| // Copyright 2014 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // This example program is based on Simple_VertexShader.c from: |
| |
| // |
| // Book: OpenGL(R) ES 2.0 Programming Guide |
| // Authors: Aaftab Munshi, Dan Ginsburg, Dave Shreiner |
| // ISBN-10: 0321502795 |
| // ISBN-13: 9780321502797 |
| // Publisher: Addison-Wesley Professional |
| // URLs: http://safari.informit.com/9780321563835 |
| // http://www.opengles-book.com |
| // |
| |
| #include "ppapi/examples/gles2_spinning_cube/spinning_cube.h" |
| |
| #include <math.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <algorithm> |
| |
| #include "ppapi/lib/gl/include/GLES2/gl2.h" |
| |
| namespace { |
| |
| const float kPi = 3.14159265359f; |
| |
| int GenerateCube(GLuint *vbo_vertices, |
| GLuint *vbo_indices) { |
| const int num_indices = 36; |
| |
| const GLfloat cube_vertices[] = { |
| -0.5f, -0.5f, -0.5f, |
| -0.5f, -0.5f, 0.5f, |
| 0.5f, -0.5f, 0.5f, |
| 0.5f, -0.5f, -0.5f, |
| -0.5f, 0.5f, -0.5f, |
| -0.5f, 0.5f, 0.5f, |
| 0.5f, 0.5f, 0.5f, |
| 0.5f, 0.5f, -0.5f, |
| -0.5f, -0.5f, -0.5f, |
| -0.5f, 0.5f, -0.5f, |
| 0.5f, 0.5f, -0.5f, |
| 0.5f, -0.5f, -0.5f, |
| -0.5f, -0.5f, 0.5f, |
| -0.5f, 0.5f, 0.5f, |
| 0.5f, 0.5f, 0.5f, |
| 0.5f, -0.5f, 0.5f, |
| -0.5f, -0.5f, -0.5f, |
| -0.5f, -0.5f, 0.5f, |
| -0.5f, 0.5f, 0.5f, |
| -0.5f, 0.5f, -0.5f, |
| 0.5f, -0.5f, -0.5f, |
| 0.5f, -0.5f, 0.5f, |
| 0.5f, 0.5f, 0.5f, |
| 0.5f, 0.5f, -0.5f, |
| }; |
| |
| const GLushort cube_indices[] = { |
| 0, 2, 1, |
| 0, 3, 2, |
| 4, 5, 6, |
| 4, 6, 7, |
| 8, 9, 10, |
| 8, 10, 11, |
| 12, 15, 14, |
| 12, 14, 13, |
| 16, 17, 18, |
| 16, 18, 19, |
| 20, 23, 22, |
| 20, 22, 21 |
| }; |
| |
| if (vbo_vertices) { |
| glGenBuffers(1, vbo_vertices); |
| glBindBuffer(GL_ARRAY_BUFFER, *vbo_vertices); |
| glBufferData(GL_ARRAY_BUFFER, |
| sizeof(cube_vertices), |
| cube_vertices, |
| GL_STATIC_DRAW); |
| glBindBuffer(GL_ARRAY_BUFFER, 0); |
| } |
| |
| if (vbo_indices) { |
| glGenBuffers(1, vbo_indices); |
| glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *vbo_indices); |
| glBufferData(GL_ELEMENT_ARRAY_BUFFER, |
| sizeof(cube_indices), |
| cube_indices, |
| GL_STATIC_DRAW); |
| glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); |
| } |
| |
| return num_indices; |
| } |
| |
| GLuint LoadShader(GLenum type, |
| const char* shader_source) { |
| GLuint shader = glCreateShader(type); |
| glShaderSource(shader, 1, &shader_source, NULL); |
| glCompileShader(shader); |
| |
| GLint compiled = 0; |
| glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled); |
| |
| if (!compiled) { |
| glDeleteShader(shader); |
| return 0; |
| } |
| |
| return shader; |
| } |
| |
| GLuint LoadProgram(const char* vertext_shader_source, |
| const char* fragment_shader_source) { |
| GLuint vertex_shader = LoadShader(GL_VERTEX_SHADER, |
| vertext_shader_source); |
| if (!vertex_shader) |
| return 0; |
| |
| GLuint fragment_shader = LoadShader(GL_FRAGMENT_SHADER, |
| fragment_shader_source); |
| if (!fragment_shader) { |
| glDeleteShader(vertex_shader); |
| return 0; |
| } |
| |
| GLuint program_object = glCreateProgram(); |
| glAttachShader(program_object, vertex_shader); |
| glAttachShader(program_object, fragment_shader); |
| |
| glLinkProgram(program_object); |
| |
| glDeleteShader(vertex_shader); |
| glDeleteShader(fragment_shader); |
| |
| GLint linked = 0; |
| glGetProgramiv(program_object, GL_LINK_STATUS, &linked); |
| |
| if (!linked) { |
| glDeleteProgram(program_object); |
| return 0; |
| } |
| |
| return program_object; |
| } |
| |
| class ESMatrix { |
| public: |
| GLfloat m[4][4]; |
| |
| ESMatrix() { |
| LoadZero(); |
| } |
| |
| void LoadZero() { |
| memset(this, 0x0, sizeof(ESMatrix)); |
| } |
| |
| void LoadIdentity() { |
| LoadZero(); |
| m[0][0] = 1.0f; |
| m[1][1] = 1.0f; |
| m[2][2] = 1.0f; |
| m[3][3] = 1.0f; |
| } |
| |
| void Multiply(ESMatrix* a, ESMatrix* b) { |
| ESMatrix result; |
| for (int i = 0; i < 4; ++i) { |
| result.m[i][0] = (a->m[i][0] * b->m[0][0]) + |
| (a->m[i][1] * b->m[1][0]) + |
| (a->m[i][2] * b->m[2][0]) + |
| (a->m[i][3] * b->m[3][0]); |
| |
| result.m[i][1] = (a->m[i][0] * b->m[0][1]) + |
| (a->m[i][1] * b->m[1][1]) + |
| (a->m[i][2] * b->m[2][1]) + |
| (a->m[i][3] * b->m[3][1]); |
| |
| result.m[i][2] = (a->m[i][0] * b->m[0][2]) + |
| (a->m[i][1] * b->m[1][2]) + |
| (a->m[i][2] * b->m[2][2]) + |
| (a->m[i][3] * b->m[3][2]); |
| |
| result.m[i][3] = (a->m[i][0] * b->m[0][3]) + |
| (a->m[i][1] * b->m[1][3]) + |
| (a->m[i][2] * b->m[2][3]) + |
| (a->m[i][3] * b->m[3][3]); |
| } |
| *this = result; |
| } |
| |
| void Frustum(float left, |
| float right, |
| float bottom, |
| float top, |
| float near_z, |
| float far_z) { |
| float delta_x = right - left; |
| float delta_y = top - bottom; |
| float delta_z = far_z - near_z; |
| |
| if ((near_z <= 0.0f) || |
| (far_z <= 0.0f) || |
| (delta_z <= 0.0f) || |
| (delta_y <= 0.0f) || |
| (delta_y <= 0.0f)) |
| return; |
| |
| ESMatrix frust; |
| frust.m[0][0] = 2.0f * near_z / delta_x; |
| frust.m[0][1] = frust.m[0][2] = frust.m[0][3] = 0.0f; |
| |
| frust.m[1][1] = 2.0f * near_z / delta_y; |
| frust.m[1][0] = frust.m[1][2] = frust.m[1][3] = 0.0f; |
| |
| frust.m[2][0] = (right + left) / delta_x; |
| frust.m[2][1] = (top + bottom) / delta_y; |
| frust.m[2][2] = -(near_z + far_z) / delta_z; |
| frust.m[2][3] = -1.0f; |
| |
| frust.m[3][2] = -2.0f * near_z * far_z / delta_z; |
| frust.m[3][0] = frust.m[3][1] = frust.m[3][3] = 0.0f; |
| |
| Multiply(&frust, this); |
| } |
| |
| void Perspective(float fov_y, float aspect, float near_z, float far_z) { |
| GLfloat frustum_h = tanf(fov_y / 360.0f * kPi) * near_z; |
| GLfloat frustum_w = frustum_h * aspect; |
| Frustum(-frustum_w, frustum_w, -frustum_h, frustum_h, near_z, far_z); |
| } |
| |
| void Translate(GLfloat tx, GLfloat ty, GLfloat tz) { |
| m[3][0] += m[0][0] * tx + m[1][0] * ty + m[2][0] * tz; |
| m[3][1] += m[0][1] * tx + m[1][1] * ty + m[2][1] * tz; |
| m[3][2] += m[0][2] * tx + m[1][2] * ty + m[2][2] * tz; |
| m[3][3] += m[0][3] * tx + m[1][3] * ty + m[2][3] * tz; |
| } |
| |
| void Rotate(GLfloat angle, GLfloat x, GLfloat y, GLfloat z) { |
| GLfloat mag = sqrtf(x * x + y * y + z * z); |
| |
| GLfloat sin_angle = sinf(angle * kPi / 180.0f); |
| GLfloat cos_angle = cosf(angle * kPi / 180.0f); |
| if (mag > 0.0f) { |
| GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs; |
| GLfloat one_minus_cos; |
| ESMatrix rotation; |
| |
| x /= mag; |
| y /= mag; |
| z /= mag; |
| |
| xx = x * x; |
| yy = y * y; |
| zz = z * z; |
| xy = x * y; |
| yz = y * z; |
| zx = z * x; |
| xs = x * sin_angle; |
| ys = y * sin_angle; |
| zs = z * sin_angle; |
| one_minus_cos = 1.0f - cos_angle; |
| |
| rotation.m[0][0] = (one_minus_cos * xx) + cos_angle; |
| rotation.m[0][1] = (one_minus_cos * xy) - zs; |
| rotation.m[0][2] = (one_minus_cos * zx) + ys; |
| rotation.m[0][3] = 0.0F; |
| |
| rotation.m[1][0] = (one_minus_cos * xy) + zs; |
| rotation.m[1][1] = (one_minus_cos * yy) + cos_angle; |
| rotation.m[1][2] = (one_minus_cos * yz) - xs; |
| rotation.m[1][3] = 0.0F; |
| |
| rotation.m[2][0] = (one_minus_cos * zx) - ys; |
| rotation.m[2][1] = (one_minus_cos * yz) + xs; |
| rotation.m[2][2] = (one_minus_cos * zz) + cos_angle; |
| rotation.m[2][3] = 0.0F; |
| |
| rotation.m[3][0] = 0.0F; |
| rotation.m[3][1] = 0.0F; |
| rotation.m[3][2] = 0.0F; |
| rotation.m[3][3] = 1.0F; |
| |
| Multiply(&rotation, this); |
| } |
| } |
| }; |
| |
| float RotationForTimeDelta(float delta_time) { |
| return delta_time * 40.0f; |
| } |
| |
| float RotationForDragDistance(float drag_distance) { |
| return drag_distance / 5; // Arbitrary damping. |
| } |
| |
| } // namespace |
| |
| class SpinningCube::GLState { |
| public: |
| GLState(); |
| |
| void OnGLContextLost(); |
| |
| GLfloat angle_; // Survives losing the GL context. |
| |
| GLuint program_object_; |
| GLint position_location_; |
| GLint mvp_location_; |
| GLuint vbo_vertices_; |
| GLuint vbo_indices_; |
| int num_indices_; |
| ESMatrix mvp_matrix_; |
| }; |
| |
| SpinningCube::GLState::GLState() |
| : angle_(0) { |
| OnGLContextLost(); |
| } |
| |
| void SpinningCube::GLState::OnGLContextLost() { |
| program_object_ = 0; |
| position_location_ = 0; |
| mvp_location_ = 0; |
| vbo_vertices_ = 0; |
| vbo_indices_ = 0; |
| num_indices_ = 0; |
| } |
| |
| SpinningCube::SpinningCube() |
| : initialized_(false), |
| width_(0), |
| height_(0), |
| state_(new GLState()), |
| fling_multiplier_(1.0f), |
| direction_(1) { |
| state_->angle_ = 45.0f; |
| } |
| |
| SpinningCube::~SpinningCube() { |
| if (!initialized_) |
| return; |
| if (state_->vbo_vertices_) |
| glDeleteBuffers(1, &state_->vbo_vertices_); |
| if (state_->vbo_indices_) |
| glDeleteBuffers(1, &state_->vbo_indices_); |
| if (state_->program_object_) |
| glDeleteProgram(state_->program_object_); |
| |
| delete state_; |
| } |
| |
| void SpinningCube::Init(uint32_t width, uint32_t height) { |
| width_ = width; |
| height_ = height; |
| |
| if (!initialized_) { |
| initialized_ = true; |
| const char vertext_shader_source[] = |
| "uniform mat4 u_mvpMatrix; \n" |
| "attribute vec4 a_position; \n" |
| "void main() \n" |
| "{ \n" |
| " gl_Position = u_mvpMatrix * a_position; \n" |
| "} \n"; |
| |
| const char fragment_shader_source[] = |
| "precision mediump float; \n" |
| "void main() \n" |
| "{ \n" |
| " gl_FragColor = vec4( 0.0, 0.0, 1.0, 1.0 ); \n" |
| "} \n"; |
| |
| state_->program_object_ = LoadProgram( |
| vertext_shader_source, fragment_shader_source); |
| state_->position_location_ = glGetAttribLocation( |
| state_->program_object_, "a_position"); |
| state_->mvp_location_ = glGetUniformLocation( |
| state_->program_object_, "u_mvpMatrix"); |
| state_->num_indices_ = GenerateCube( |
| &state_->vbo_vertices_, &state_->vbo_indices_); |
| |
| glClearColor(0.0f, 0.0f, 0.0f, 0.0f); |
| } |
| } |
| |
| void SpinningCube::OnGLContextLost() { |
| // TODO(yzshen): Is it correct that in this case we don't need to do cleanup |
| // for program and buffers? |
| initialized_ = false; |
| height_ = 0; |
| width_ = 0; |
| state_->OnGLContextLost(); |
| } |
| |
| void SpinningCube::SetFlingMultiplier(float drag_distance, |
| float drag_time) { |
| fling_multiplier_ = RotationForDragDistance(drag_distance) / |
| RotationForTimeDelta(drag_time); |
| |
| } |
| |
| void SpinningCube::UpdateForTimeDelta(float delta_time) { |
| state_->angle_ += RotationForTimeDelta(delta_time) * fling_multiplier_; |
| if (state_->angle_ >= 360.0f) |
| state_->angle_ -= 360.0f; |
| |
| // Arbitrary 50-step linear reduction in spin speed. |
| if (fling_multiplier_ > 1.0f) { |
| fling_multiplier_ = |
| std::max(1.0f, fling_multiplier_ - (fling_multiplier_ - 1.0f) / 50); |
| } |
| |
| Update(); |
| } |
| |
| void SpinningCube::UpdateForDragDistance(float distance) { |
| state_->angle_ += RotationForDragDistance(distance); |
| if (state_->angle_ >= 360.0f ) |
| state_->angle_ -= 360.0f; |
| |
| Update(); |
| } |
| |
| void SpinningCube::Draw() { |
| glViewport(0, 0, width_, height_); |
| glClear(GL_COLOR_BUFFER_BIT); |
| glUseProgram(state_->program_object_); |
| glBindBuffer(GL_ARRAY_BUFFER, state_->vbo_vertices_); |
| glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, state_->vbo_indices_); |
| glVertexAttribPointer(state_->position_location_, |
| 3, |
| GL_FLOAT, |
| GL_FALSE, 3 * sizeof(GLfloat), |
| 0); |
| glEnableVertexAttribArray(state_->position_location_); |
| glUniformMatrix4fv(state_->mvp_location_, |
| 1, |
| GL_FALSE, |
| (GLfloat*) &state_->mvp_matrix_.m[0][0]); |
| glDrawElements(GL_TRIANGLES, |
| state_->num_indices_, |
| GL_UNSIGNED_SHORT, |
| 0); |
| } |
| |
| void SpinningCube::Update() { |
| float aspect = static_cast<GLfloat>(width_) / static_cast<GLfloat>(height_); |
| |
| ESMatrix perspective; |
| perspective.LoadIdentity(); |
| perspective.Perspective(60.0f, aspect, 1.0f, 20.0f ); |
| |
| ESMatrix modelview; |
| modelview.LoadIdentity(); |
| modelview.Translate(0.0, 0.0, -2.0); |
| modelview.Rotate(state_->angle_ * direction_, 1.0, 0.0, 1.0); |
| |
| state_->mvp_matrix_.Multiply(&modelview, &perspective); |
| } |