blob: 4ef643e614fdf8c82ef8f48a57012e2704fc00dc [file] [log] [blame]
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "net/websockets/websocket_frame.h"
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>
#include <string>
#include <string_view>
#include <vector>
#include "base/containers/span.h"
#include "base/memory/aligned_memory.h"
#include "base/ranges/algorithm.h"
#include "net/base/net_errors.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace {
TEST(WebSocketFrameHeaderTest, FrameLengths) {
struct TestCase {
const std::string_view frame_header;
uint64_t frame_length;
};
static constexpr TestCase kTests[] = {
{{"\x81\x00", 2}, UINT64_C(0)},
{{"\x81\x7D", 2}, UINT64_C(125)},
{{"\x81\x7E\x00\x7E", 4}, UINT64_C(126)},
{{"\x81\x7E\xFF\xFF", 4}, UINT64_C(0xFFFF)},
{{"\x81\x7F\x00\x00\x00\x00\x00\x01\x00\x00", 10}, UINT64_C(0x10000)},
{{"\x81\x7F\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 10},
UINT64_C(0x7FFFFFFFFFFFFFFF)}};
for (const auto& test : kTests) {
WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
header.final = true;
header.payload_length = test.frame_length;
std::vector<char> expected_output(test.frame_header.begin(),
test.frame_header.end());
std::vector<char> output(expected_output.size());
EXPECT_EQ(static_cast<int>(expected_output.size()),
WriteWebSocketFrameHeader(header, nullptr,
base::as_writable_byte_span(output)));
EXPECT_EQ(expected_output, output);
}
}
TEST(WebSocketFrameHeaderTest, FrameLengthsWithMasking) {
static constexpr std::string_view kMaskingKey = "\xDE\xAD\xBE\xEF";
static_assert(kMaskingKey.size() == WebSocketFrameHeader::kMaskingKeyLength,
"incorrect masking key size");
struct TestCase {
const std::string_view frame_header;
uint64_t frame_length;
};
static constexpr TestCase kTests[] = {
{{"\x81\x80\xDE\xAD\xBE\xEF", 6}, UINT64_C(0)},
{{"\x81\xFD\xDE\xAD\xBE\xEF", 6}, UINT64_C(125)},
{{"\x81\xFE\x00\x7E\xDE\xAD\xBE\xEF", 8}, UINT64_C(126)},
{{"\x81\xFE\xFF\xFF\xDE\xAD\xBE\xEF", 8}, UINT64_C(0xFFFF)},
{{"\x81\xFF\x00\x00\x00\x00\x00\x01\x00\x00\xDE\xAD\xBE\xEF", 14},
UINT64_C(0x10000)},
{{"\x81\xFF\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xDE\xAD\xBE\xEF", 14},
UINT64_C(0x7FFFFFFFFFFFFFFF)}};
WebSocketMaskingKey masking_key;
base::as_writable_byte_span(masking_key.key)
.copy_from(base::as_byte_span(kMaskingKey));
for (const auto& test : kTests) {
WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
header.final = true;
header.masked = true;
header.payload_length = test.frame_length;
std::vector<char> expected_output(test.frame_header.begin(),
test.frame_header.end());
std::vector<char> output(expected_output.size());
EXPECT_EQ(static_cast<int>(expected_output.size()),
WriteWebSocketFrameHeader(header, &masking_key,
base::as_writable_byte_span(output)));
EXPECT_EQ(expected_output, output);
}
}
TEST(WebSocketFrameHeaderTest, FrameOpCodes) {
struct TestCase {
const std::string_view frame_header;
WebSocketFrameHeader::OpCode opcode;
};
static constexpr TestCase kTests[] = {
{{"\x80\x00", 2}, WebSocketFrameHeader::kOpCodeContinuation},
{{"\x81\x00", 2}, WebSocketFrameHeader::kOpCodeText},
{{"\x82\x00", 2}, WebSocketFrameHeader::kOpCodeBinary},
{{"\x88\x00", 2}, WebSocketFrameHeader::kOpCodeClose},
{{"\x89\x00", 2}, WebSocketFrameHeader::kOpCodePing},
{{"\x8A\x00", 2}, WebSocketFrameHeader::kOpCodePong},
// These are undefined opcodes, but the builder should accept them anyway.
{{"\x83\x00", 2}, 0x3},
{{"\x84\x00", 2}, 0x4},
{{"\x85\x00", 2}, 0x5},
{{"\x86\x00", 2}, 0x6},
{{"\x87\x00", 2}, 0x7},
{{"\x8B\x00", 2}, 0xB},
{{"\x8C\x00", 2}, 0xC},
{{"\x8D\x00", 2}, 0xD},
{{"\x8E\x00", 2}, 0xE},
{{"\x8F\x00", 2}, 0xF}};
for (const auto& test : kTests) {
WebSocketFrameHeader header(test.opcode);
header.final = true;
header.payload_length = 0;
std::vector<char> expected_output(test.frame_header.begin(),
test.frame_header.end());
std::vector<char> output(expected_output.size());
EXPECT_EQ(static_cast<int>(expected_output.size()),
WriteWebSocketFrameHeader(header, nullptr,
base::as_writable_byte_span(output)));
EXPECT_EQ(expected_output, output);
}
}
TEST(WebSocketFrameHeaderTest, FinalBitAndReservedBits) {
struct TestCase {
const std::string_view frame_header;
bool final;
bool reserved1;
bool reserved2;
bool reserved3;
};
static constexpr TestCase kTests[] = {
{{"\x81\x00", 2}, true, false, false, false},
{{"\x01\x00", 2}, false, false, false, false},
{{"\xC1\x00", 2}, true, true, false, false},
{{"\xA1\x00", 2}, true, false, true, false},
{{"\x91\x00", 2}, true, false, false, true},
{{"\x71\x00", 2}, false, true, true, true},
{{"\xF1\x00", 2}, true, true, true, true}};
for (const auto& test : kTests) {
WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
header.final = test.final;
header.reserved1 = test.reserved1;
header.reserved2 = test.reserved2;
header.reserved3 = test.reserved3;
header.payload_length = 0;
std::vector<char> expected_output(test.frame_header.begin(),
test.frame_header.end());
std::vector<char> output(expected_output.size());
EXPECT_EQ(static_cast<int>(expected_output.size()),
WriteWebSocketFrameHeader(header, nullptr,
base::as_writable_byte_span(output)));
EXPECT_EQ(expected_output, output);
}
}
TEST(WebSocketFrameHeaderTest, InsufficientBufferSize) {
struct TestCase {
uint64_t payload_length;
bool masked;
size_t expected_header_size;
};
static constexpr TestCase kTests[] = {
{UINT64_C(0), false, 2u},
{UINT64_C(125), false, 2u},
{UINT64_C(126), false, 4u},
{UINT64_C(0xFFFF), false, 4u},
{UINT64_C(0x10000), false, 10u},
{UINT64_C(0x7FFFFFFFFFFFFFFF), false, 10u},
{UINT64_C(0), true, 6u},
{UINT64_C(125), true, 6u},
{UINT64_C(126), true, 8u},
{UINT64_C(0xFFFF), true, 8u},
{UINT64_C(0x10000), true, 14u},
{UINT64_C(0x7FFFFFFFFFFFFFFF), true, 14u}};
for (const auto& test : kTests) {
WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
header.final = true;
header.opcode = WebSocketFrameHeader::kOpCodeText;
header.masked = test.masked;
header.payload_length = test.payload_length;
std::array<uint8_t, 14> dummy_buffer;
// Set an insufficient size to |buffer_size|.
EXPECT_EQ(
ERR_INVALID_ARGUMENT,
WriteWebSocketFrameHeader(
header, nullptr,
base::span(dummy_buffer).first(test.expected_header_size - 1)));
}
}
TEST(WebSocketFrameTest, MaskPayload) {
struct TestCase {
const std::string_view masking_key;
uint64_t frame_offset;
const char* input;
const char* output;
size_t data_length;
};
static constexpr TestCase kTests[] = {
{"\xDE\xAD\xBE\xEF", 0, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6},
{"\xDE\xAD\xBE\xEF", 1, "FooBar", "\xEB\xD1\x80\x9C\xCC\xCC", 6},
{"\xDE\xAD\xBE\xEF", 2, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6},
{"\xDE\xAD\xBE\xEF", 3, "FooBar", "\xA9\xB1\xC2\xFC\x8E\xAC", 6},
{"\xDE\xAD\xBE\xEF", 4, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6},
{"\xDE\xAD\xBE\xEF", 42, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6},
{"\xDE\xAD\xBE\xEF", 0, "", "", 0},
{"\xDE\xAD\xBE\xEF", 0, "\xDE\xAD\xBE\xEF", "\x00\x00\x00\x00", 4},
{"\xDE\xAD\xBE\xEF", 0, "\x00\x00\x00\x00", "\xDE\xAD\xBE\xEF", 4},
{{"\x00\x00\x00\x00", WebSocketFrameHeader::kMaskingKeyLength},
0,
"FooBar",
"FooBar",
6},
{"\xFF\xFF\xFF\xFF", 0, "FooBar", "\xB9\x90\x90\xBD\x9E\x8D", 6},
};
for (const auto& test : kTests) {
WebSocketMaskingKey masking_key;
base::as_writable_byte_span(masking_key.key)
.copy_from(base::as_byte_span(test.masking_key));
std::vector<char> frame_data(test.input, test.input + test.data_length);
std::vector<char> expected_output(test.output,
test.output + test.data_length);
MaskWebSocketFramePayload(masking_key, test.frame_offset,
base::as_writable_byte_span(frame_data));
EXPECT_EQ(expected_output, frame_data);
}
}
// Check that all combinations of alignment, frame offset and chunk size work
// correctly for MaskWebSocketFramePayload(). This is mainly used to ensure that
// vectorisation optimisations don't break anything. We could take a "white box"
// approach and only test the edge cases, but since the exhaustive "black box"
// approach runs in acceptable time, we don't have to take the risk of being
// clever.
//
// This brute-force approach runs in O(N^3) time where N is the size of the
// maximum vector size we want to test again. This might need reconsidering if
// MaskWebSocketFramePayload() is ever optimised for a dedicated vector
// architecture.
TEST(WebSocketFrameTest, MaskPayloadAlignment) {
// This reflects what might be implemented in the future, rather than
// the current implementation. FMA3 and FMA4 support 256-bit vector ops.
static constexpr size_t kMaxVectorSizeInBits = 256;
static constexpr size_t kMaxVectorSize = kMaxVectorSizeInBits / 8;
static constexpr size_t kMaxVectorAlignment = kMaxVectorSize;
static constexpr size_t kMaskingKeyLength =
WebSocketFrameHeader::kMaskingKeyLength;
static constexpr size_t kScratchBufferSize =
kMaxVectorAlignment + kMaxVectorSize * 2;
static constexpr std::string_view kTestMask = "\xd2\xba\x5a\xbe";
// We use 786 bits of random input to reduce the risk of correlated errors.
static constexpr char kTestInput[] = {
"\x3d\x77\x1d\x1b\x19\x8c\x48\xa3\x19\x6d\xf7\xcc\x39\xe7\x57\x0b"
"\x69\x8c\xda\x4b\xfc\xac\x2c\xd3\x49\x96\x6e\x8a\x7b\x5a\x32\x76"
"\xd0\x11\x43\xa0\x89\xfc\x76\x2b\x10\x2f\x4c\x7b\x4f\xa6\xdd\xe4"
"\xfc\x8e\xd8\x72\xcf\x7e\x37\xcd\x31\xcd\xc1\xc0\x89\x0c\xa7\x4c"
"\xda\xa8\x4b\x75\xa1\xcb\xa9\x77\x19\x4d\x6e\xdf\xc8\x08\x1c\xb6"
"\x6d\xfb\x38\x04\x44\xd5\xba\x57\x9f\x76\xb0\x2e\x07\x91\xe6\xa8"};
static constexpr size_t kTestInputSize = std::size(kTestInput) - 1;
static constexpr char kTestOutput[] = {
"\xef\xcd\x47\xa5\xcb\x36\x12\x1d\xcb\xd7\xad\x72\xeb\x5d\x0d\xb5"
"\xbb\x36\x80\xf5\x2e\x16\x76\x6d\x9b\x2c\x34\x34\xa9\xe0\x68\xc8"
"\x02\xab\x19\x1e\x5b\x46\x2c\x95\xc2\x95\x16\xc5\x9d\x1c\x87\x5a"
"\x2e\x34\x82\xcc\x1d\xc4\x6d\x73\xe3\x77\x9b\x7e\x5b\xb6\xfd\xf2"
"\x08\x12\x11\xcb\x73\x71\xf3\xc9\xcb\xf7\x34\x61\x1a\xb2\x46\x08"
"\xbf\x41\x62\xba\x96\x6f\xe0\xe9\x4d\xcc\xea\x90\xd5\x2b\xbc\x16"};
static_assert(std::size(kTestInput) == std::size(kTestOutput),
"output and input arrays should have the same length");
std::unique_ptr<char, base::AlignedFreeDeleter> scratch(static_cast<char*>(
base::AlignedAlloc(kScratchBufferSize, kMaxVectorAlignment)));
WebSocketMaskingKey masking_key;
base::as_writable_byte_span(masking_key.key)
.copy_from(base::as_byte_span(kTestMask));
for (size_t frame_offset = 0; frame_offset < kMaskingKeyLength;
++frame_offset) {
for (size_t alignment = 0; alignment < kMaxVectorAlignment; ++alignment) {
char* const aligned_scratch = scratch.get() + alignment;
const size_t aligned_len = std::min(kScratchBufferSize - alignment,
kTestInputSize - frame_offset);
for (size_t chunk_size = 1; chunk_size < kMaxVectorSize; ++chunk_size) {
memcpy(aligned_scratch, kTestInput + frame_offset, aligned_len);
for (size_t chunk_start = 0; chunk_start < aligned_len;
chunk_start += chunk_size) {
const size_t this_chunk_size =
std::min(chunk_size, aligned_len - chunk_start);
MaskWebSocketFramePayload(
masking_key, frame_offset + chunk_start,
base::as_writable_bytes(base::make_span(
aligned_scratch + chunk_start, this_chunk_size)));
}
// Stop the test if it fails, since we don't want to spew thousands of
// failures.
ASSERT_TRUE(std::equal(aligned_scratch,
aligned_scratch + aligned_len,
kTestOutput + frame_offset))
<< "Output failed to match for frame_offset=" << frame_offset
<< ", alignment=" << alignment << ", chunk_size=" << chunk_size;
}
}
}
}
// "IsKnownDataOpCode" is currently implemented in an "obviously correct"
// manner, but we test is anyway in case it changes to a more complex
// implementation in future.
TEST(WebSocketFrameHeaderTest, IsKnownDataOpCode) {
// Make the test less verbose.
using Frame = WebSocketFrameHeader;
// Known opcode, is used for data frames
EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeContinuation));
EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeText));
EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeBinary));
// Known opcode, is used for control frames
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeClose));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePing));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePong));
// Check that unused opcodes return false
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused3));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused4));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused5));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused6));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused7));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnusedB));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnusedC));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnusedD));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnusedE));
EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnusedF));
// Check that out-of-range opcodes return false
EXPECT_FALSE(Frame::IsKnownDataOpCode(-1));
EXPECT_FALSE(Frame::IsKnownDataOpCode(0xFF));
}
// "IsKnownControlOpCode" is implemented in an "obviously correct" manner but
// might be optimised in future.
TEST(WebSocketFrameHeaderTest, IsKnownControlOpCode) {
// Make the test less verbose.
using Frame = WebSocketFrameHeader;
// Known opcode, is used for data frames
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeContinuation));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeText));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeBinary));
// Known opcode, is used for control frames
EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodeClose));
EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePing));
EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePong));
// Check that unused opcodes return false
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused3));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused4));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused5));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused6));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused7));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnusedB));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnusedC));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnusedD));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnusedE));
EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnusedF));
// Check that out-of-range opcodes return false
EXPECT_FALSE(Frame::IsKnownControlOpCode(-1));
EXPECT_FALSE(Frame::IsKnownControlOpCode(0xFF));
}
// Test for reserved data opcodes.
TEST(WebSocketFrameHeaderTest, IsReservedDataOpCode) {
using Frame = WebSocketFrameHeader;
// Known opcodes for data frames should not be reserved.
EXPECT_FALSE(Frame::IsReservedDataOpCode(Frame::kOpCodeContinuation));
EXPECT_FALSE(Frame::IsReservedDataOpCode(Frame::kOpCodeText));
EXPECT_FALSE(Frame::IsReservedDataOpCode(Frame::kOpCodeBinary));
// Unused opcodes in the data frame range should be considered reserved.
EXPECT_TRUE(Frame::IsReservedDataOpCode(Frame::kOpCodeDataUnused3));
EXPECT_TRUE(Frame::IsReservedDataOpCode(Frame::kOpCodeDataUnused4));
EXPECT_TRUE(Frame::IsReservedDataOpCode(Frame::kOpCodeDataUnused5));
EXPECT_TRUE(Frame::IsReservedDataOpCode(Frame::kOpCodeDataUnused6));
EXPECT_TRUE(Frame::IsReservedDataOpCode(Frame::kOpCodeDataUnused7));
// Known opcodes for control frames should not be considered reserved data
// opcodes.
EXPECT_FALSE(Frame::IsReservedDataOpCode(Frame::kOpCodeClose));
EXPECT_FALSE(Frame::IsReservedDataOpCode(Frame::kOpCodePing));
EXPECT_FALSE(Frame::IsReservedDataOpCode(Frame::kOpCodePong));
// Out-of-range opcodes should not be considered reserved data opcodes.
EXPECT_FALSE(Frame::IsReservedDataOpCode(-1));
EXPECT_FALSE(Frame::IsReservedDataOpCode(0xFF));
}
// Test for reserved control opcodes.
TEST(WebSocketFrameHeaderTest, IsReservedControlOpCode) {
using Frame = WebSocketFrameHeader;
// Known opcodes for data frames should not be reserved control opcodes.
EXPECT_FALSE(Frame::IsReservedControlOpCode(Frame::kOpCodeContinuation));
EXPECT_FALSE(Frame::IsReservedControlOpCode(Frame::kOpCodeText));
EXPECT_FALSE(Frame::IsReservedControlOpCode(Frame::kOpCodeBinary));
// Known opcodes for control frames should not be reserved.
EXPECT_FALSE(Frame::IsReservedControlOpCode(Frame::kOpCodeClose));
EXPECT_FALSE(Frame::IsReservedControlOpCode(Frame::kOpCodePing));
EXPECT_FALSE(Frame::IsReservedControlOpCode(Frame::kOpCodePong));
// Unused opcodes in the control frame range should be considered reserved.
EXPECT_TRUE(Frame::IsReservedControlOpCode(Frame::kOpCodeControlUnusedB));
EXPECT_TRUE(Frame::IsReservedControlOpCode(Frame::kOpCodeControlUnusedC));
EXPECT_TRUE(Frame::IsReservedControlOpCode(Frame::kOpCodeControlUnusedD));
EXPECT_TRUE(Frame::IsReservedControlOpCode(Frame::kOpCodeControlUnusedE));
EXPECT_TRUE(Frame::IsReservedControlOpCode(Frame::kOpCodeControlUnusedF));
// Out-of-range opcodes should not be considered reserved control opcodes.
EXPECT_FALSE(Frame::IsReservedControlOpCode(-1));
EXPECT_FALSE(Frame::IsReservedControlOpCode(0xFF));
}
} // namespace
} // namespace net