blob: 8e1713ca248cb0fc0f2c507e55e1552b8b2e6f08 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/cpu.h"
#include <stdint.h>
#include <string.h>
#include <string>
#include <string_view>
#include <utility>
#include "base/memory/protected_memory.h"
#include "build/build_config.h"
#if defined(ARCH_CPU_ARM_FAMILY) && \
(BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
#include <asm/hwcap.h>
#include <sys/auxv.h>
#include "base/files/file_util.h"
#include "base/numerics/checked_math.h"
#include "base/ranges/algorithm.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
// Temporary definitions until a new hwcap.h is pulled in everywhere.
// https://crbug.com/1265965
#ifndef HWCAP2_MTE
#define HWCAP2_MTE (1 << 18)
#define HWCAP2_BTI (1 << 17)
#endif
struct ProcCpuInfo {
std::string brand;
uint8_t implementer = 0;
uint32_t part_number = 0;
};
#endif
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(COMPILER_MSVC)
#include <intrin.h>
#include <immintrin.h> // For _xgetbv()
#endif
#endif
namespace base {
#if defined(ARCH_CPU_X86_FAMILY)
namespace internal {
X86ModelInfo ComputeX86FamilyAndModel(const std::string& vendor,
int signature) {
X86ModelInfo results;
results.family = (signature >> 8) & 0xf;
results.model = (signature >> 4) & 0xf;
results.ext_family = 0;
results.ext_model = 0;
// The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// specifies the Extended Model is defined only when the Base Family is
// 06h or 0Fh.
// The "AMD CPUID Specification" specifies that the Extended Model is
// defined only when Base Family is 0Fh.
// Both manuals define the display model as
// {ExtendedModel[3:0],BaseModel[3:0]} in that case.
if (results.family == 0xf ||
(results.family == 0x6 && vendor == "GenuineIntel")) {
results.ext_model = (signature >> 16) & 0xf;
results.model += results.ext_model << 4;
}
// Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// and the "AMD CPUID Specification" specify that the Extended Family is
// defined only when the Base Family is 0Fh.
// Both manuals define the display family as {0000b,BaseFamily[3:0]} +
// ExtendedFamily[7:0] in that case.
if (results.family == 0xf) {
results.ext_family = (signature >> 20) & 0xff;
results.family += results.ext_family;
}
return results;
}
} // namespace internal
#endif // defined(ARCH_CPU_X86_FAMILY)
CPU::CPU(bool require_branding) {
Initialize(require_branding);
}
CPU::CPU() : CPU(true) {}
CPU::CPU(CPU&&) = default;
namespace {
#if defined(ARCH_CPU_X86_FAMILY)
#if !defined(COMPILER_MSVC)
#if defined(__pic__) && defined(__i386__)
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile(
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#else
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile("cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#endif
#endif // !defined(COMPILER_MSVC)
// xgetbv returns the value of an Intel Extended Control Register (XCR).
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
uint64_t xgetbv(uint32_t xcr) {
#if defined(COMPILER_MSVC)
return _xgetbv(xcr);
#else
uint32_t eax, edx;
__asm__ volatile (
"xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
return (static_cast<uint64_t>(edx) << 32) | eax;
#endif // defined(COMPILER_MSVC)
}
#endif // ARCH_CPU_X86_FAMILY
#if defined(ARCH_CPU_ARM_FAMILY) && \
(BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
StringPairs::const_iterator FindFirstProcCpuKey(const StringPairs& pairs,
std::string_view key) {
return ranges::find_if(pairs, [key](const StringPairs::value_type& pair) {
return TrimWhitespaceASCII(pair.first, base::TRIM_ALL) == key;
});
}
// Parses information about the ARM processor. Note that depending on the CPU
// package, processor configuration, and/or kernel version, this may only
// report information about the processor on which this thread is running. This
// can happen on heterogeneous-processor SoCs like Snapdragon 808, which has 4
// Cortex-A53 and 2 Cortex-A57. Unfortunately there is not a universally
// reliable way to examine the CPU part information for all cores.
const ProcCpuInfo& ParseProcCpu() {
static const NoDestructor<ProcCpuInfo> info([]() {
// This function finds the value from /proc/cpuinfo under the key "model
// name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
// and later for arm64) and is shown once per CPU. "Processor" is used in
// earler versions and is shown only once at the top of /proc/cpuinfo
// regardless of the number CPUs.
const char kModelNamePrefix[] = "model name";
const char kProcessorPrefix[] = "Processor";
std::string cpuinfo;
ReadFileToString(FilePath("/proc/cpuinfo"), &cpuinfo);
DCHECK(!cpuinfo.empty());
ProcCpuInfo info;
StringPairs pairs;
if (!SplitStringIntoKeyValuePairs(cpuinfo, ':', '\n', &pairs)) {
NOTREACHED();
return info;
}
auto model_name = FindFirstProcCpuKey(pairs, kModelNamePrefix);
if (model_name == pairs.end())
model_name = FindFirstProcCpuKey(pairs, kProcessorPrefix);
if (model_name != pairs.end()) {
TrimWhitespaceASCII(model_name->second, TRIM_ALL, &info.brand);
}
auto implementer_string = FindFirstProcCpuKey(pairs, "CPU implementer");
if (implementer_string != pairs.end()) {
// HexStringToUInt() handles the leading whitespace on the value.
uint32_t implementer;
HexStringToUInt(implementer_string->second, &implementer);
if (!CheckedNumeric<uint32_t>(implementer)
.AssignIfValid(&info.implementer)) {
info.implementer = 0;
}
}
auto part_number_string = FindFirstProcCpuKey(pairs, "CPU part");
if (part_number_string != pairs.end())
HexStringToUInt(part_number_string->second, &info.part_number);
return info;
}());
return *info;
}
#endif // defined(ARCH_CPU_ARM_FAMILY) && (BUILDFLAG(IS_ANDROID) ||
// BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS))
DEFINE_PROTECTED_DATA base::ProtectedMemory<CPU, true> g_cpu_instance;
} // namespace
void CPU::Initialize(bool require_branding) {
#if defined(ARCH_CPU_X86_FAMILY)
int cpu_info[4] = {-1};
// __cpuid with an InfoType argument of 0 returns the number of
// valid Ids in CPUInfo[0] and the CPU identification string in
// the other three array elements. The CPU identification string is
// not in linear order. The code below arranges the information
// in a human readable form. The human readable order is CPUInfo[1] |
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
// before using memcpy() to copy these three array elements to |cpu_string|.
__cpuid(cpu_info, 0);
int num_ids = cpu_info[0];
std::swap(cpu_info[2], cpu_info[3]);
memcpy(cpu_vendor_, &cpu_info[1], kVendorNameSize);
cpu_vendor_[kVendorNameSize] = '\0';
// Interpret CPU feature information.
if (num_ids > 0) {
int cpu_info7[4] = {0};
__cpuid(cpu_info, 1);
if (num_ids >= 7) {
__cpuid(cpu_info7, 7);
}
signature_ = cpu_info[0];
stepping_ = cpu_info[0] & 0xf;
type_ = (cpu_info[0] >> 12) & 0x3;
internal::X86ModelInfo results =
internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_);
family_ = results.family;
model_ = results.model;
ext_family_ = results.ext_family;
ext_model_ = results.ext_model;
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
// "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1."
// See https://lwn.net/Articles/301888/
// This is checking for any hypervisor. Hypervisors may choose not to
// announce themselves. Hypervisors trap CPUID and sometimes return
// different results to underlying hardware.
is_running_in_vm_ = (static_cast<uint32_t>(cpu_info[2]) & 0x80000000) != 0;
// AVX instructions will generate an illegal instruction exception unless
// a) they are supported by the CPU,
// b) XSAVE is supported by the CPU and
// c) XSAVE is enabled by the kernel.
// See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
//
// In addition, we have observed some crashes with the xgetbv instruction
// even after following Intel's example code. (See crbug.com/375968.)
// Because of that, we also test the XSAVE bit because its description in
// the CPUID documentation suggests that it signals xgetbv support.
has_avx_ =
(cpu_info[2] & 0x10000000) != 0 &&
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
(xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
has_fma3_ = (cpu_info[2] & 0x00001000) != 0;
has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0;
has_pku_ = (cpu_info7[2] & 0x00000010) != 0;
}
// Get the brand string of the cpu.
__cpuid(cpu_info, static_cast<int>(0x80000000));
const uint32_t max_parameter = static_cast<uint32_t>(cpu_info[0]);
static constexpr uint32_t kParameterStart = 0x80000002;
static constexpr uint32_t kParameterEnd = 0x80000004;
static constexpr uint32_t kParameterSize =
kParameterEnd - kParameterStart + 1;
static_assert(kParameterSize * sizeof(cpu_info) == kBrandNameSize,
"cpu_brand_ has wrong size");
if (max_parameter >= kParameterEnd) {
size_t i = 0;
for (uint32_t parameter = kParameterStart; parameter <= kParameterEnd;
++parameter) {
__cpuid(cpu_info, static_cast<int>(parameter));
memcpy(&cpu_brand_[i], cpu_info, sizeof(cpu_info));
i += sizeof(cpu_info);
}
cpu_brand_[i] = '\0';
}
static constexpr uint32_t kParameterContainingNonStopTimeStampCounter =
0x80000007;
if (max_parameter >= kParameterContainingNonStopTimeStampCounter) {
__cpuid(cpu_info,
static_cast<int>(kParameterContainingNonStopTimeStampCounter));
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
}
if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) {
int cpu_info_hv[4] = {};
__cpuid(cpu_info_hv, 0x40000000);
if (cpu_info_hv[1] == 0x7263694D && // Micr
cpu_info_hv[2] == 0x666F736F && // osof
cpu_info_hv[3] == 0x76482074) { // t Hv
// If CPUID says we have a variant TSC and a hypervisor has identified
// itself and the hypervisor says it is Microsoft Hyper-V, then treat
// TSC as invariant.
//
// Microsoft Hyper-V hypervisor reports variant TSC as there are some
// scenarios (eg. VM live migration) where the TSC is variant, but for
// our purposes we can treat it as invariant.
has_non_stop_time_stamp_counter_ = true;
}
}
#elif defined(ARCH_CPU_ARM_FAMILY)
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_CHROMEOS)
if (require_branding) {
const ProcCpuInfo& info = ParseProcCpu();
// Ensure the brand can be stored in the internal array.
CHECK_LE(info.brand.size(), kBrandNameSize);
const size_t chars_copied = info.brand.copy(cpu_brand_, kBrandNameSize);
cpu_brand_[chars_copied] = '\0';
implementer_ = info.implementer;
part_number_ = info.part_number;
}
#if defined(ARCH_CPU_ARM64)
// Check for Armv8.5-A BTI/MTE support, exposed via HWCAP2
unsigned long hwcap2 = getauxval(AT_HWCAP2);
has_mte_ = hwcap2 & HWCAP2_MTE;
has_bti_ = hwcap2 & HWCAP2_BTI;
#endif
#elif BUILDFLAG(IS_WIN)
// Windows makes high-resolution thread timing information available in
// user-space.
has_non_stop_time_stamp_counter_ = true;
#endif
#endif
}
#if defined(ARCH_CPU_X86_FAMILY)
CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
if (has_avx2()) return AVX2;
if (has_fma3()) return FMA3;
if (has_avx()) return AVX;
if (has_sse42()) return SSE42;
if (has_sse41()) return SSE41;
if (has_ssse3()) return SSSE3;
if (has_sse3()) return SSE3;
if (has_sse2()) return SSE2;
if (has_sse()) return SSE;
return PENTIUM;
}
#endif
const CPU& CPU::GetInstanceNoAllocation() {
static ProtectedMemoryInitializer cpu_initializer(g_cpu_instance, CPU(false));
return *g_cpu_instance;
}
} // namespace base