blob: 72796528d9e2226491a8fae00e6fe44b6c7b628b [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/websockets/websocket_frame.h"
#include <stddef.h>
#include <string.h>
#include <ostream>
#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/containers/span_writer.h"
#include "base/numerics/safe_conversions.h"
#include "base/rand_util.h"
#include "base/ranges/algorithm.h"
#include "base/strings/string_util.h"
#include "build/build_config.h"
#include "net/base/net_errors.h"
#include "net/websockets/websocket_errors.h"
namespace net {
namespace {
// GCC (and Clang) can transparently use vector ops. Only try to do this on
// architectures where we know it works, otherwise gcc will attempt to emulate
// the vector ops, which is unlikely to be efficient.
#if defined(COMPILER_GCC) && \
(defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY))
using PackedMaskType = uint32_t __attribute__((vector_size(16)));
#else
using PackedMaskType = size_t;
#endif // defined(COMPILER_GCC) &&
// (defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY))
constexpr size_t kWebSocketCloseCodeLength = 2;
constexpr uint8_t kFinalBit = 0x80;
constexpr uint8_t kReserved1Bit = 0x40;
constexpr uint8_t kReserved2Bit = 0x20;
constexpr uint8_t kReserved3Bit = 0x10;
constexpr uint8_t kOpCodeMask = 0xF;
constexpr uint8_t kMaskBit = 0x80;
constexpr uint64_t kMaxPayloadLengthWithoutExtendedLengthField = 125;
constexpr uint64_t kPayloadLengthWithTwoByteExtendedLengthField = 126;
constexpr uint64_t kPayloadLengthWithEightByteExtendedLengthField = 127;
inline void MaskWebSocketFramePayloadByBytes(
const WebSocketMaskingKey& masking_key,
size_t masking_key_offset,
const base::span<uint8_t> payload) {
uint8_t* data = payload.data();
const size_t size = payload.size();
for (size_t i = 0; i < size; ++i) {
// SAFETY: Performance sensitive. `data` is within `payload` bounds.
UNSAFE_BUFFERS(data[i]) ^=
masking_key.key[masking_key_offset++ %
WebSocketFrameHeader::kMaskingKeyLength];
}
}
} // namespace
std::unique_ptr<WebSocketFrameHeader> WebSocketFrameHeader::Clone() const {
auto ret = std::make_unique<WebSocketFrameHeader>(opcode);
ret->CopyFrom(*this);
return ret;
}
void WebSocketFrameHeader::CopyFrom(const WebSocketFrameHeader& source) {
final = source.final;
reserved1 = source.reserved1;
reserved2 = source.reserved2;
reserved3 = source.reserved3;
opcode = source.opcode;
masked = source.masked;
masking_key = source.masking_key;
payload_length = source.payload_length;
}
WebSocketFrame::WebSocketFrame(WebSocketFrameHeader::OpCode opcode)
: header(opcode) {}
WebSocketFrame::~WebSocketFrame() = default;
WebSocketFrameChunk::WebSocketFrameChunk() = default;
WebSocketFrameChunk::~WebSocketFrameChunk() = default;
size_t GetWebSocketFrameHeaderSize(const WebSocketFrameHeader& header) {
size_t extended_length_size = 0u;
if (header.payload_length > kMaxPayloadLengthWithoutExtendedLengthField &&
header.payload_length <= UINT16_MAX) {
extended_length_size = 2u;
} else if (header.payload_length > UINT16_MAX) {
extended_length_size = 8u;
}
return (WebSocketFrameHeader::kBaseHeaderSize + extended_length_size +
(header.masked ? WebSocketFrameHeader::kMaskingKeyLength : 0u));
}
int WriteWebSocketFrameHeader(const WebSocketFrameHeader& header,
const WebSocketMaskingKey* masking_key,
base::span<uint8_t> buffer) {
DCHECK((header.opcode & kOpCodeMask) == header.opcode)
<< "header.opcode must fit to kOpCodeMask.";
DCHECK(header.payload_length <= static_cast<uint64_t>(INT64_MAX))
<< "WebSocket specification doesn't allow a frame longer than "
<< "INT64_MAX (0x7FFFFFFFFFFFFFFF) bytes.";
// WebSocket frame format is as follows:
// - Common header (2 bytes)
// - Optional extended payload length
// (2 or 8 bytes, present if actual payload length is more than 125 bytes)
// - Optional masking key (4 bytes, present if MASK bit is on)
// - Actual payload (XOR masked with masking key if MASK bit is on)
//
// This function constructs frame header (the first three in the list
// above).
size_t header_size = GetWebSocketFrameHeaderSize(header);
if (header_size > buffer.size()) {
return ERR_INVALID_ARGUMENT;
}
base::SpanWriter writer(buffer);
uint8_t first_byte = 0u;
first_byte |= header.final ? kFinalBit : 0u;
first_byte |= header.reserved1 ? kReserved1Bit : 0u;
first_byte |= header.reserved2 ? kReserved2Bit : 0u;
first_byte |= header.reserved3 ? kReserved3Bit : 0u;
first_byte |= header.opcode & kOpCodeMask;
writer.WriteU8BigEndian(first_byte);
int extended_length_size = 0;
uint8_t second_byte = 0u;
second_byte |= header.masked ? kMaskBit : 0u;
if (header.payload_length <= kMaxPayloadLengthWithoutExtendedLengthField) {
second_byte |= header.payload_length;
} else if (header.payload_length <= UINT16_MAX) {
second_byte |= kPayloadLengthWithTwoByteExtendedLengthField;
extended_length_size = 2;
} else {
second_byte |= kPayloadLengthWithEightByteExtendedLengthField;
extended_length_size = 8;
}
writer.WriteU8BigEndian(second_byte);
// Writes "extended payload length" field.
if (extended_length_size == 2) {
writer.WriteU16BigEndian(static_cast<uint16_t>(header.payload_length));
} else if (extended_length_size == 8) {
writer.WriteU64BigEndian(header.payload_length);
}
// Writes "masking key" field, if needed.
if (header.masked) {
DCHECK(masking_key);
writer.Write(masking_key->key);
} else {
DCHECK(!masking_key);
}
// Verify we wrote the expected number of bytes.
DCHECK_EQ(header_size, writer.num_written());
return header_size;
}
WebSocketMaskingKey GenerateWebSocketMaskingKey() {
// Masking keys should be generated from a cryptographically secure random
// number generator, which means web application authors should not be able
// to guess the next value of masking key.
WebSocketMaskingKey masking_key;
base::RandBytes(masking_key.key);
return masking_key;
}
void MaskWebSocketFramePayload(const WebSocketMaskingKey& masking_key,
uint64_t frame_offset,
base::span<uint8_t> data) {
static constexpr size_t kMaskingKeyLength =
WebSocketFrameHeader::kMaskingKeyLength;
// Most of the masking is done in chunks of sizeof(PackedMaskType), except for
// the beginning and the end of the buffer which may be unaligned.
// PackedMaskType must be a multiple of kMaskingKeyLength in size.
PackedMaskType packed_mask_key;
static constexpr size_t kPackedMaskKeySize = sizeof(packed_mask_key);
static_assert((kPackedMaskKeySize >= kMaskingKeyLength &&
kPackedMaskKeySize % kMaskingKeyLength == 0),
"PackedMaskType size is not a multiple of mask length");
// If the buffer is too small for the vectorised version to be useful, revert
// to the byte-at-a-time implementation early.
if (data.size() <= kPackedMaskKeySize * 2) {
MaskWebSocketFramePayloadByBytes(masking_key,
frame_offset % kMaskingKeyLength, data);
return;
}
const size_t data_modulus =
reinterpret_cast<size_t>(data.data()) % kPackedMaskKeySize;
auto [before_aligned, remaining] = data.split_at(
data_modulus == 0 ? 0 : (kPackedMaskKeySize - data_modulus));
auto [aligned, after_aligned] = remaining.split_at(
remaining.size() - remaining.size() % kPackedMaskKeySize);
MaskWebSocketFramePayloadByBytes(
masking_key, frame_offset % kMaskingKeyLength, before_aligned);
// Create a version of the mask which is rotated by the appropriate offset
// for our alignment. The "trick" here is that 0 XORed with the mask will
// give the value of the mask for the appropriate byte.
std::array<uint8_t, kMaskingKeyLength> realigned_mask = {};
MaskWebSocketFramePayloadByBytes(
masking_key, (frame_offset + before_aligned.size()) % kMaskingKeyLength,
base::as_writable_byte_span(realigned_mask));
base::span<uint8_t> packed_span = base::byte_span_from_ref(packed_mask_key);
while (!packed_span.empty()) {
packed_span.copy_prefix_from(realigned_mask);
packed_span = packed_span.subspan(realigned_mask.size());
}
// The main loop.
while (!aligned.empty()) {
// This is not quite standard-compliant C++. However, the standard-compliant
// equivalent (using memcpy()) compiles to slower code using g++. In
// practice, this will work for the compilers and architectures currently
// supported by Chromium, and the tests are extremely unlikely to pass if a
// future compiler/architecture breaks it.
*reinterpret_cast<PackedMaskType*>(aligned.data()) ^= packed_mask_key;
aligned = aligned.subspan(kPackedMaskKeySize);
}
MaskWebSocketFramePayloadByBytes(
masking_key,
(frame_offset + (data.size() - after_aligned.size())) % kMaskingKeyLength,
after_aligned);
}
ParseCloseFrameResult ParseCloseFrame(base::span<const char> payload) {
const uint64_t size = static_cast<uint64_t>(payload.size());
// Payload size is 0 -> No status received
if (size == 0U) {
return ParseCloseFrameResult(kWebSocketErrorNoStatusReceived,
std::string_view());
}
// Payload size is 1 -> Protocol error (invalid size)
if (size == 1U) {
return ParseCloseFrameResult(
kWebSocketErrorProtocolError, std::string_view(),
"Received a broken close frame with an invalid size of 1 byte.");
}
// Get the status code from the first 2 bytes
const uint16_t unchecked_code =
base::U16FromBigEndian(base::as_byte_span(payload).first<2>());
// Invalid or reserved status codes
if (unchecked_code == kWebSocketErrorNoStatusReceived ||
unchecked_code == kWebSocketErrorAbnormalClosure ||
unchecked_code == kWebSocketErrorTlsHandshake) {
return ParseCloseFrameResult(kWebSocketErrorProtocolError,
std::string_view(),
"Received a broken close frame containing a "
"reserved status code.");
}
// If size is exactly 2, return the code without a reason
if (size == 2U) {
return ParseCloseFrameResult(unchecked_code, std::string_view());
}
const base::span<const char> reason_span =
payload.subspan(kWebSocketCloseCodeLength);
const auto reason = base::as_string_view(reason_span);
if (base::IsStringUTF8AllowingNoncharacters(reason)) {
return ParseCloseFrameResult(unchecked_code, reason);
}
return ParseCloseFrameResult(
kWebSocketErrorProtocolError,
std::string_view("Invalid UTF-8 in Close frame"),
"Received a broken close frame containing invalid UTF-8.");
}
} // namespace net