
| device_layer_edges, device_transform, local_clip_region, quad); |
| |
| // Map device space quad to local space. device_transform has no 3d |
| // component since it was flattened, so we don't need to project. We should |
| // have already checked that the transform was uninvertible above. |
| gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization); |
| bool did_invert = device_transform.GetInverse(&inverse_device_transform); |
| DCHECK(did_invert); |
| *local_quad = |
| MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped); |
| // We should not DCHECK(!clipped) here, because anti-aliasing inflation may |
| // cause device_quad to become clipped. To our knowledge this scenario does |
| // not need to be handled differently than the unclipped case. |
| } |
| |
| void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame, |
| const SolidColorDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| gfx::Rect tile_rect = quad->visible_rect; |
| |
| SkColor color = quad->color; |
| float opacity = quad->opacity(); |
| float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity; |
| |
| // Early out if alpha is small enough that quad doesn't contribute to output. |
| if (alpha < std::numeric_limits<float>::epsilon() && |
| quad->ShouldDrawWithBlending()) |
| return; |
| |
| gfx::Transform device_transform = |
| frame->window_matrix * frame->projection_matrix * quad->quadTransform(); |
| device_transform.FlattenTo2d(); |
| if (!device_transform.IsInvertible()) |
| return; |
| |
| bool force_aa = false; |
| gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect)); |
| float edge[24]; |
| bool use_aa = settings_->allow_antialiasing && |
| !quad->force_anti_aliasing_off && |
| ShouldAntialiasQuad(device_transform, quad, force_aa); |
| SetupQuadForClippingAndAntialiasing(device_transform, quad, use_aa, |
| clip_region, &local_quad, edge); |
| |
| SolidColorProgramUniforms uniforms; |
| if (use_aa) { |
| SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms); |
| } else { |
| SolidColorUniformLocation(GetSolidColorProgram(), &uniforms); |
| } |
| SetUseProgram(uniforms.program); |
| |
| GLC(gl_, |
| gl_->Uniform4f(uniforms.color_location, |
| (SkColorGetR(color) * (1.0f / 255.0f)) * alpha, |
| (SkColorGetG(color) * (1.0f / 255.0f)) * alpha, |
| (SkColorGetB(color) * (1.0f / 255.0f)) * alpha, |
| alpha)); |
| if (use_aa) { |
| float viewport[4] = {static_cast<float>(viewport_.x()), |
| static_cast<float>(viewport_.y()), |
| static_cast<float>(viewport_.width()), |
| static_cast<float>(viewport_.height()), }; |
| GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport)); |
| GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge)); |
| } |
| |
| // Enable blending when the quad properties require it or if we decided |
| // to use antialiasing. |
| SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa); |
| |
| // Normalize to tile_rect. |
| local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); |
| |
| SetShaderQuadF(local_quad, uniforms.quad_location); |
| |
| // The transform and vertex data are used to figure out the extents that the |
| // un-antialiased quad should have and which vertex this is and the float |
| // quad passed in via uniform is the actual geometry that gets used to draw |
| // it. This is why this centered rect is used and not the original quad_rect. |
| gfx::RectF centered_rect( |
| gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), |
| tile_rect.size()); |
| DrawQuadGeometry( |
| frame, quad->quadTransform(), centered_rect, uniforms.matrix_location); |
| } |
| |
| struct TileProgramUniforms { |
| unsigned program; |
| unsigned matrix_location; |
| unsigned viewport_location; |
| unsigned quad_location; |
| unsigned edge_location; |
| unsigned vertex_tex_transform_location; |
| unsigned sampler_location; |
| unsigned fragment_tex_transform_location; |
| unsigned alpha_location; |
| }; |
| |
| template <class T> |
| static void TileUniformLocation(T program, TileProgramUniforms* uniforms) { |
| uniforms->program = program->program(); |
| uniforms->matrix_location = program->vertex_shader().matrix_location(); |
| uniforms->viewport_location = program->vertex_shader().viewport_location(); |
| uniforms->quad_location = program->vertex_shader().quad_location(); |
| uniforms->edge_location = program->vertex_shader().edge_location(); |
| uniforms->vertex_tex_transform_location = |
| program->vertex_shader().vertex_tex_transform_location(); |
| |
| uniforms->sampler_location = program->fragment_shader().sampler_location(); |
| uniforms->alpha_location = program->fragment_shader().alpha_location(); |
| uniforms->fragment_tex_transform_location = |
| program->fragment_shader().fragment_tex_transform_location(); |
| } |
| |
| void GLRenderer::DrawTileQuad(const DrawingFrame* frame, |
| const TileDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| DrawContentQuad(frame, quad, quad->resource_id, clip_region); |
| } |
| |
| void GLRenderer::DrawContentQuad(const DrawingFrame* frame, |
| const ContentDrawQuadBase* quad, |
| ResourceProvider::ResourceId resource_id, |
| const gfx::QuadF* clip_region) { |
| gfx::Transform device_transform = |
| frame->window_matrix * frame->projection_matrix * quad->quadTransform(); |
| device_transform.FlattenTo2d(); |
| |
| bool use_aa = settings_->allow_antialiasing && |
| ShouldAntialiasQuad(device_transform, quad, false); |
| |
| // TODO(timav): simplify coordinate transformations in DrawContentQuadAA |
| // similar to the way DrawContentQuadNoAA works and then consider |
| // combining DrawContentQuadAA and DrawContentQuadNoAA into one method. |
| if (use_aa) |
| DrawContentQuadAA(frame, quad, resource_id, device_transform, clip_region); |
| else |
| DrawContentQuadNoAA(frame, quad, resource_id, clip_region); |
| } |
| |
| void GLRenderer::DrawContentQuadAA(const DrawingFrame* frame, |
| const ContentDrawQuadBase* quad, |
| ResourceProvider::ResourceId resource_id, |
| const gfx::Transform& device_transform, |
| const gfx::QuadF* clip_region) { |
| if (!device_transform.IsInvertible()) |
| return; |
| |
| gfx::Rect tile_rect = quad->visible_rect; |
| |
| gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional( |
| quad->tex_coord_rect, quad->rect, tile_rect); |
| float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width(); |
| float tex_to_geom_scale_y = |
| quad->rect.height() / quad->tex_coord_rect.height(); |
| |
| gfx::RectF clamp_geom_rect(tile_rect); |
| gfx::RectF clamp_tex_rect(tex_coord_rect); |
| // Clamp texture coordinates to avoid sampling outside the layer |
| // by deflating the tile region half a texel or half a texel |
| // minus epsilon for one pixel layers. The resulting clamp region |
| // is mapped to the unit square by the vertex shader and mapped |
| // back to normalized texture coordinates by the fragment shader |
| // after being clamped to 0-1 range. |
| float tex_clamp_x = |
| std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon); |
| float tex_clamp_y = |
| std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon); |
| float geom_clamp_x = |
| std::min(tex_clamp_x * tex_to_geom_scale_x, |
| 0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon); |
| float geom_clamp_y = |
| std::min(tex_clamp_y * tex_to_geom_scale_y, |
| 0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon); |
| clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y); |
| clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y); |
| |
| // Map clamping rectangle to unit square. |
| float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width(); |
| float vertex_tex_translate_y = |
| -clamp_geom_rect.y() / clamp_geom_rect.height(); |
| float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width(); |
| float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height(); |
| |
| TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( |
| gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size); |
| |
| gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect)); |
| float edge[24]; |
| SetupQuadForClippingAndAntialiasing(device_transform, quad, true, clip_region, |
| &local_quad, edge); |
| ResourceProvider::ScopedSamplerGL quad_resource_lock( |
| resource_provider_, resource_id, |
| quad->nearest_neighbor ? GL_NEAREST : GL_LINEAR); |
| SamplerType sampler = |
| SamplerTypeFromTextureTarget(quad_resource_lock.target()); |
| |
| float fragment_tex_translate_x = clamp_tex_rect.x(); |
| float fragment_tex_translate_y = clamp_tex_rect.y(); |
| float fragment_tex_scale_x = clamp_tex_rect.width(); |
| float fragment_tex_scale_y = clamp_tex_rect.height(); |
| |
| // Map to normalized texture coordinates. |
| if (sampler != SAMPLER_TYPE_2D_RECT) { |
| gfx::Size texture_size = quad->texture_size; |
| DCHECK(!texture_size.IsEmpty()); |
| fragment_tex_translate_x /= texture_size.width(); |
| fragment_tex_translate_y /= texture_size.height(); |
| fragment_tex_scale_x /= texture_size.width(); |
| fragment_tex_scale_y /= texture_size.height(); |
| } |
| |
| TileProgramUniforms uniforms; |
| if (quad->swizzle_contents) { |
| TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler), |
| &uniforms); |
| } else { |
| TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler), |
| &uniforms); |
| } |
| |
| SetUseProgram(uniforms.program); |
| GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0)); |
| |
| float viewport[4] = { |
| static_cast<float>(viewport_.x()), |
| static_cast<float>(viewport_.y()), |
| static_cast<float>(viewport_.width()), |
| static_cast<float>(viewport_.height()), |
| }; |
| GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport)); |
| GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge)); |
| |
| GLC(gl_, |
| gl_->Uniform4f(uniforms.vertex_tex_transform_location, |
| vertex_tex_translate_x, |
| vertex_tex_translate_y, |
| vertex_tex_scale_x, |
| vertex_tex_scale_y)); |
| GLC(gl_, |
| gl_->Uniform4f(uniforms.fragment_tex_transform_location, |
| fragment_tex_translate_x, |
| fragment_tex_translate_y, |
| fragment_tex_scale_x, |
| fragment_tex_scale_y)); |
| |
| // Blending is required for antialiasing. |
| SetBlendEnabled(true); |
| |
| // Normalize to tile_rect. |
| local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); |
| |
| SetShaderOpacity(quad->opacity(), uniforms.alpha_location); |
| SetShaderQuadF(local_quad, uniforms.quad_location); |
| |
| // The transform and vertex data are used to figure out the extents that the |
| // un-antialiased quad should have and which vertex this is and the float |
| // quad passed in via uniform is the actual geometry that gets used to draw |
| // it. This is why this centered rect is used and not the original quad_rect. |
| gfx::RectF centered_rect( |
| gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()), |
| tile_rect.size()); |
| DrawQuadGeometry( |
| frame, quad->quadTransform(), centered_rect, uniforms.matrix_location); |
| } |
| |
| void GLRenderer::DrawContentQuadNoAA(const DrawingFrame* frame, |
| const ContentDrawQuadBase* quad, |
| ResourceProvider::ResourceId resource_id, |
| const gfx::QuadF* clip_region) { |
| gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional( |
| quad->tex_coord_rect, quad->rect, quad->visible_rect); |
| float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width(); |
| float tex_to_geom_scale_y = |
| quad->rect.height() / quad->tex_coord_rect.height(); |
| |
| bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f); |
| GLenum filter = |
| (scaled || !quad->quadTransform().IsIdentityOrIntegerTranslation()) && |
| !quad->nearest_neighbor |
| ? GL_LINEAR |
| : GL_NEAREST; |
| |
| ResourceProvider::ScopedSamplerGL quad_resource_lock( |
| resource_provider_, resource_id, filter); |
| SamplerType sampler = |
| SamplerTypeFromTextureTarget(quad_resource_lock.target()); |
| |
| float vertex_tex_translate_x = tex_coord_rect.x(); |
| float vertex_tex_translate_y = tex_coord_rect.y(); |
| float vertex_tex_scale_x = tex_coord_rect.width(); |
| float vertex_tex_scale_y = tex_coord_rect.height(); |
| |
| // Map to normalized texture coordinates. |
| if (sampler != SAMPLER_TYPE_2D_RECT) { |
| gfx::Size texture_size = quad->texture_size; |
| DCHECK(!texture_size.IsEmpty()); |
| vertex_tex_translate_x /= texture_size.width(); |
| vertex_tex_translate_y /= texture_size.height(); |
| vertex_tex_scale_x /= texture_size.width(); |
| vertex_tex_scale_y /= texture_size.height(); |
| } |
| |
| TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( |
| gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size); |
| |
| TileProgramUniforms uniforms; |
| if (quad->ShouldDrawWithBlending()) { |
| if (quad->swizzle_contents) { |
| TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler), |
| &uniforms); |
| } else { |
| TileUniformLocation(GetTileProgram(tex_coord_precision, sampler), |
| &uniforms); |
| } |
| } else { |
| if (quad->swizzle_contents) { |
| TileUniformLocation( |
| GetTileProgramSwizzleOpaque(tex_coord_precision, sampler), &uniforms); |
| } else { |
| TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler), |
| &uniforms); |
| } |
| } |
| |
| SetUseProgram(uniforms.program); |
| GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0)); |
| |
| GLC(gl_, |
| gl_->Uniform4f(uniforms.vertex_tex_transform_location, |
| vertex_tex_translate_x, |
| vertex_tex_translate_y, |
| vertex_tex_scale_x, |
| vertex_tex_scale_y)); |
| |
| SetBlendEnabled(quad->ShouldDrawWithBlending()); |
| |
| SetShaderOpacity(quad->opacity(), uniforms.alpha_location); |
| |
| // Pass quad coordinates to the uniform in the same order as GeometryBinding |
| // does, then vertices will match the texture mapping in the vertex buffer. |
| // The method SetShaderQuadF() changes the order of vertices and so it's |
| // not used here. |
| gfx::QuadF tile_rect(quad->visible_rect); |
| float width = quad->visible_rect.width(); |
| float height = quad->visible_rect.height(); |
| gfx::PointF top_left = quad->visible_rect.origin(); |
| if (clip_region) { |
| tile_rect = *clip_region; |
| float gl_uv[8] = { |
| (tile_rect.p4().x() - top_left.x()) / width, |
| (tile_rect.p4().y() - top_left.y()) / height, |
| (tile_rect.p1().x() - top_left.x()) / width, |
| (tile_rect.p1().y() - top_left.y()) / height, |
| (tile_rect.p2().x() - top_left.x()) / width, |
| (tile_rect.p2().y() - top_left.y()) / height, |
| (tile_rect.p3().x() - top_left.x()) / width, |
| (tile_rect.p3().y() - top_left.y()) / height, |
| }; |
| PrepareGeometry(CLIPPED_BINDING); |
| clipped_geometry_->InitializeCustomQuadWithUVs( |
| gfx::QuadF(quad->visible_rect), gl_uv); |
| } else { |
| PrepareGeometry(SHARED_BINDING); |
| } |
| float gl_quad[8] = { |
| tile_rect.p4().x(), |
| tile_rect.p4().y(), |
| tile_rect.p1().x(), |
| tile_rect.p1().y(), |
| tile_rect.p2().x(), |
| tile_rect.p2().y(), |
| tile_rect.p3().x(), |
| tile_rect.p3().y(), |
| }; |
| GLC(gl_, gl_->Uniform2fv(uniforms.quad_location, 4, gl_quad)); |
| |
| static float gl_matrix[16]; |
| ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad->quadTransform()); |
| GLC(gl_, |
| gl_->UniformMatrix4fv(uniforms.matrix_location, 1, false, &gl_matrix[0])); |
| |
| GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0)); |
| } |
| |
| void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame, |
| const YUVVideoDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| SetBlendEnabled(quad->ShouldDrawWithBlending()); |
| |
| TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( |
| gl_, |
| &highp_threshold_cache_, |
| highp_threshold_min_, |
| quad->shared_quad_state->visible_content_rect.bottom_right()); |
| |
| bool use_alpha_plane = quad->a_plane_resource_id != 0; |
| |
| ResourceProvider::ScopedSamplerGL y_plane_lock( |
| resource_provider_, quad->y_plane_resource_id, GL_TEXTURE1, GL_LINEAR); |
| DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), y_plane_lock.target()); |
| ResourceProvider::ScopedSamplerGL u_plane_lock( |
| resource_provider_, quad->u_plane_resource_id, GL_TEXTURE2, GL_LINEAR); |
| DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), u_plane_lock.target()); |
| ResourceProvider::ScopedSamplerGL v_plane_lock( |
| resource_provider_, quad->v_plane_resource_id, GL_TEXTURE3, GL_LINEAR); |
| DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), v_plane_lock.target()); |
| scoped_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock; |
| if (use_alpha_plane) { |
| a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL( |
| resource_provider_, quad->a_plane_resource_id, GL_TEXTURE4, GL_LINEAR)); |
| DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), a_plane_lock->target()); |
| } |
| |
| int matrix_location = -1; |
| int tex_scale_location = -1; |
| int tex_offset_location = -1; |
| int clamp_rect_location = -1; |
| int y_texture_location = -1; |
| int u_texture_location = -1; |
| int v_texture_location = -1; |
| int a_texture_location = -1; |
| int yuv_matrix_location = -1; |
| int yuv_adj_location = -1; |
| int alpha_location = -1; |
| if (use_alpha_plane) { |
| const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision); |
| DCHECK(program && (program->initialized() || IsContextLost())); |
| SetUseProgram(program->program()); |
| matrix_location = program->vertex_shader().matrix_location(); |
| tex_scale_location = program->vertex_shader().tex_scale_location(); |
| tex_offset_location = program->vertex_shader().tex_offset_location(); |
| y_texture_location = program->fragment_shader().y_texture_location(); |
| u_texture_location = program->fragment_shader().u_texture_location(); |
| v_texture_location = program->fragment_shader().v_texture_location(); |
| a_texture_location = program->fragment_shader().a_texture_location(); |
| yuv_matrix_location = program->fragment_shader().yuv_matrix_location(); |
| yuv_adj_location = program->fragment_shader().yuv_adj_location(); |
| clamp_rect_location = program->fragment_shader().clamp_rect_location(); |
| alpha_location = program->fragment_shader().alpha_location(); |
| } else { |
| const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision); |
| DCHECK(program && (program->initialized() || IsContextLost())); |
| SetUseProgram(program->program()); |
| matrix_location = program->vertex_shader().matrix_location(); |
| tex_scale_location = program->vertex_shader().tex_scale_location(); |
| tex_offset_location = program->vertex_shader().tex_offset_location(); |
| y_texture_location = program->fragment_shader().y_texture_location(); |
| u_texture_location = program->fragment_shader().u_texture_location(); |
| v_texture_location = program->fragment_shader().v_texture_location(); |
| yuv_matrix_location = program->fragment_shader().yuv_matrix_location(); |
| yuv_adj_location = program->fragment_shader().yuv_adj_location(); |
| clamp_rect_location = program->fragment_shader().clamp_rect_location(); |
| alpha_location = program->fragment_shader().alpha_location(); |
| } |
| |
| GLC(gl_, |
| gl_->Uniform2f(tex_scale_location, |
| quad->tex_coord_rect.width(), |
| quad->tex_coord_rect.height())); |
| GLC(gl_, |
| gl_->Uniform2f(tex_offset_location, |
| quad->tex_coord_rect.x(), |
| quad->tex_coord_rect.y())); |
| // Clamping to half a texel inside the tex coord rect prevents bilinear |
| // filtering from filtering outside the tex coord rect. |
| gfx::RectF clamp_rect(quad->tex_coord_rect); |
| // Special case: empty texture size implies no clamping. |
| if (!quad->tex_size.IsEmpty()) { |
| clamp_rect.Inset(0.5f / quad->tex_size.width(), |
| 0.5f / quad->tex_size.height()); |
| } |
| GLC(gl_, gl_->Uniform4f(clamp_rect_location, clamp_rect.x(), clamp_rect.y(), |
| clamp_rect.right(), clamp_rect.bottom())); |
| |
| GLC(gl_, gl_->Uniform1i(y_texture_location, 1)); |
| GLC(gl_, gl_->Uniform1i(u_texture_location, 2)); |
| GLC(gl_, gl_->Uniform1i(v_texture_location, 3)); |
| if (use_alpha_plane) |
| GLC(gl_, gl_->Uniform1i(a_texture_location, 4)); |
| |
| // These values are magic numbers that are used in the transformation from YUV |
| // to RGB color values. They are taken from the following webpage: |
| // http://www.fourcc.org/fccyvrgb.php |
| float yuv_to_rgb_rec601[9] = { |
| 1.164f, 1.164f, 1.164f, 0.0f, -.391f, 2.018f, 1.596f, -.813f, 0.0f, |
| }; |
| float yuv_to_rgb_jpeg[9] = { |
| 1.f, 1.f, 1.f, 0.0f, -.34414f, 1.772f, 1.402f, -.71414f, 0.0f, |
| }; |
| float yuv_to_rgb_rec709[9] = { |
| 1.164f, 1.164f, 1.164f, 0.0f, -0.213f, 2.112f, 1.793f, -0.533f, 0.0f, |
| }; |
| |
| // These values map to 16, 128, and 128 respectively, and are computed |
| // as a fraction over 256 (e.g. 16 / 256 = 0.0625). |
| // They are used in the YUV to RGBA conversion formula: |
| // Y - 16 : Gives 16 values of head and footroom for overshooting |
| // U - 128 : Turns unsigned U into signed U [-128,127] |
| // V - 128 : Turns unsigned V into signed V [-128,127] |
| float yuv_adjust_constrained[3] = { |
| -0.0625f, -0.5f, -0.5f, |
| }; |
| |
| // Same as above, but without the head and footroom. |
| float yuv_adjust_full[3] = { |
| 0.0f, -0.5f, -0.5f, |
| }; |
| |
| float* yuv_to_rgb = NULL; |
| float* yuv_adjust = NULL; |
| |
| switch (quad->color_space) { |
| case YUVVideoDrawQuad::REC_601: |
| yuv_to_rgb = yuv_to_rgb_rec601; |
| yuv_adjust = yuv_adjust_constrained; |
| break; |
| case YUVVideoDrawQuad::REC_709: |
| yuv_to_rgb = yuv_to_rgb_rec709; |
| yuv_adjust = yuv_adjust_constrained; |
| break; |
| case YUVVideoDrawQuad::JPEG: |
| yuv_to_rgb = yuv_to_rgb_jpeg; |
| yuv_adjust = yuv_adjust_full; |
| break; |
| } |
| |
| // The transform and vertex data are used to figure out the extents that the |
| // un-antialiased quad should have and which vertex this is and the float |
| // quad passed in via uniform is the actual geometry that gets used to draw |
| // it. This is why this centered rect is used and not the original quad_rect. |
| gfx::RectF tile_rect = quad->rect; |
| GLC(gl_, gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb)); |
| GLC(gl_, gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust)); |
| |
| SetShaderOpacity(quad->opacity(), alpha_location); |
| if (!clip_region) { |
| DrawQuadGeometry(frame, quad->quadTransform(), tile_rect, matrix_location); |
| } else { |
| float uvs[8] = {0}; |
| GetScaledUVs(quad->visible_rect, clip_region, uvs); |
| gfx::QuadF region_quad = *clip_region; |
| region_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height()); |
| region_quad -= gfx::Vector2dF(0.5f, 0.5f); |
| DrawQuadGeometryClippedByQuadF(frame, quad->quadTransform(), tile_rect, |
| region_quad, matrix_location, uvs); |
| } |
| } |
| |
| void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame, |
| const StreamVideoDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| SetBlendEnabled(quad->ShouldDrawWithBlending()); |
| |
| static float gl_matrix[16]; |
| |
| DCHECK(capabilities_.using_egl_image); |
| |
| TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( |
| gl_, |
| &highp_threshold_cache_, |
| highp_threshold_min_, |
| quad->shared_quad_state->visible_content_rect.bottom_right()); |
| |
| const VideoStreamTextureProgram* program = |
| GetVideoStreamTextureProgram(tex_coord_precision); |
| SetUseProgram(program->program()); |
| |
| ToGLMatrix(&gl_matrix[0], quad->matrix); |
| GLC(gl_, |
| gl_->UniformMatrix4fv( |
| program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix)); |
| |
| ResourceProvider::ScopedReadLockGL lock(resource_provider_, |
| quad->resource_id); |
| DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); |
| GLC(gl_, gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id())); |
| |
| GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0)); |
| |
| SetShaderOpacity(quad->opacity(), |
| program->fragment_shader().alpha_location()); |
| if (!clip_region) { |
| DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, |
| program->vertex_shader().matrix_location()); |
| } else { |
| gfx::QuadF region_quad(*clip_region); |
| region_quad.Scale(1.0f / quad->rect.width(), 1.0f / quad->rect.height()); |
| region_quad -= gfx::Vector2dF(0.5f, 0.5f); |
| float uvs[8] = {0}; |
| GetScaledUVs(quad->visible_rect, clip_region, uvs); |
| DrawQuadGeometryClippedByQuadF( |
| frame, quad->quadTransform(), quad->rect, region_quad, |
| program->vertex_shader().matrix_location(), uvs); |
| } |
| } |
| |
| struct TextureProgramBinding { |
| template <class Program> |
| void Set(Program* program) { |
| DCHECK(program); |
| program_id = program->program(); |
| sampler_location = program->fragment_shader().sampler_location(); |
| matrix_location = program->vertex_shader().matrix_location(); |
| background_color_location = |
| program->fragment_shader().background_color_location(); |
| } |
| int program_id; |
| int sampler_location; |
| int matrix_location; |
| int transform_location; |
| int background_color_location; |
| }; |
| |
| struct TexTransformTextureProgramBinding : TextureProgramBinding { |
| template <class Program> |
| void Set(Program* program) { |
| TextureProgramBinding::Set(program); |
| tex_transform_location = program->vertex_shader().tex_transform_location(); |
| vertex_opacity_location = |
| program->vertex_shader().vertex_opacity_location(); |
| } |
| int tex_transform_location; |
| int vertex_opacity_location; |
| }; |
| |
| void GLRenderer::FlushTextureQuadCache(BoundGeometry flush_binding) { |
| // Check to see if we have anything to draw. |
| if (draw_cache_.program_id == -1) |
| return; |
| |
| PrepareGeometry(flush_binding); |
| |
| // Set the correct blending mode. |
| SetBlendEnabled(draw_cache_.needs_blending); |
| |
| // Bind the program to the GL state. |
| SetUseProgram(draw_cache_.program_id); |
| |
| // Bind the correct texture sampler location. |
| GLC(gl_, gl_->Uniform1i(draw_cache_.sampler_location, 0)); |
| |
| // Assume the current active textures is 0. |
| ResourceProvider::ScopedSamplerGL locked_quad( |
| resource_provider_, |
| draw_cache_.resource_id, |
| draw_cache_.nearest_neighbor ? GL_NEAREST : GL_LINEAR); |
| DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); |
| GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, locked_quad.texture_id())); |
| |
| static_assert(sizeof(Float4) == 4 * sizeof(float), |
| "Float4 struct should be densely packed"); |
| static_assert(sizeof(Float16) == 16 * sizeof(float), |
| "Float16 struct should be densely packed"); |
| |
| // Upload the tranforms for both points and uvs. |
| GLC(gl_, |
| gl_->UniformMatrix4fv( |
| static_cast<int>(draw_cache_.matrix_location), |
| static_cast<int>(draw_cache_.matrix_data.size()), |
| false, |
| reinterpret_cast<float*>(&draw_cache_.matrix_data.front()))); |
| GLC(gl_, |
| gl_->Uniform4fv( |
| static_cast<int>(draw_cache_.uv_xform_location), |
| static_cast<int>(draw_cache_.uv_xform_data.size()), |
| reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front()))); |
| |
| if (draw_cache_.background_color != SK_ColorTRANSPARENT) { |
| Float4 background_color = PremultipliedColor(draw_cache_.background_color); |
| GLC(gl_, |
| gl_->Uniform4fv( |
| draw_cache_.background_color_location, 1, background_color.data)); |
| } |
| |
| GLC(gl_, |
| gl_->Uniform1fv( |
| static_cast<int>(draw_cache_.vertex_opacity_location), |
| static_cast<int>(draw_cache_.vertex_opacity_data.size()), |
| static_cast<float*>(&draw_cache_.vertex_opacity_data.front()))); |
| |
| // Draw the quads! |
| GLC(gl_, |
| gl_->DrawElements(GL_TRIANGLES, |
| 6 * draw_cache_.matrix_data.size(), |
| GL_UNSIGNED_SHORT, |
| 0)); |
| |
| // Clear the cache. |
| draw_cache_.program_id = -1; |
| draw_cache_.uv_xform_data.resize(0); |
| draw_cache_.vertex_opacity_data.resize(0); |
| draw_cache_.matrix_data.resize(0); |
| |
| // If we had a clipped binding, prepare the shared binding for the |
| // next inserts. |
| if (flush_binding == CLIPPED_BINDING) { |
| PrepareGeometry(SHARED_BINDING); |
| } |
| } |
| |
| void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame, |
| const TextureDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| // If we have a clip_region then we have to render the next quad |
| // with dynamic geometry, therefore we must flush all pending |
| // texture quads. |
| if (clip_region) { |
| // We send in false here because we want to flush what's currently in the |
| // queue using the shared_geometry and not clipped_geometry |
| FlushTextureQuadCache(SHARED_BINDING); |
| } |
| |
| TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( |
| gl_, |
| &highp_threshold_cache_, |
| highp_threshold_min_, |
| quad->shared_quad_state->visible_content_rect.bottom_right()); |
| |
| // Choose the correct texture program binding |
| TexTransformTextureProgramBinding binding; |
| if (quad->premultiplied_alpha) { |
| if (quad->background_color == SK_ColorTRANSPARENT) { |
| binding.Set(GetTextureProgram(tex_coord_precision)); |
| } else { |
| binding.Set(GetTextureBackgroundProgram(tex_coord_precision)); |
| } |
| } else { |
| if (quad->background_color == SK_ColorTRANSPARENT) { |
| binding.Set(GetNonPremultipliedTextureProgram(tex_coord_precision)); |
| } else { |
| binding.Set( |
| GetNonPremultipliedTextureBackgroundProgram(tex_coord_precision)); |
| } |
| } |
| |
| int resource_id = quad->resource_id; |
| |
| if (draw_cache_.program_id != binding.program_id || |
| draw_cache_.resource_id != resource_id || |
| draw_cache_.needs_blending != quad->ShouldDrawWithBlending() || |
| draw_cache_.nearest_neighbor != quad->nearest_neighbor || |
| draw_cache_.background_color != quad->background_color || |
| draw_cache_.matrix_data.size() >= 8) { |
| FlushTextureQuadCache(SHARED_BINDING); |
| draw_cache_.program_id = binding.program_id; |
| draw_cache_.resource_id = resource_id; |
| draw_cache_.needs_blending = quad->ShouldDrawWithBlending(); |
| draw_cache_.nearest_neighbor = quad->nearest_neighbor; |
| draw_cache_.background_color = quad->background_color; |
| |
| draw_cache_.uv_xform_location = binding.tex_transform_location; |
| draw_cache_.background_color_location = binding.background_color_location; |
| draw_cache_.vertex_opacity_location = binding.vertex_opacity_location; |
| draw_cache_.matrix_location = binding.matrix_location; |
| draw_cache_.sampler_location = binding.sampler_location; |
| } |
| |
| // Generate the uv-transform |
| if (!clip_region) { |
| draw_cache_.uv_xform_data.push_back(UVTransform(quad)); |
| } else { |
| Float4 uv_transform = {{0.0f, 0.0f, 1.0f, 1.0f}}; |
| draw_cache_.uv_xform_data.push_back(uv_transform); |
| } |
| |
| // Generate the vertex opacity |
| const float opacity = quad->opacity(); |
| draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity); |
| draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity); |
| draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity); |
| draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity); |
| |
| // Generate the transform matrix |
| gfx::Transform quad_rect_matrix; |
| QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect); |
| quad_rect_matrix = frame->projection_matrix * quad_rect_matrix; |
| |
| Float16 m; |
| quad_rect_matrix.matrix().asColMajorf(m.data); |
| draw_cache_.matrix_data.push_back(m); |
| |
| if (clip_region) { |
| gfx::QuadF scaled_region; |
| if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) { |
| scaled_region = SharedGeometryQuad().BoundingBox(); |
| } |
| // Both the scaled region and the SharedGeomtryQuad are in the space |
| // -0.5->0.5. We need to move that to the space 0->1. |
| float uv[8]; |
| uv[0] = scaled_region.p1().x() + 0.5f; |
| uv[1] = scaled_region.p1().y() + 0.5f; |
| uv[2] = scaled_region.p2().x() + 0.5f; |
| uv[3] = scaled_region.p2().y() + 0.5f; |
| uv[4] = scaled_region.p3().x() + 0.5f; |
| uv[5] = scaled_region.p3().y() + 0.5f; |
| uv[6] = scaled_region.p4().x() + 0.5f; |
| uv[7] = scaled_region.p4().y() + 0.5f; |
| PrepareGeometry(CLIPPED_BINDING); |
| clipped_geometry_->InitializeCustomQuadWithUVs(scaled_region, uv); |
| FlushTextureQuadCache(CLIPPED_BINDING); |
| } |
| } |
| |
| void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame, |
| const IOSurfaceDrawQuad* quad, |
| const gfx::QuadF* clip_region) { |
| SetBlendEnabled(quad->ShouldDrawWithBlending()); |
| |
| TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired( |
| gl_, |
| &highp_threshold_cache_, |
| highp_threshold_min_, |
| quad->shared_quad_state->visible_content_rect.bottom_right()); |
| |
| TexTransformTextureProgramBinding binding; |
| binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision)); |
| |
| SetUseProgram(binding.program_id); |
| GLC(gl_, gl_->Uniform1i(binding.sampler_location, 0)); |
| if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) { |
| GLC(gl_, |
| gl_->Uniform4f(binding.tex_transform_location, |
| 0, |
| quad->io_surface_size.height(), |
| quad->io_surface_size.width(), |
| quad->io_surface_size.height() * -1.0f)); |
| } else { |
| GLC(gl_, |
| gl_->Uniform4f(binding.tex_transform_location, |
| 0, |
| 0, |
| quad->io_surface_size.width(), |
| quad->io_surface_size.height())); |
| } |
| |
| const float vertex_opacity[] = {quad->opacity(), quad->opacity(), |
| quad->opacity(), quad->opacity()}; |
| GLC(gl_, gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity)); |
| |
| ResourceProvider::ScopedReadLockGL lock(resource_provider_, |
| quad->io_surface_resource_id); |
| DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_)); |
| GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id())); |
| |
| if (!clip_region) { |
| DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, |
| binding.matrix_location); |
| } else { |
| float uvs[8] = {0}; |
| GetScaledUVs(quad->visible_rect, clip_region, uvs); |
| DrawQuadGeometryClippedByQuadF(frame, quad->quadTransform(), quad->rect, |
| *clip_region, binding.matrix_location, uvs); |
| } |
| |
| GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0)); |
| } |
| |
| void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) { |
| if (use_sync_query_) { |
| DCHECK(current_sync_query_); |
| current_sync_query_->End(); |
| pending_sync_queries_.push_back(current_sync_query_.Pass()); |
| } |
| |
| current_framebuffer_lock_ = nullptr; |
| swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect)); |
| |
| GLC(gl_, gl_->Disable(GL_BLEND)); |
| blend_shadow_ = false; |
| |
| ScheduleOverlays(frame); |
| } |
| |
| void GLRenderer::FinishDrawingQuadList() { |
| FlushTextureQuadCache(SHARED_BINDING); |
| } |
| |
| bool GLRenderer::FlippedFramebuffer(const DrawingFrame* frame) const { |
| if (frame->current_render_pass != frame->root_render_pass) |
| return true; |
| return FlippedRootFramebuffer(); |
| } |
| |
| bool GLRenderer::FlippedRootFramebuffer() const { |
| // GL is normally flipped, so a flipped output results in an unflipping. |
| return !output_surface_->capabilities().flipped_output_surface; |
| } |
| |
| void GLRenderer::EnsureScissorTestEnabled() { |
| if (is_scissor_enabled_) |
| return; |
| |
| FlushTextureQuadCache(SHARED_BINDING); |
| GLC(gl_, gl_->Enable(GL_SCISSOR_TEST)); |
| is_scissor_enabled_ = true; |
| } |
| |
| void GLRenderer::EnsureScissorTestDisabled() { |
| if (!is_scissor_enabled_) |
| return; |
| |
| FlushTextureQuadCache(SHARED_BINDING); |
| GLC(gl_, gl_->Disable(GL_SCISSOR_TEST)); |
| is_scissor_enabled_ = false; |
| } |
| |
| void GLRenderer::CopyCurrentRenderPassToBitmap( |
| DrawingFrame* frame, |
| scoped_ptr<CopyOutputRequest> request) { |
| TRACE_EVENT0("cc", "GLRenderer::CopyCurrentRenderPassToBitmap"); |
| gfx::Rect copy_rect = frame->current_render_pass->output_rect; |
| if (request->has_area()) |
| copy_rect.Intersect(request->area()); |
| GetFramebufferPixelsAsync(frame, copy_rect, request.Pass()); |
| } |
| |
| void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) { |
| transform.matrix().asColMajorf(gl_matrix); |
| } |
| |
| void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) { |
| if (quad_location == -1) |
| return; |
| |
| float gl_quad[8]; |
| gl_quad[0] = quad.p1().x(); |
| gl_quad[1] = quad.p1().y(); |
| gl_quad[2] = quad.p2().x(); |
| gl_quad[3] = quad.p2().y(); |
| gl_quad[4] = quad.p3().x(); |
| gl_quad[5] = quad.p3().y(); |
| gl_quad[6] = quad.p4().x(); |
| gl_quad[7] = quad.p4().y(); |
| GLC(gl_, gl_->Uniform2fv(quad_location, 4, gl_quad)); |
| } |
| |
| void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) { |
| if (alpha_location != -1) |
| GLC(gl_, gl_->Uniform1f(alpha_location, opacity)); |
| } |
| |
| void GLRenderer::SetStencilEnabled(bool enabled) { |
| if (enabled == stencil_shadow_) |
| return; |
| |
| if (enabled) |
| GLC(gl_, gl_->Enable(GL_STENCIL_TEST)); |
| else |
| GLC(gl_, gl_->Disable(GL_STENCIL_TEST)); |
| stencil_shadow_ = enabled; |
| } |
| |
| void GLRenderer::SetBlendEnabled(bool enabled) { |
| if (enabled == blend_shadow_) |
| return; |
| |
| if (enabled) |
| GLC(gl_, gl_->Enable(GL_BLEND)); |
| else |
| GLC(gl_, gl_->Disable(GL_BLEND)); |
| blend_shadow_ = enabled; |
| } |
| |
| void GLRenderer::SetUseProgram(unsigned program) { |
| if (program == program_shadow_) |
| return; |
| gl_->UseProgram(program); |
| program_shadow_ = program; |
| } |
| |
| void GLRenderer::DrawQuadGeometryClippedByQuadF( |
| const DrawingFrame* frame, |
| const gfx::Transform& draw_transform, |
| const gfx::RectF& quad_rect, |
| const gfx::QuadF& clipping_region_quad, |
| int matrix_location, |
| const float* uvs) { |
| PrepareGeometry(CLIPPED_BINDING); |
| if (uvs) { |
| clipped_geometry_->InitializeCustomQuadWithUVs(clipping_region_quad, uvs); |
| } else { |
| clipped_geometry_->InitializeCustomQuad(clipping_region_quad); |
| } |
| gfx::Transform quad_rect_matrix; |
| QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect); |
| static float gl_matrix[16]; |
| ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix); |
| GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0])); |
| |
| GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, |
| reinterpret_cast<const void*>(0))); |
| } |
| |
| void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame, |
| const gfx::Transform& draw_transform, |
| const gfx::RectF& quad_rect, |
| int matrix_location) { |
| PrepareGeometry(SHARED_BINDING); |
| gfx::Transform quad_rect_matrix; |
| QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect); |
| static float gl_matrix[16]; |
| ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix); |
| GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0])); |
| |
| GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0)); |
| } |
| |
| void GLRenderer::Finish() { |
| TRACE_EVENT0("cc", "GLRenderer::Finish"); |
| GLC(gl_, gl_->Finish()); |
| } |
| |
| void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) { |
| DCHECK(!is_backbuffer_discarded_); |
| |
| TRACE_EVENT0("cc,benchmark", "GLRenderer::SwapBuffers"); |
| // We're done! Time to swapbuffers! |
| |
| gfx::Size surface_size = output_surface_->SurfaceSize(); |
| |
| CompositorFrame compositor_frame; |
| compositor_frame.metadata = metadata; |
| compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData); |
| compositor_frame.gl_frame_data->size = surface_size; |
| if (capabilities_.using_partial_swap) { |
| // If supported, we can save significant bandwidth by only swapping the |
| // damaged/scissored region (clamped to the viewport). |
| swap_buffer_rect_.Intersect(gfx::Rect(surface_size)); |
| int flipped_y_pos_of_rect_bottom = surface_size.height() - |
| swap_buffer_rect_.y() - |
| swap_buffer_rect_.height(); |
| compositor_frame.gl_frame_data->sub_buffer_rect = |
| gfx::Rect(swap_buffer_rect_.x(), |
| FlippedRootFramebuffer() ? flipped_y_pos_of_rect_bottom |
| : swap_buffer_rect_.y(), |
| swap_buffer_rect_.width(), |
| swap_buffer_rect_.height()); |
| } else { |
| compositor_frame.gl_frame_data->sub_buffer_rect = |
| gfx::Rect(output_surface_->SurfaceSize()); |
| } |
| output_surface_->SwapBuffers(&compositor_frame); |
| |
| // Release previously used overlay resources and hold onto the pending ones |
| // until the next swap buffers. |
| in_use_overlay_resources_.clear(); |
| in_use_overlay_resources_.swap(pending_overlay_resources_); |
| |
| swap_buffer_rect_ = gfx::Rect(); |
| } |
| |
| void GLRenderer::EnforceMemoryPolicy() { |
| if (!visible()) { |
| TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources"); |
| ReleaseRenderPassTextures(); |
| DiscardBackbuffer(); |
| resource_provider_->ReleaseCachedData(); |
| output_surface_->context_provider()->DeleteCachedResources(); |
| GLC(gl_, gl_->Flush()); |
| } |
| PrepareGeometry(NO_BINDING); |
| } |
| |
| void GLRenderer::DiscardBackbuffer() { |
| if (is_backbuffer_discarded_) |
| return; |
| |
| output_surface_->DiscardBackbuffer(); |
| |
| is_backbuffer_discarded_ = true; |
| |
| // Damage tracker needs a full reset every time framebuffer is discarded. |
| client_->SetFullRootLayerDamage(); |
| } |
| |
| void GLRenderer::EnsureBackbuffer() { |
| if (!is_backbuffer_discarded_) |
| return; |
| |
| output_surface_->EnsureBackbuffer(); |
| is_backbuffer_discarded_ = false; |
| } |
| |
| void GLRenderer::GetFramebufferPixelsAsync( |
| const DrawingFrame* frame, |
| const gfx::Rect& rect, |
| scoped_ptr<CopyOutputRequest> request) { |
| DCHECK(!request->IsEmpty()); |
| if (request->IsEmpty()) |
| return; |
| if (rect.IsEmpty()) |
| return; |
| |
| gfx::Rect window_rect = MoveFromDrawToWindowSpace(frame, rect); |
| DCHECK_GE(window_rect.x(), 0); |
| DCHECK_GE(window_rect.y(), 0); |
| DCHECK_LE(window_rect.right(), current_surface_size_.width()); |
| DCHECK_LE(window_rect.bottom(), current_surface_size_.height()); |
| |
| if (!request->force_bitmap_result()) { |
| bool own_mailbox = !request->has_texture_mailbox(); |
| |
| GLuint texture_id = 0; |
| gpu::Mailbox mailbox; |
| if (own_mailbox) { |
| GLC(gl_, gl_->GenMailboxCHROMIUM(mailbox.name)); |
| gl_->GenTextures(1, &texture_id); |
| GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id)); |
| |
| GLC(gl_, |
| gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); |
| GLC(gl_, |
| gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); |
| GLC(gl_, |
| gl_->TexParameteri( |
| GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)); |
| GLC(gl_, |
| gl_->TexParameteri( |
| GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)); |
| GLC(gl_, gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name)); |
| } else { |
| mailbox = request->texture_mailbox().mailbox(); |
| DCHECK_EQ(static_cast<unsigned>(GL_TEXTURE_2D), |
| request->texture_mailbox().target()); |
| DCHECK(!mailbox.IsZero()); |
| unsigned incoming_sync_point = request->texture_mailbox().sync_point(); |
| if (incoming_sync_point) |
| GLC(gl_, gl_->WaitSyncPointCHROMIUM(incoming_sync_point)); |
| |
| texture_id = GLC( |
| gl_, |
| gl_->CreateAndConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name)); |
| } |
| GetFramebufferTexture(texture_id, RGBA_8888, window_rect); |
| |
| unsigned sync_point = gl_->InsertSyncPointCHROMIUM(); |
| TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point); |
| |
| scoped_ptr<SingleReleaseCallback> release_callback; |
| if (own_mailbox) { |
| GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0)); |
| release_callback = texture_mailbox_deleter_->GetReleaseCallback( |
| output_surface_->context_provider(), texture_id); |
| } else { |
| gl_->DeleteTextures(1, &texture_id); |
| } |
| |
| request->SendTextureResult( |
| window_rect.size(), texture_mailbox, release_callback.Pass()); |
| return; |
| } |
| |
| DCHECK(request->force_bitmap_result()); |
| |
| scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels); |
| pending_read->copy_request = request.Pass(); |
| pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(), |
| pending_read.Pass()); |
| |
| bool do_workaround = NeedsIOSurfaceReadbackWorkaround(); |
| |
| unsigned temporary_texture = 0; |
| unsigned temporary_fbo = 0; |
| |
| if (do_workaround) { |
| // On Mac OS X, calling glReadPixels() against an FBO whose color attachment |
| // is an IOSurface-backed texture causes corruption of future glReadPixels() |
| // calls, even those on different OpenGL contexts. It is believed that this |
| // is the root cause of top crasher |
| // http://crbug.com/99393. <rdar://problem/10949687> |
| |
| gl_->GenTextures(1, &temporary_texture); |
| GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, temporary_texture)); |
| GLC(gl_, |
| gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)); |
| GLC(gl_, |
| gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)); |
| GLC(gl_, |
| gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE)); |
| GLC(gl_, |
| gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE)); |
| // Copy the contents of the current (IOSurface-backed) framebuffer into a |
| // temporary texture. |
| GetFramebufferTexture( |
| temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_)); |
| gl_->GenFramebuffers(1, &temporary_fbo); |
| // Attach this texture to an FBO, and perform the readback from that FBO. |
| GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo)); |
| GLC(gl_, |
| gl_->FramebufferTexture2D(GL_FRAMEBUFFER, |
| GL_COLOR_ATTACHMENT0, |
| GL_TEXTURE_2D, |
| temporary_texture, |
| 0)); |
| |
| DCHECK_EQ(static_cast<unsigned>(GL_FRAMEBUFFER_COMPLETE), |
| gl_->CheckFramebufferStatus(GL_FRAMEBUFFER)); |
| } |
| |
| GLuint buffer = 0; |
| gl_->GenBuffers(1, &buffer); |
| GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer)); |
| GLC(gl_, |
| gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, |
| 4 * window_rect.size().GetArea(), |
| NULL, |
| GL_STREAM_READ)); |
| |
| GLuint query = 0; |
| gl_->GenQueriesEXT(1, &query); |
| GLC(gl_, gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query)); |
| |
| GLC(gl_, |
| gl_->ReadPixels(window_rect.x(), |
| window_rect.y(), |
| window_rect.width(), |
| window_rect.height(), |
| GL_RGBA, |
| GL_UNSIGNED_BYTE, |
| NULL)); |
| |
| GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0)); |
| |
| if (do_workaround) { |
| |