blob: 20589f38279830823b94290805dfd0fc358611ad [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CPU_H_
#define BASE_CPU_H_
#include <cstdint>
#include <string>
#include "base/base_export.h"
#include "build/build_config.h"
namespace base {
#if defined(ARCH_CPU_X86_FAMILY)
namespace internal {
struct X86ModelInfo {
int family;
int model;
int ext_family;
int ext_model;
};
// Compute the CPU family and model based on the vendor and CPUID signature.
BASE_EXPORT X86ModelInfo ComputeX86FamilyAndModel(const std::string& vendor,
int signature);
} // namespace internal
#endif // defined(ARCH_CPU_X86_FAMILY)
// Query information about the processor.
class BASE_EXPORT CPU final {
public:
CPU();
CPU(CPU&&);
CPU(const CPU&) = delete;
// Get a preallocated instance of CPU.
// It can be used in very early application startup or in memory allocation
// handlers. The instance of CPU is created without branding, see `CPU(bool
// requires_branding)` for details and implications.
//
// Support for various security features such as Arm's BTI and MTE uses this
// instance to detect CPU support. To prevent any attempt
// to disable a feature by attacking this data, base::ProtectedMemory is used
// to protected it from write accesses.
// Note that base::ProtectedMemory falls back to unprotected memory if the
// target OS is not supported.
static const CPU& GetInstanceNoAllocation();
enum IntelMicroArchitecture {
PENTIUM = 0,
SSE = 1,
SSE2 = 2,
SSE3 = 3,
SSSE3 = 4,
SSE41 = 5,
SSE42 = 6,
AVX = 7,
AVX2 = 8,
FMA3 = 9,
MAX_INTEL_MICRO_ARCHITECTURE = 10
};
// Accessors for CPU information.
std::string vendor_name() const { return cpu_vendor_; }
int signature() const { return signature_; }
int stepping() const { return stepping_; }
int model() const { return model_; }
int family() const { return family_; }
int type() const { return type_; }
int extended_model() const { return ext_model_; }
int extended_family() const { return ext_family_; }
bool has_mmx() const { return has_mmx_; }
bool has_sse() const { return has_sse_; }
bool has_sse2() const { return has_sse2_; }
bool has_sse3() const { return has_sse3_; }
bool has_ssse3() const { return has_ssse3_; }
bool has_sse41() const { return has_sse41_; }
bool has_sse42() const { return has_sse42_; }
bool has_popcnt() const { return has_popcnt_; }
bool has_avx() const { return has_avx_; }
bool has_fma3() const { return has_fma3_; }
bool has_avx2() const { return has_avx2_; }
bool has_aesni() const { return has_aesni_; }
bool has_non_stop_time_stamp_counter() const {
return has_non_stop_time_stamp_counter_;
}
bool is_running_in_vm() const { return is_running_in_vm_; }
#if defined(ARCH_CPU_ARM_FAMILY)
// The cpuinfo values for ARM cores are from the MIDR_EL1 register, a
// bitfield whose format is described in the core-specific manuals. E.g.,
// ARM Cortex-A57:
// https://developer.arm.com/documentation/ddi0488/h/system-control/aarch64-register-descriptions/main-id-register--el1.
uint8_t implementer() const { return implementer_; }
uint32_t part_number() const { return part_number_; }
#endif
// Armv8.5-A extensions for control flow and memory safety.
#if defined(ARCH_CPU_ARM_FAMILY)
bool has_mte() const { return has_mte_; }
bool has_bti() const { return has_bti_; }
#else
constexpr bool has_mte() const { return false; }
constexpr bool has_bti() const { return false; }
#endif
#if defined(ARCH_CPU_X86_FAMILY)
// Memory protection key support for user-mode pages
bool has_pku() const { return has_pku_; }
#else
constexpr bool has_pku() const { return false; }
#endif
#if defined(ARCH_CPU_X86_FAMILY)
IntelMicroArchitecture GetIntelMicroArchitecture() const;
#endif
std::string cpu_brand() const { return cpu_brand_; }
private:
// Query the processor for CPUID information.
void Initialize(bool requires_branding);
explicit CPU(bool requires_branding);
int signature_ = 0; // raw form of type, family, model, and stepping
int type_ = 0; // process type
int family_ = 0; // family of the processor
int model_ = 0; // model of processor
int stepping_ = 0; // processor revision number
int ext_model_ = 0;
int ext_family_ = 0;
#if defined(ARCH_CPU_ARM_FAMILY)
uint32_t part_number_ = 0; // ARM MIDR part number
uint8_t implementer_ = 0; // ARM MIDR implementer identifier
#endif
bool has_mmx_ = false;
bool has_sse_ = false;
bool has_sse2_ = false;
bool has_sse3_ = false;
bool has_ssse3_ = false;
bool has_sse41_ = false;
bool has_sse42_ = false;
bool has_popcnt_ = false;
bool has_avx_ = false;
bool has_fma3_ = false;
bool has_avx2_ = false;
bool has_aesni_ = false;
#if defined(ARCH_CPU_ARM_FAMILY)
bool has_mte_ = false; // Armv8.5-A MTE (Memory Taggging Extension)
bool has_bti_ = false; // Armv8.5-A BTI (Branch Target Identification)
#endif
#if defined(ARCH_CPU_X86_FAMILY)
bool has_pku_ = false;
#endif
bool has_non_stop_time_stamp_counter_ = false;
bool is_running_in_vm_ = false;
// The CPUID instruction of the X86 instruction set returns the vendor name in
// 3 32bit registers, which make 12 characters. See "Intel® 64 and IA-32
// Architectures Software Developer’s Manual - Volume 2".
static constexpr size_t kVendorNameSize = 12;
char cpu_vendor_[kVendorNameSize + 1] = "unknown";
// The CPUID instruction of the X86 instruction set returns the brand name in
// 3*4 32bit registers, which make 48 characters. See "Intel® 64 and IA-32
// Architectures Software Developer’s Manual - Volume 2".
static constexpr size_t kBrandNameSize = 48;
char cpu_brand_[kBrandNameSize + 1] = "\0";
};
} // namespace base
#endif // BASE_CPU_H_