blob: 47d7407469eddd7d71730d0ea474c5c30d488d11 [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Defining IPC Messages
//
// Your IPC messages will be defined by macros inside of an XXX_messages.h
// header file. Most of the time, the system can automatically generate all
// of messaging mechanism from these definitions, but sometimes some manual
// coding is required. In these cases, you will also have an XXX_messages.cc
// implemation file as well.
//
// The senders of your messages will include your XXX_messages.h file to
// get the full set of definitions they need to send your messages.
//
// Each XXX_messages.h file must be registered with the IPC system. This
// requires adding two things:
// - An XXXMsgStart value to the IPCMessageStart enum in ipc_message_utils.h
// - An inclusion of XXX_messages.h file in a message generator .h file
//
// The XXXMsgStart value is an enumeration that ensures uniqueness for
// each different message file. Later, you will use this inside your
// XXX_messages.h file before invoking message declatation macros:
// #define IPC_MESSAGE_START XXXMsgStart
// ( ... your macro invocations go here ... )
//
// Message Generator Files
//
// A message generator .h header file pulls in all other message-declaring
// headers for a given component. It is included by a message generator
// .cc file, which is where all the generated code will wind up. Typically,
// you will use an existing generator (e.g. common_message_generator.cc
// in /chrome/common), but there are circumstances where you may add a
// new one.
//
// In the rare cicrucmstances where you can't re-use an existing file,
// your YYY_message_generator.cc file for a component YYY would contain
// the following code:
// // Get basic type definitions.
// #define IPC_MESSAGE_IMPL
// #include "path/to/YYY_message_generator.h"
// // Generate constructors.
// #include "ipc/struct_constructor_macros.h"
// #include "path/to/YYY_message_generator.h"
// // Generate destructors.
// #include "ipc/struct_destructor_macros.h"
// #include "path/to/YYY_message_generator.h"
// // Generate param traits write methods.
// #include "ipc/param_traits_write_macros.h"
// namespace IPC {
// #include "path/to/YYY_message_generator.h"
// } // namespace IPC
// // Generate param traits read methods.
// #include "ipc/param_traits_read_macros.h"
// namespace IPC {
// #include "path/to/YYY_message_generator.h"
// } // namespace IPC
// // Generate param traits log methods.
// #include "ipc/param_traits_log_macros.h"
// namespace IPC {
// #include "path/to/YYY_message_generator.h"
// } // namespace IPC
//
// In cases where manual generation is required, in your XXX_messages.cc
// file, put the following after all the includes for param types:
// #define IPC_MESSAGE_IMPL
// #include "XXX_messages.h"
// (... implementation of traits not auto-generated ...)
//
// Multiple Inclusion
//
// The XXX_messages.h file will be multiply-included by the
// YYY_message_generator.cc file, so your XXX_messages file can't be
// guarded in the usual manner. Ideally, there will be no need for any
// inclusion guard, since the XXX_messages.h file should consist soley
// of inclusions of other headers (which are self-guarding) and IPC
// macros (which are multiply evaluating).
//
// Note that there is no #pragma once either; doing so would mark the whole
// file as being singly-included. Since your XXX_messages.h file is only
// partially-guarded, care must be taken to ensure that it is only included
// by other .cc files (and the YYY_message_generator.h file). Including an
// XXX_messages.h file in some other .h file may result in duplicate
// declarations and a compilation failure.
//
// Type Declarations
//
// It is generally a bad idea to have type definitions in a XXX_messages.h
// file; most likely the typedef will then be used in the message, as opposed
// to the struct iself. Later, an IPC message dispatcher wil need to call
// a function taking that type, and that function is declared in some other
// header. Thus, in order to get the type definition, the other header
// would have to include the XXX_messages.h file, violating the rule above
// about not including XXX_messages.h file in other .h files.
//
// One approach here is to move these type definitions to another (guarded)
// .h file and include this second .h in your XXX_messages.h file. This
// is still less than ideal, because the dispatched function would have to
// redeclare the typedef or include this second header. This may be
// reasonable in a few cases.
//
// Failing all of the above, then you will want to bracket the smallest
// possible section of your XXX_messages.h file containing these types
// with an include guard macro. Be aware that providing an incomplete
// class type declaration to avoid pulling in a long chain of headers is
// acceptable when your XXX_messages.h header is being included by the
// message sending caller's code, but not when the YYY_message_generator.c
// is building the messages. In addtion, due to the multiple inclusion
// restriction, these type ought to be guarded. Follow a convention like:
// #ifndef SOME_GUARD_MACRO
// #define SOME_GUARD_MACRO
// class some_class; // One incomplete class declaration
// class_some_other_class; // Another incomplete class declaration
// #endif // SOME_GUARD_MACRO
// #ifdef IPC_MESSAGE_IMPL
// #inlcude "path/to/some_class.h" // Full class declaration
// #inlcude "path/to/some_other_class.h" // Full class declaration
// #endif // IPC_MESSAGE_IMPL
// (.. IPC macros using some_class and some_other_class ...)
//
// Macro Invocations
//
// You will use IPC message macro invocations for three things:
// - New struct definitions for IPC
// - Registering existing struct and enum definitions with IPC
// - Defining the messages themselves
//
// New structs are defined with IPC_STRUCT_BEGIN(), IPC_STRUCT_MEMBER(),
// IPC_STRUCT_END() family of macros. These cause the XXX_messages.h
// to proclaim equivalent struct declarations for use by callers, as well
// as later registering the type with the message generation. Note that
// IPC_STRUCT_MEMBER() is only permitted inside matching calls to
// IPC_STRUCT_BEGIN() / IPC_STRUCT_END().
//
// Externally-defined structs are registered with IPC_STRUCT_TRAITS_BEGIN(),
// IPC_STRUCT_TRAITS_MEMBER(), and IPC_STRUCT_TRAITS_END() macros. These
// cause registration of the types with message generation only.
// There's also IPC_STRUCT_TRAITS_PARENT, which is used to register a parent
// class (whose own traits are already defined). Note that
// IPC_STRUCT_TRAITS_MEMBER() and IPC_STRUCT_TRAITS_PARENT are only permitted
// inside matching calls to IPC_STRUCT_TRAITS_BEGIN() /
// IPC_STRUCT_TRAITS_END().
//
// Enum types are registered with a single IPC_ENUM_TRAITS() macro. There
// is no need to enumerate each value to the IPC mechanism.
//
// Do not place semicolons following these IPC_ macro invocations. There
// is no reason to expect that their expansion corresponds one-to-one with
// C++ statements.
//
// Once the types have been declared / registered, message definitions follow.
// "Sync" messages are just synchronous calls, the Send() call doesn't return
// until a reply comes back. To declare a sync message, use the IPC_SYNC_
// macros. The numbers at the end show how many input/output parameters there
// are (i.e. 1_2 is 1 in, 2 out). Input parameters are first, followed by
// output parameters. The caller uses Send([route id, ], in1, &out1, &out2).
// The receiver's handler function will be
// void OnSyncMessageName(const type1& in1, type2* out1, type3* out2)
//
// A caller can also send a synchronous message, while the receiver can respond
// at a later time. This is transparent from the sender's side. The receiver
// needs to use a different handler that takes in a IPC::Message* as the output
// type, stash the message, and when it has the data it can Send the message.
//
// Use the IPC_MESSAGE_HANDLER_DELAY_REPLY macro instead of IPC_MESSAGE_HANDLER
// IPC_MESSAGE_HANDLER_DELAY_REPLY(ViewHostMsg_SyncMessageName,
// OnSyncMessageName)
//
// The handler function will look like:
// void OnSyncMessageName(const type1& in1, IPC::Message* reply_msg);
//
// Receiver stashes the IPC::Message* pointer, and when it's ready, it does:
// ViewHostMsg_SyncMessageName::WriteReplyParams(reply_msg, out1, out2);
// Send(reply_msg);
#ifndef IPC_IPC_MESSAGE_MACROS_H_
#define IPC_IPC_MESSAGE_MACROS_H_
#include "ipc/ipc_message_utils.h"
#include "ipc/param_traits_macros.h"
#if defined(IPC_MESSAGE_IMPL)
#include "ipc/ipc_message_utils_impl.h"
#endif
// Override this to force message classes to be exported.
#ifndef IPC_MESSAGE_EXPORT
#define IPC_MESSAGE_EXPORT
#endif
// Macros for defining structs. May be subsequently redefined.
#define IPC_STRUCT_BEGIN(struct_name) \
struct struct_name; \
IPC_STRUCT_TRAITS_BEGIN(struct_name) \
IPC_STRUCT_TRAITS_END() \
struct IPC_MESSAGE_EXPORT struct_name : IPC::NoParams { \
struct_name(); \
~struct_name();
#define IPC_STRUCT_MEMBER(type, name) type name;
#define IPC_STRUCT_END() };
// Message macros collect specific numbers of arguments and funnel them into
// the common message generation macro. These should never be redefined.
#define IPC_MESSAGE_CONTROL0(msg_class) \
IPC_MESSAGE_DECL(EMPTY, CONTROL, msg_class, 0, 0, (), ())
#define IPC_MESSAGE_CONTROL1(msg_class, type1) \
IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 1, 0, (type1), ())
#define IPC_MESSAGE_CONTROL2(msg_class, type1, type2) \
IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 2, 0, (type1, type2), ())
#define IPC_MESSAGE_CONTROL3(msg_class, type1, type2, type3) \
IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 3, 0, (type1, type2, type3), ())
#define IPC_MESSAGE_CONTROL4(msg_class, type1, type2, type3, type4) \
IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 4, 0, (type1, type2, type3, type4), ())
#define IPC_MESSAGE_CONTROL5(msg_class, type1, type2, type3, type4, type5) \
IPC_MESSAGE_DECL(ASYNC, CONTROL, msg_class, 5, 0, (type1, type2, type3, type4, type5), ())
#define IPC_MESSAGE_ROUTED0(msg_class) \
IPC_MESSAGE_DECL(EMPTY, ROUTED, msg_class, 0, 0, (), ())
#define IPC_MESSAGE_ROUTED1(msg_class, type1) \
IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 1, 0, (type1), ())
#define IPC_MESSAGE_ROUTED2(msg_class, type1, type2) \
IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 2, 0, (type1, type2), ())
#define IPC_MESSAGE_ROUTED3(msg_class, type1, type2, type3) \
IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 3, 0, (type1, type2, type3), ())
#define IPC_MESSAGE_ROUTED4(msg_class, type1, type2, type3, type4) \
IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 4, 0, (type1, type2, type3, type4), ())
#define IPC_MESSAGE_ROUTED5(msg_class, type1, type2, type3, type4, type5) \
IPC_MESSAGE_DECL(ASYNC, ROUTED, msg_class, 5, 0, (type1, type2, type3, type4, type5), ())
#define IPC_SYNC_MESSAGE_CONTROL0_0(msg_class) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 0, (), ())
#define IPC_SYNC_MESSAGE_CONTROL0_1(msg_class, type1_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 1, (), (type1_out))
#define IPC_SYNC_MESSAGE_CONTROL0_2(msg_class, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 2, (), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_CONTROL0_3(msg_class, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 3, (), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_CONTROL0_4(msg_class, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 0, 4, (), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_CONTROL1_0(msg_class, type1_in) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 0, (type1_in), ())
#define IPC_SYNC_MESSAGE_CONTROL1_1(msg_class, type1_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 1, (type1_in), (type1_out))
#define IPC_SYNC_MESSAGE_CONTROL1_2(msg_class, type1_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 2, (type1_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_CONTROL1_3(msg_class, type1_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 3, (type1_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_CONTROL1_4(msg_class, type1_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 1, 4, (type1_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_CONTROL2_0(msg_class, type1_in, type2_in) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 0, (type1_in, type2_in), ())
#define IPC_SYNC_MESSAGE_CONTROL2_1(msg_class, type1_in, type2_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 1, (type1_in, type2_in), (type1_out))
#define IPC_SYNC_MESSAGE_CONTROL2_2(msg_class, type1_in, type2_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 2, (type1_in, type2_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_CONTROL2_3(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 3, (type1_in, type2_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_CONTROL2_4(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 2, 4, (type1_in, type2_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_CONTROL3_0(msg_class, type1_in, type2_in, type3_in) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 0, (type1_in, type2_in, type3_in), ())
#define IPC_SYNC_MESSAGE_CONTROL3_1(msg_class, type1_in, type2_in, type3_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 1, (type1_in, type2_in, type3_in), (type1_out))
#define IPC_SYNC_MESSAGE_CONTROL3_2(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 2, (type1_in, type2_in, type3_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_CONTROL3_3(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 3, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_CONTROL3_4(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 3, 4, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_CONTROL4_0(msg_class, type1_in, type2_in, type3_in, type4_in) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 0, (type1_in, type2_in, type3_in, type4_in), ())
#define IPC_SYNC_MESSAGE_CONTROL4_1(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 1, (type1_in, type2_in, type3_in, type4_in), (type1_out))
#define IPC_SYNC_MESSAGE_CONTROL4_2(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 2, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_CONTROL4_3(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 3, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_CONTROL4_4(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 4, 4, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_CONTROL5_0(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 0, (type1_in, type2_in, type3_in, type4_in, type5_in), ())
#define IPC_SYNC_MESSAGE_CONTROL5_1(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 1, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out))
#define IPC_SYNC_MESSAGE_CONTROL5_2(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 2, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_CONTROL5_3(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 3, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_CONTROL5_4(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, CONTROL, msg_class, 5, 4, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_ROUTED0_0(msg_class) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 0, (), ())
#define IPC_SYNC_MESSAGE_ROUTED0_1(msg_class, type1_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 1, (), (type1_out))
#define IPC_SYNC_MESSAGE_ROUTED0_2(msg_class, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 2, (), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_ROUTED0_3(msg_class, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 3, (), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_ROUTED0_4(msg_class, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 0, 4, (), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_ROUTED1_0(msg_class, type1_in) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 0, (type1_in), ())
#define IPC_SYNC_MESSAGE_ROUTED1_1(msg_class, type1_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 1, (type1_in), (type1_out))
#define IPC_SYNC_MESSAGE_ROUTED1_2(msg_class, type1_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 2, (type1_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_ROUTED1_3(msg_class, type1_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 3, (type1_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_ROUTED1_4(msg_class, type1_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 1, 4, (type1_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_ROUTED2_0(msg_class, type1_in, type2_in) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 0, (type1_in, type2_in), ())
#define IPC_SYNC_MESSAGE_ROUTED2_1(msg_class, type1_in, type2_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 1, (type1_in, type2_in), (type1_out))
#define IPC_SYNC_MESSAGE_ROUTED2_2(msg_class, type1_in, type2_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 2, (type1_in, type2_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_ROUTED2_3(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 3, (type1_in, type2_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_ROUTED2_4(msg_class, type1_in, type2_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 2, 4, (type1_in, type2_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_ROUTED3_0(msg_class, type1_in, type2_in, type3_in) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 0, (type1_in, type2_in, type3_in), ())
#define IPC_SYNC_MESSAGE_ROUTED3_1(msg_class, type1_in, type2_in, type3_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 1, (type1_in, type2_in, type3_in), (type1_out))
#define IPC_SYNC_MESSAGE_ROUTED3_2(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 2, (type1_in, type2_in, type3_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_ROUTED3_3(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 3, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_ROUTED3_4(msg_class, type1_in, type2_in, type3_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 3, 4, (type1_in, type2_in, type3_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_ROUTED4_0(msg_class, type1_in, type2_in, type3_in, type4_in) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 1, (type1_in, type2_in, type3_in, type4_in), ())
#define IPC_SYNC_MESSAGE_ROUTED4_1(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 1, (type1_in, type2_in, type3_in, type4_in), (type1_out))
#define IPC_SYNC_MESSAGE_ROUTED4_2(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 2, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_ROUTED4_3(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 3, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_ROUTED4_4(msg_class, type1_in, type2_in, type3_in, type4_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 4, 4, (type1_in, type2_in, type3_in, type4_in), (type1_out, type2_out, type3_out, type4_out))
#define IPC_SYNC_MESSAGE_ROUTED5_0(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 1, (type1_in, type2_in, type3_in, type4_in, type5_in), ())
#define IPC_SYNC_MESSAGE_ROUTED5_1(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 1, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out))
#define IPC_SYNC_MESSAGE_ROUTED5_2(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 2, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out))
#define IPC_SYNC_MESSAGE_ROUTED5_3(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 3, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out))
#define IPC_SYNC_MESSAGE_ROUTED5_4(msg_class, type1_in, type2_in, type3_in, type4_in, type5_in, type1_out, type2_out, type3_out, type4_out) \
IPC_MESSAGE_DECL(SYNC, ROUTED, msg_class, 5, 4, (type1_in, type2_in, type3_in, type4_in, type5_in), (type1_out, type2_out, type3_out, type4_out))
// The following macros define the common set of methods provided by ASYNC
// message classes.
#define IPC_ASYNC_MESSAGE_METHODS_GENERIC \
template<class T, class S, class Method> \
static bool Dispatch(const Message* msg, T* obj, S* sender, Method func) { \
Schema::Param p; \
if (Read(msg, &p)) { \
DispatchToMethod(obj, func, p); \
return true; \
} \
return false; \
}
#define IPC_ASYNC_MESSAGE_METHODS_1 \
IPC_ASYNC_MESSAGE_METHODS_GENERIC \
template<class T, class S, typename TA> \
static bool Dispatch(const Message* msg, T* obj, S* sender, \
void (T::*func)(const Message&, TA)) { \
Schema::Param p; \
if (Read(msg, &p)) { \
(obj->*func)(*msg, p.a); \
return true; \
} \
return false; \
}
#define IPC_ASYNC_MESSAGE_METHODS_2 \
IPC_ASYNC_MESSAGE_METHODS_GENERIC \
template<class T, class S, typename TA, typename TB> \
static bool Dispatch(const Message* msg, T* obj, S* sender, \
void (T::*func)(const Message&, TA, TB)) { \
Schema::Param p; \
if (Read(msg, &p)) { \
(obj->*func)(*msg, p.a, p.b); \
return true; \
} \
return false; \
} \
template<typename TA, typename TB> \
static bool Read(const IPC::Message* msg, TA* a, TB* b) { \
Schema::Param p; \
if (!Read(msg, &p)) \
return false; \
*a = p.a; \
*b = p.b; \
return true; \
}
#define IPC_ASYNC_MESSAGE_METHODS_3 \
IPC_ASYNC_MESSAGE_METHODS_GENERIC \
template<class T, class S, typename TA, typename TB, typename TC> \
static bool Dispatch(const Message* msg, T* obj, S* sender, \
void (T::*func)(const Message&, TA, TB, TC)) { \
Schema::Param p; \
if (Read(msg, &p)) { \
(obj->*func)(*msg, p.a, p.b, p.c); \
return true; \
} \
return false; \
} \
template<typename TA, typename TB, typename TC> \
static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c) { \
Schema::Param p; \
if (!Read(msg, &p)) \
return false; \
*a = p.a; \
*b = p.b; \
*c = p.c; \
return true; \
}
#define IPC_ASYNC_MESSAGE_METHODS_4 \
IPC_ASYNC_MESSAGE_METHODS_GENERIC \
template<class T, class S, typename TA, typename TB, typename TC, \
typename TD> \
static bool Dispatch(const Message* msg, T* obj, S* sender, \
void (T::*func)(const Message&, TA, TB, TC, TD)) { \
Schema::Param p; \
if (Read(msg, &p)) { \
(obj->*func)(*msg, p.a, p.b, p.c, p.d); \
return true; \
} \
return false; \
} \
template<typename TA, typename TB, typename TC, typename TD> \
static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d) { \
Schema::Param p; \
if (!Read(msg, &p)) \
return false; \
*a = p.a; \
*b = p.b; \
*c = p.c; \
*d = p.d; \
return true; \
}
#define IPC_ASYNC_MESSAGE_METHODS_5 \
IPC_ASYNC_MESSAGE_METHODS_GENERIC \
template<class T, class S, typename TA, typename TB, typename TC, \
typename TD, typename TE> \
static bool Dispatch(const Message* msg, T* obj, S* sender, \
void (T::*func)(const Message&, TA, TB, TC, TD, TE)) { \
Schema::Param p; \
if (Read(msg, &p)) { \
(obj->*func)(*msg, p.a, p.b, p.c, p.d, p.e); \
return true; \
} \
return false; \
} \
template<typename TA, typename TB, typename TC, typename TD, typename TE> \
static bool Read(const IPC::Message* msg, TA* a, TB* b, TC* c, TD* d, \
TE* e) { \
Schema::Param p; \
if (!Read(msg, &p)) \
return false; \
*a = p.a; \
*b = p.b; \
*c = p.c; \
*d = p.d; \
*e = p.e; \
return true; \
}
// The following macros define the common set of methods provided by SYNC
// message classes.
#define IPC_SYNC_MESSAGE_METHODS_GENERIC \
template<class T, class S, class Method> \
static bool Dispatch(const Message* msg, T* obj, S* sender, Method func) { \
Schema::SendParam send_params; \
bool ok = ReadSendParam(msg, &send_params); \
return Schema::DispatchWithSendParams(ok, send_params, msg, obj, sender, \
func); \
} \
template<class T, class Method> \
static bool DispatchDelayReply(const Message* msg, T* obj, Method func) { \
Schema::SendParam send_params; \
bool ok = ReadSendParam(msg, &send_params); \
return Schema::DispatchDelayReplyWithSendParams(ok, send_params, msg, \
obj, func); \
}
#define IPC_SYNC_MESSAGE_METHODS_0 \
IPC_SYNC_MESSAGE_METHODS_GENERIC
#define IPC_SYNC_MESSAGE_METHODS_1 \
IPC_SYNC_MESSAGE_METHODS_GENERIC \
template<typename TA> \
static void WriteReplyParams(Message* reply, TA a) { \
Schema::WriteReplyParams(reply, a); \
}
#define IPC_SYNC_MESSAGE_METHODS_2 \
IPC_SYNC_MESSAGE_METHODS_GENERIC \
template<typename TA, typename TB> \
static void WriteReplyParams(Message* reply, TA a, TB b) { \
Schema::WriteReplyParams(reply, a, b); \
}
#define IPC_SYNC_MESSAGE_METHODS_3 \
IPC_SYNC_MESSAGE_METHODS_GENERIC \
template<typename TA, typename TB, typename TC> \
static void WriteReplyParams(Message* reply, TA a, TB b, TC c) { \
Schema::WriteReplyParams(reply, a, b, c); \
}
#define IPC_SYNC_MESSAGE_METHODS_4 \
IPC_SYNC_MESSAGE_METHODS_GENERIC \
template<typename TA, typename TB, typename TC, typename TD> \
static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d) { \
Schema::WriteReplyParams(reply, a, b, c, d); \
}
#define IPC_SYNC_MESSAGE_METHODS_5 \
IPC_SYNC_MESSAGE_METHODS_GENERIC \
template<typename TA, typename TB, typename TC, typename TD, typename TE> \
static void WriteReplyParams(Message* reply, TA a, TB b, TC c, TD d, TE e) { \
Schema::WriteReplyParams(reply, a, b, c, d, e); \
}
// Common message macro which dispatches into one of the 6 (sync x kind)
// routines. There is a way that these 6 cases can be lumped together,
// but the macros get very complicated in that case.
// Note: intended be redefined to generate other information.
#define IPC_MESSAGE_DECL(sync, kind, msg_class, \
in_cnt, out_cnt, in_list, out_list) \
IPC_##sync##_##kind##_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \
IPC_MESSAGE_EXTRA(sync, kind, msg_class, in_cnt, out_cnt, in_list, out_list)
#define IPC_EMPTY_CONTROL_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \
class msg_class : public IPC::Message { \
public: \
typedef IPC::Message Schema; \
enum { ID = IPC_MESSAGE_ID() }; \
msg_class() : IPC::Message(MSG_ROUTING_CONTROL, ID, PRIORITY_NORMAL) {} \
static void Log(std::string* name, const Message* msg, std::string* l); \
};
#define IPC_EMPTY_ROUTED_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \
class msg_class : public IPC::Message { \
public: \
typedef IPC::Message Schema; \
enum { ID = IPC_MESSAGE_ID() }; \
msg_class(int32 routing_id) \
: IPC::Message(routing_id, ID, PRIORITY_NORMAL) {} \
static void Log(std::string* name, const Message* msg, std::string* l); \
};
#define IPC_ASYNC_CONTROL_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \
class IPC_MESSAGE_EXPORT msg_class : public IPC::Message { \
public: \
typedef IPC::MessageSchema<IPC_TUPLE_IN_##in_cnt in_list> Schema; \
typedef Schema::Param Param; \
enum { ID = IPC_MESSAGE_ID() }; \
msg_class(IPC_TYPE_IN_##in_cnt in_list); \
virtual ~msg_class(); \
static bool Read(const Message* msg, Schema::Param* p); \
static void Log(std::string* name, const Message* msg, std::string* l); \
IPC_ASYNC_MESSAGE_METHODS_##in_cnt \
};
#define IPC_ASYNC_ROUTED_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \
class IPC_MESSAGE_EXPORT msg_class : public IPC::Message { \
public: \
typedef IPC::MessageSchema<IPC_TUPLE_IN_##in_cnt in_list> Schema; \
typedef Schema::Param Param; \
enum { ID = IPC_MESSAGE_ID() }; \
msg_class(int32 routing_id IPC_COMMA_##in_cnt \
IPC_TYPE_IN_##in_cnt in_list); \
virtual ~msg_class(); \
static bool Read(const Message* msg, Schema::Param* p); \
static void Log(std::string* name, const Message* msg, std::string* l); \
IPC_ASYNC_MESSAGE_METHODS_##in_cnt \
};
#define IPC_SYNC_CONTROL_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \
class IPC_MESSAGE_EXPORT msg_class : public IPC::SyncMessage { \
public: \
typedef IPC::SyncMessageSchema<IPC_TUPLE_IN_##in_cnt in_list, \
IPC_TUPLE_OUT_##out_cnt out_list> Schema; \
typedef Schema::ReplyParam ReplyParam; \
typedef Schema::SendParam SendParam; \
enum { ID = IPC_MESSAGE_ID() }; \
msg_class(IPC_TYPE_IN_##in_cnt in_list \
IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \
IPC_TYPE_OUT_##out_cnt out_list); \
virtual ~msg_class(); \
static bool ReadSendParam(const Message* msg, Schema::SendParam* p); \
static bool ReadReplyParam( \
const Message* msg, \
TupleTypes<ReplyParam>::ValueTuple* p); \
static void Log(std::string* name, const Message* msg, std::string* l); \
IPC_SYNC_MESSAGE_METHODS_##out_cnt \
};
#define IPC_SYNC_ROUTED_DECL(msg_class, in_cnt, out_cnt, in_list, out_list) \
class IPC_MESSAGE_EXPORT msg_class : public IPC::SyncMessage { \
public: \
typedef IPC::SyncMessageSchema<IPC_TUPLE_IN_##in_cnt in_list, \
IPC_TUPLE_OUT_##out_cnt out_list> Schema; \
typedef Schema::ReplyParam ReplyParam; \
typedef Schema::SendParam SendParam; \
enum { ID = IPC_MESSAGE_ID() }; \
msg_class(int32 routing_id \
IPC_COMMA_OR_##in_cnt(IPC_COMMA_##out_cnt) \
IPC_TYPE_IN_##in_cnt in_list \
IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \
IPC_TYPE_OUT_##out_cnt out_list); \
virtual ~msg_class(); \
static bool ReadSendParam(const Message* msg, Schema::SendParam* p); \
static bool ReadReplyParam( \
const Message* msg, \
TupleTypes<ReplyParam>::ValueTuple* p); \
static void Log(std::string* name, const Message* msg, std::string* l); \
IPC_SYNC_MESSAGE_METHODS_##out_cnt \
};
#if defined(IPC_MESSAGE_IMPL)
// "Implementation" inclusion produces constructors, destructors, and
// logging functions, except for the no-arg special cases, where the
// implementation occurs in the declaration, and there is no special
// logging function.
#define IPC_MESSAGE_EXTRA(sync, kind, msg_class, \
in_cnt, out_cnt, in_list, out_list) \
IPC_##sync##_##kind##_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \
IPC_##sync##_MESSAGE_LOG(msg_class)
#define IPC_EMPTY_CONTROL_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list)
#define IPC_EMPTY_ROUTED_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list)
#define IPC_ASYNC_CONTROL_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \
msg_class::msg_class(IPC_TYPE_IN_##in_cnt in_list) : \
IPC::Message(MSG_ROUTING_CONTROL, ID, PRIORITY_NORMAL) { \
Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \
} \
msg_class::~msg_class() {} \
bool msg_class::Read(const Message* msg, Schema::Param* p) { \
return Schema::Read(msg, p); \
}
#define IPC_ASYNC_ROUTED_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \
msg_class::msg_class(int32 routing_id IPC_COMMA_##in_cnt \
IPC_TYPE_IN_##in_cnt in_list) : \
IPC::Message(routing_id, ID, PRIORITY_NORMAL) { \
Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \
} \
msg_class::~msg_class() {} \
bool msg_class::Read(const Message* msg, Schema::Param* p) { \
return Schema::Read(msg, p); \
}
#define IPC_SYNC_CONTROL_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \
msg_class::msg_class(IPC_TYPE_IN_##in_cnt in_list \
IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \
IPC_TYPE_OUT_##out_cnt out_list) : \
IPC::SyncMessage(MSG_ROUTING_CONTROL, ID, PRIORITY_NORMAL, \
new IPC::ParamDeserializer<Schema::ReplyParam>( \
IPC_NAME_OUT_##out_cnt out_list)) { \
Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \
} \
msg_class::~msg_class() {} \
bool msg_class::ReadSendParam(const Message* msg, Schema::SendParam* p) { \
return Schema::ReadSendParam(msg, p); \
} \
bool msg_class::ReadReplyParam(const Message* msg, \
TupleTypes<ReplyParam>::ValueTuple* p) { \
return Schema::ReadReplyParam(msg, p); \
}
#define IPC_SYNC_ROUTED_IMPL(msg_class, in_cnt, out_cnt, in_list, out_list) \
msg_class::msg_class(int32 routing_id \
IPC_COMMA_OR_##in_cnt(IPC_COMMA_##out_cnt) \
IPC_TYPE_IN_##in_cnt in_list \
IPC_COMMA_AND_##in_cnt(IPC_COMMA_##out_cnt) \
IPC_TYPE_OUT_##out_cnt out_list) : \
IPC::SyncMessage(routing_id, ID, PRIORITY_NORMAL, \
new IPC::ParamDeserializer<Schema::ReplyParam>( \
IPC_NAME_OUT_##out_cnt out_list)) { \
Schema::Write(this, IPC_NAME_IN_##in_cnt in_list); \
} \
msg_class::~msg_class() {} \
bool msg_class::ReadSendParam(const Message* msg, Schema::SendParam* p) { \
return Schema::ReadSendParam(msg, p); \
} \
bool msg_class::ReadReplyParam(const Message* msg, \
TupleTypes<ReplyParam>::ValueTuple* p) { \
return Schema::ReadReplyParam(msg, p); \
}
#define IPC_EMPTY_MESSAGE_LOG(msg_class) \
void msg_class::Log(std::string* name, \
const Message* msg, \
std::string* l) { \
if (name) \
*name = #msg_class; \
}
#define IPC_ASYNC_MESSAGE_LOG(msg_class) \
void msg_class::Log(std::string* name, \
const Message* msg, \
std::string* l) { \
if (name) \
*name = #msg_class; \
if (!msg || !l) \
return; \
Schema::Param p; \
if (Schema::Read(msg, &p)) \
IPC::LogParam(p, l); \
}
#define IPC_SYNC_MESSAGE_LOG(msg_class) \
void msg_class::Log(std::string* name, \
const Message* msg, \
std::string* l) { \
if (name) \
*name = #msg_class; \
if (!msg || !l) \
return; \
if (msg->is_sync()) { \
TupleTypes<Schema::SendParam>::ValueTuple p; \
if (Schema::ReadSendParam(msg, &p)) \
IPC::LogParam(p, l); \
AddOutputParamsToLog(msg, l); \
} else { \
TupleTypes<Schema::ReplyParam>::ValueTuple p; \
if (Schema::ReadReplyParam(msg, &p)) \
IPC::LogParam(p, l); \
} \
}
#elif defined(IPC_MESSAGE_MACROS_LOG_ENABLED)
#ifndef IPC_LOG_TABLE_CREATED
#define IPC_LOG_TABLE_CREATED
#include "base/hash_tables.h"
typedef void (*LogFunction)(std::string* name,
const IPC::Message* msg,
std::string* params);
typedef base::hash_map<uint32, LogFunction > LogFunctionMap;
LogFunctionMap g_log_function_mapping;
#endif // IPC_LOG_TABLE_CREATED
// "Log table" inclusion produces extra logging registration code.
#define IPC_MESSAGE_EXTRA(sync, kind, msg_class, \
in_cnt, out_cnt, in_list, out_list) \
class LoggerRegisterHelper##msg_class { \
public: \
LoggerRegisterHelper##msg_class() { \
g_log_function_mapping[msg_class::ID] = msg_class::Log; \
} \
}; \
LoggerRegisterHelper##msg_class g_LoggerRegisterHelper##msg_class;
#else
// Normal inclusion produces nothing extra.
#define IPC_MESSAGE_EXTRA(sync, kind, msg_class, \
in_cnt, out_cnt, in_list, out_list)
#endif // defined(IPC_MESSAGE_IMPL)
// Handle variable sized argument lists. These are usually invoked by token
// pasting against the argument counts.
#define IPC_TYPE_IN_0()
#define IPC_TYPE_IN_1(t1) const t1& arg1
#define IPC_TYPE_IN_2(t1, t2) const t1& arg1, const t2& arg2
#define IPC_TYPE_IN_3(t1, t2, t3) const t1& arg1, const t2& arg2, const t3& arg3
#define IPC_TYPE_IN_4(t1, t2, t3, t4) const t1& arg1, const t2& arg2, const t3& arg3, const t4& arg4
#define IPC_TYPE_IN_5(t1, t2, t3, t4, t5) const t1& arg1, const t2& arg2, const t3& arg3, const t4& arg4, const t5& arg5
#define IPC_TYPE_OUT_0()
#define IPC_TYPE_OUT_1(t1) t1* arg6
#define IPC_TYPE_OUT_2(t1, t2) t1* arg6, t2* arg7
#define IPC_TYPE_OUT_3(t1, t2, t3) t1* arg6, t2* arg7, t3* arg8
#define IPC_TYPE_OUT_4(t1, t2, t3, t4) t1* arg6, t2* arg7, t3* arg8, t4* arg9
#define IPC_TUPLE_IN_0() Tuple0
#define IPC_TUPLE_IN_1(t1) Tuple1<t1>
#define IPC_TUPLE_IN_2(t1, t2) Tuple2<t1, t2>
#define IPC_TUPLE_IN_3(t1, t2, t3) Tuple3<t1, t2, t3>
#define IPC_TUPLE_IN_4(t1, t2, t3, t4) Tuple4<t1, t2, t3, t4>
#define IPC_TUPLE_IN_5(t1, t2, t3, t4, t5) Tuple5<t1, t2, t3, t4, t5>
#define IPC_TUPLE_OUT_0() Tuple0
#define IPC_TUPLE_OUT_1(t1) Tuple1<t1&>
#define IPC_TUPLE_OUT_2(t1, t2) Tuple2<t1&, t2&>
#define IPC_TUPLE_OUT_3(t1, t2, t3) Tuple3<t1&, t2&, t3&>
#define IPC_TUPLE_OUT_4(t1, t2, t3, t4) Tuple4<t1&, t2&, t3&, t4&>
#define IPC_NAME_IN_0() MakeTuple()
#define IPC_NAME_IN_1(t1) MakeRefTuple(arg1)
#define IPC_NAME_IN_2(t1, t2) MakeRefTuple(arg1, arg2)
#define IPC_NAME_IN_3(t1, t2, t3) MakeRefTuple(arg1, arg2, arg3)
#define IPC_NAME_IN_4(t1, t2, t3, t4) MakeRefTuple(arg1, arg2, arg3, arg4)
#define IPC_NAME_IN_5(t1, t2, t3, t4, t5) MakeRefTuple(arg1, arg2, arg3, arg4, arg5)
#define IPC_NAME_OUT_0() MakeTuple()
#define IPC_NAME_OUT_1(t1) MakeRefTuple(*arg6)
#define IPC_NAME_OUT_2(t1, t2) MakeRefTuple(*arg6, *arg7)
#define IPC_NAME_OUT_3(t1, t2, t3) MakeRefTuple(*arg6, *arg7, *arg8)
#define IPC_NAME_OUT_4(t1, t2, t3, t4) MakeRefTuple(*arg6, *arg7, *arg8, *arg9)
// There are places where the syntax requires a comma if there are input args,
// if there are input args and output args, or if there are input args or
// output args. These macros allow generation of the comma as needed; invoke
// by token pasting against the argument counts.
#define IPC_COMMA_0
#define IPC_COMMA_1 ,
#define IPC_COMMA_2 ,
#define IPC_COMMA_3 ,
#define IPC_COMMA_4 ,
#define IPC_COMMA_5 ,
#define IPC_COMMA_AND_0(x)
#define IPC_COMMA_AND_1(x) x
#define IPC_COMMA_AND_2(x) x
#define IPC_COMMA_AND_3(x) x
#define IPC_COMMA_AND_4(x) x
#define IPC_COMMA_AND_5(x) x
#define IPC_COMMA_OR_0(x) x
#define IPC_COMMA_OR_1(x) ,
#define IPC_COMMA_OR_2(x) ,
#define IPC_COMMA_OR_3(x) ,
#define IPC_COMMA_OR_4(x) ,
#define IPC_COMMA_OR_5(x) ,
// Message IDs
// Note: we currently use __LINE__ to give unique IDs to messages within
// a file. They're globally unique since each file defines its own
// IPC_MESSAGE_START.
#define IPC_MESSAGE_ID() ((IPC_MESSAGE_START << 16) + __LINE__)
#define IPC_MESSAGE_ID_CLASS(id) ((id) >> 16)
#define IPC_MESSAGE_ID_LINE(id) ((id) & 0xffff)
// Message crackers and handlers.
// Prefer to use the IPC_BEGIN_MESSAGE_MAP_EX to the older macros since they
// allow you to detect when a message could not be de-serialized. Usage:
//
// bool MyClass::OnMessageReceived(const IPC::Message& msg) {
// bool handled = true;
// bool msg_is_good = false;
// IPC_BEGIN_MESSAGE_MAP_EX(MyClass, msg, msg_is_good)
// IPC_MESSAGE_HANDLER(MsgClassOne, OnMsgClassOne)
// ...more handlers here ...
// IPC_MESSAGE_HANDLER(MsgClassTen, OnMsgClassTen)
// IPC_MESSAGE_UNHANDLED(handled = false)
// IPC_END_MESSAGE_MAP_EX()
// if (!msg_is_good) {
// // Signal error here or terminate offending process.
// }
// return handled;
// }
#define IPC_BEGIN_MESSAGE_MAP_EX(class_name, msg, msg_is_ok) \
{ \
typedef class_name _IpcMessageHandlerClass; \
const IPC::Message& ipc_message__ = msg; \
bool& msg_is_ok__ = msg_is_ok; \
switch (ipc_message__.type()) { \
#define IPC_BEGIN_MESSAGE_MAP(class_name, msg) \
{ \
typedef class_name _IpcMessageHandlerClass; \
const IPC::Message& ipc_message__ = msg; \
bool msg_is_ok__ = true; \
switch (ipc_message__.type()) { \
#define IPC_MESSAGE_FORWARD(msg_class, obj, member_func) \
case msg_class::ID: \
msg_is_ok__ = msg_class::Dispatch(&ipc_message__, obj, this, \
&member_func); \
break;
#define IPC_MESSAGE_HANDLER(msg_class, member_func) \
IPC_MESSAGE_FORWARD(msg_class, this, _IpcMessageHandlerClass::member_func)
#define IPC_MESSAGE_FORWARD_DELAY_REPLY(msg_class, obj, member_func) \
case msg_class::ID: \
msg_is_ok__ = msg_class::DispatchDelayReply(&ipc_message__, obj, \
&member_func); \
break;
#define IPC_MESSAGE_HANDLER_DELAY_REPLY(msg_class, member_func) \
IPC_MESSAGE_FORWARD_DELAY_REPLY(msg_class, this, \
_IpcMessageHandlerClass::member_func)
#define IPC_MESSAGE_HANDLER_GENERIC(msg_class, code) \
case msg_class::ID: \
code; \
break;
#define IPC_REPLY_HANDLER(func) \
case IPC_REPLY_ID: \
func(ipc_message__); \
break;
#define IPC_MESSAGE_UNHANDLED(code) \
default: \
code; \
break;
#define IPC_MESSAGE_UNHANDLED_ERROR() \
IPC_MESSAGE_UNHANDLED(NOTREACHED() << \
"Invalid message with type = " << \
ipc_message__.type())
#define IPC_END_MESSAGE_MAP() \
DCHECK(msg_is_ok__); \
} \
}
#define IPC_END_MESSAGE_MAP_EX() \
} \
}
// This corresponds to an enum value from IPCMessageStart.
#define IPC_MESSAGE_CLASS(message) \
IPC_MESSAGE_ID_CLASS(message.type())
#endif // IPC_IPC_MESSAGE_MACROS_H_
// Clean up IPC_MESSAGE_START in this unguarded section so that the
// XXX_messages.h files need not do so themselves. This makes the
// XXX_messages.h files easier to write.
#undef IPC_MESSAGE_START