blob: 1d702f5137cfa98472431e2e63d114c4f65ebd9b [file] [log] [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/work_queue.h"
#include <optional>
#include "base/debug/alias.h"
#include "base/task/sequence_manager/fence.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/task_order.h"
#include "base/task/sequence_manager/work_queue_sets.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/container/inlined_vector.h"
namespace base {
namespace sequence_manager {
namespace internal {
WorkQueue::WorkQueue(TaskQueueImpl* task_queue,
const char* name,
QueueType queue_type)
: task_queue_(task_queue), name_(name), queue_type_(queue_type) {}
Value::List WorkQueue::AsValue(TimeTicks now) const {
Value::List state;
for (const Task& task : tasks_)
state.Append(TaskQueueImpl::TaskAsValue(task, now));
return state;
}
WorkQueue::~WorkQueue() {
DCHECK(!work_queue_sets_) << task_queue_->GetName() << " : "
<< work_queue_sets_->GetName() << " : " << name_;
}
const Task* WorkQueue::GetFrontTask() const {
if (tasks_.empty())
return nullptr;
return &tasks_.front();
}
const Task* WorkQueue::GetBackTask() const {
if (tasks_.empty())
return nullptr;
return &tasks_.back();
}
bool WorkQueue::BlockedByFence() const {
if (!fence_)
return false;
// If the queue is empty then any future tasks will have a higher enqueue
// order and will be blocked. The queue is also blocked if the head is past
// the fence.
return tasks_.empty() || tasks_.front().task_order() >= fence_->task_order();
}
std::optional<TaskOrder> WorkQueue::GetFrontTaskOrder() const {
if (tasks_.empty() || BlockedByFence())
return std::nullopt;
// Quick sanity check.
DCHECK(tasks_.front().task_order() <= tasks_.back().task_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName() << " : "
<< name_;
return tasks_.front().task_order();
}
void WorkQueue::Push(Task task) {
bool was_empty = tasks_.empty();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
// Make sure the task order is strictly increasing.
DCHECK(was_empty || tasks_.back().task_order() < task.task_order());
// Make sure enqueue order is strictly increasing for immediate queues and
// monotonically increasing for delayed queues.
DCHECK(was_empty || tasks_.back().enqueue_order() < task.enqueue_order() ||
(queue_type_ == QueueType::kDelayed &&
tasks_.back().enqueue_order() == task.enqueue_order()));
// Amortized O(1).
tasks_.push_back(std::move(task));
if (!was_empty)
return;
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence())
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
WorkQueue::TaskPusher::TaskPusher(WorkQueue* work_queue)
: work_queue_(work_queue), was_empty_(work_queue->Empty()) {}
WorkQueue::TaskPusher::TaskPusher(TaskPusher&& other)
: work_queue_(other.work_queue_), was_empty_(other.was_empty_) {
other.work_queue_ = nullptr;
}
void WorkQueue::TaskPusher::Push(Task task) {
DCHECK(work_queue_);
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
// Make sure the task order is strictly increasing.
DCHECK(work_queue_->tasks_.empty() ||
work_queue_->tasks_.back().task_order() < task.task_order());
// Make sure enqueue order is strictly increasing for immediate queues and
// monotonically increasing for delayed queues.
DCHECK(work_queue_->tasks_.empty() ||
work_queue_->tasks_.back().enqueue_order() < task.enqueue_order() ||
(work_queue_->queue_type_ == QueueType::kDelayed &&
work_queue_->tasks_.back().enqueue_order() == task.enqueue_order()));
// Amortized O(1).
work_queue_->tasks_.push_back(std::move(task));
}
WorkQueue::TaskPusher::~TaskPusher() {
// If |work_queue_| became non empty and it isn't blocked by a fence then we
// must notify |work_queue_->work_queue_sets_|.
if (was_empty_ && work_queue_ && !work_queue_->Empty() &&
work_queue_->work_queue_sets_ && !work_queue_->BlockedByFence()) {
work_queue_->work_queue_sets_->OnTaskPushedToEmptyQueue(work_queue_);
}
}
WorkQueue::TaskPusher WorkQueue::CreateTaskPusher() {
return TaskPusher(this);
}
void WorkQueue::PushNonNestableTaskToFront(Task task) {
DCHECK(task.nestable == Nestable::kNonNestable);
bool was_empty = tasks_.empty();
bool was_blocked = BlockedByFence();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
if (!was_empty) {
// Make sure the task order is strictly increasing.
DCHECK(task.task_order() < tasks_.front().task_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName()
<< " : " << name_;
// Make sure the enqueue order is strictly increasing for immediate queues
// and monotonically increasing for delayed queues.
DCHECK(task.enqueue_order() < tasks_.front().enqueue_order() ||
(queue_type_ == QueueType::kDelayed &&
task.enqueue_order() == tasks_.front().enqueue_order()))
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName()
<< " : " << name_;
}
// Amortized O(1).
tasks_.push_front(std::move(task));
if (!work_queue_sets_)
return;
// Pretend to WorkQueueSets that nothing has changed if we're blocked.
if (BlockedByFence())
return;
// Pushing task to front may unblock the fence.
if (was_empty || was_blocked) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
} else {
work_queue_sets_->OnQueuesFrontTaskChanged(this);
}
}
void WorkQueue::TakeImmediateIncomingQueueTasks() {
DCHECK(tasks_.empty());
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
if (tasks_.empty())
return;
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence())
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
Task WorkQueue::TakeTaskFromWorkQueue() {
DCHECK(work_queue_sets_);
DCHECK(!tasks_.empty());
Task pending_task = std::move(tasks_.front());
tasks_.pop_front();
// NB immediate tasks have a different pipeline to delayed ones.
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopMinQueueInSet does the
// right thing.
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
}
// Since the queue is empty, now is a good time to consider reducing it's
// capacity if we're wasting memory.
tasks_.MaybeShrinkQueue();
}
DCHECK(work_queue_sets_);
#if DCHECK_IS_ON()
// If diagnostics are on it's possible task queues are being selected at
// random so we can't use the (slightly) more efficient OnPopMinQueueInSet.
work_queue_sets_->OnQueuesFrontTaskChanged(this);
#else
// OnPopMinQueueInSet calls GetFrontTaskOrder which checks
// BlockedByFence() so we don't need to here.
work_queue_sets_->OnPopMinQueueInSet(this);
#endif
task_queue_->TraceQueueSize();
return pending_task;
}
bool WorkQueue::RemoveAllCanceledTasksFromFront() {
if (!work_queue_sets_) {
return false;
}
// Since task destructors could have a side-effect of deleting this task queue
// we move cancelled tasks into a temporary container which can be emptied
// without accessing |this|.
absl::InlinedVector<Task, 8> tasks_to_delete;
while (!tasks_.empty()) {
const auto& pending_task = tasks_.front();
if (pending_task.task && !pending_task.IsCanceled())
break;
tasks_to_delete.push_back(std::move(tasks_.front()));
tasks_.pop_front();
}
if (!tasks_to_delete.empty()) {
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopMinQueueInSet does the
// right thing.
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
}
// Since the queue is empty, now is a good time to consider reducing it's
// capacity if we're wasting memory.
tasks_.MaybeShrinkQueue();
}
// If we have a valid |heap_handle_| (i.e. we're not blocked by a fence or
// disabled) then |work_queue_sets_| needs to be told.
if (heap_handle_.IsValid())
work_queue_sets_->OnQueuesFrontTaskChanged(this);
task_queue_->TraceQueueSize();
}
return !tasks_to_delete.empty();
}
void WorkQueue::AssignToWorkQueueSets(WorkQueueSets* work_queue_sets) {
work_queue_sets_ = work_queue_sets;
}
void WorkQueue::AssignSetIndex(size_t work_queue_set_index) {
work_queue_set_index_ = work_queue_set_index;
}
bool WorkQueue::InsertFenceImpl(Fence fence) {
DCHECK(!fence_ || fence.task_order() >= fence_->task_order() ||
fence.IsBlockingFence());
bool was_blocked_by_fence = BlockedByFence();
fence_ = fence;
return was_blocked_by_fence;
}
void WorkQueue::InsertFenceSilently(Fence fence) {
// Ensure that there is no fence present or a new one blocks queue completely.
DCHECK(!fence_ || fence_->IsBlockingFence());
InsertFenceImpl(fence);
}
bool WorkQueue::InsertFence(Fence fence) {
bool was_blocked_by_fence = InsertFenceImpl(fence);
if (!work_queue_sets_)
return false;
// Moving the fence forward may unblock some tasks.
if (!tasks_.empty() && was_blocked_by_fence && !BlockedByFence()) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
// Fence insertion may have blocked all tasks in this work queue.
if (BlockedByFence())
work_queue_sets_->OnQueueBlocked(this);
return false;
}
bool WorkQueue::RemoveFence() {
bool was_blocked_by_fence = BlockedByFence();
fence_ = std::nullopt;
if (work_queue_sets_ && !tasks_.empty() && was_blocked_by_fence) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
return false;
}
void WorkQueue::MaybeShrinkQueue() {
tasks_.MaybeShrinkQueue();
}
void WorkQueue::PopTaskForTesting() {
if (tasks_.empty())
return;
tasks_.pop_front();
}
void WorkQueue::CollectTasksOlderThan(TaskOrder reference,
std::vector<const Task*>* result) const {
for (const Task& task : tasks_) {
if (task.task_order() >= reference)
break;
result->push_back(&task);
}
}
} // namespace internal
} // namespace sequence_manager
} // namespace base