blob: 2b389f3ed2e4ae81962e60970d65f470ffaea078 [file] [log] [blame]
// Copyright 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/output/gl_renderer.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <limits>
#include <set>
#include <string>
#include <vector>
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/scoped_ptr.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "cc/base/container_util.h"
#include "cc/base/math_util.h"
#include "cc/output/compositor_frame.h"
#include "cc/output/compositor_frame_metadata.h"
#include "cc/output/context_provider.h"
#include "cc/output/copy_output_request.h"
#include "cc/output/dynamic_geometry_binding.h"
#include "cc/output/gl_frame_data.h"
#include "cc/output/layer_quad.h"
#include "cc/output/output_surface.h"
#include "cc/output/render_surface_filters.h"
#include "cc/output/static_geometry_binding.h"
#include "cc/output/texture_mailbox_deleter.h"
#include "cc/quads/draw_polygon.h"
#include "cc/quads/picture_draw_quad.h"
#include "cc/quads/render_pass.h"
#include "cc/quads/stream_video_draw_quad.h"
#include "cc/quads/texture_draw_quad.h"
#include "cc/raster/scoped_gpu_raster.h"
#include "cc/resources/scoped_resource.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/command_buffer/common/gpu_memory_allocation.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "third_party/skia/include/core/SkColorFilter.h"
#include "third_party/skia/include/core/SkImage.h"
#include "third_party/skia/include/core/SkSurface.h"
#include "third_party/skia/include/gpu/GrContext.h"
#include "third_party/skia/include/gpu/GrTexture.h"
#include "third_party/skia/include/gpu/GrTextureProvider.h"
#include "third_party/skia/include/gpu/gl/GrGLInterface.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
using gpu::gles2::GLES2Interface;
namespace cc {
namespace {
bool NeedsIOSurfaceReadbackWorkaround() {
#if defined(OS_MACOSX)
// This isn't strictly required in DumpRenderTree-mode when Mesa is used,
// but it doesn't seem to hurt.
return true;
#else
return false;
#endif
}
Float4 UVTransform(const TextureDrawQuad* quad) {
gfx::PointF uv0 = quad->uv_top_left;
gfx::PointF uv1 = quad->uv_bottom_right;
Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
if (quad->y_flipped) {
xform.data[1] = 1.0f - xform.data[1];
xform.data[3] = -xform.data[3];
}
return xform;
}
Float4 PremultipliedColor(SkColor color) {
const float factor = 1.0f / 255.0f;
const float alpha = SkColorGetA(color) * factor;
Float4 result = {
{SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha,
SkColorGetB(color) * factor * alpha, alpha}};
return result;
}
SamplerType SamplerTypeFromTextureTarget(GLenum target) {
switch (target) {
case GL_TEXTURE_2D:
return SAMPLER_TYPE_2D;
case GL_TEXTURE_RECTANGLE_ARB:
return SAMPLER_TYPE_2D_RECT;
case GL_TEXTURE_EXTERNAL_OES:
return SAMPLER_TYPE_EXTERNAL_OES;
default:
NOTREACHED();
return SAMPLER_TYPE_2D;
}
}
BlendMode BlendModeFromSkXfermode(SkXfermode::Mode mode) {
switch (mode) {
case SkXfermode::kSrcOver_Mode:
return BLEND_MODE_NORMAL;
case SkXfermode::kScreen_Mode:
return BLEND_MODE_SCREEN;
case SkXfermode::kOverlay_Mode:
return BLEND_MODE_OVERLAY;
case SkXfermode::kDarken_Mode:
return BLEND_MODE_DARKEN;
case SkXfermode::kLighten_Mode:
return BLEND_MODE_LIGHTEN;
case SkXfermode::kColorDodge_Mode:
return BLEND_MODE_COLOR_DODGE;
case SkXfermode::kColorBurn_Mode:
return BLEND_MODE_COLOR_BURN;
case SkXfermode::kHardLight_Mode:
return BLEND_MODE_HARD_LIGHT;
case SkXfermode::kSoftLight_Mode:
return BLEND_MODE_SOFT_LIGHT;
case SkXfermode::kDifference_Mode:
return BLEND_MODE_DIFFERENCE;
case SkXfermode::kExclusion_Mode:
return BLEND_MODE_EXCLUSION;
case SkXfermode::kMultiply_Mode:
return BLEND_MODE_MULTIPLY;
case SkXfermode::kHue_Mode:
return BLEND_MODE_HUE;
case SkXfermode::kSaturation_Mode:
return BLEND_MODE_SATURATION;
case SkXfermode::kColor_Mode:
return BLEND_MODE_COLOR;
case SkXfermode::kLuminosity_Mode:
return BLEND_MODE_LUMINOSITY;
default:
NOTREACHED();
return BLEND_MODE_NONE;
}
}
// Smallest unit that impact anti-aliasing output. We use this to
// determine when anti-aliasing is unnecessary.
const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
// Block or crash if the number of pending sync queries reach this high as
// something is seriously wrong on the service side if this happens.
const size_t kMaxPendingSyncQueries = 16;
} // anonymous namespace
static GLint GetActiveTextureUnit(GLES2Interface* gl) {
GLint active_unit = 0;
gl->GetIntegerv(GL_ACTIVE_TEXTURE, &active_unit);
return active_unit;
}
class GLRenderer::ScopedUseGrContext {
public:
static scoped_ptr<ScopedUseGrContext> Create(GLRenderer* renderer,
DrawingFrame* frame) {
// GrContext for filters is created lazily, and may fail if the context
// is lost.
// TODO(vmiura,bsalomon): crbug.com/487850 Ensure that
// ContextProvider::GrContext() does not return NULL.
if (renderer->output_surface_->context_provider()->GrContext())
return make_scoped_ptr(new ScopedUseGrContext(renderer, frame));
return nullptr;
}
~ScopedUseGrContext() {
// Pass context control back to GLrenderer.
scoped_gpu_raster_ = nullptr;
renderer_->RestoreGLState();
renderer_->RestoreFramebuffer(frame_);
}
GrContext* context() const {
return renderer_->output_surface_->context_provider()->GrContext();
}
private:
ScopedUseGrContext(GLRenderer* renderer, DrawingFrame* frame)
: scoped_gpu_raster_(
new ScopedGpuRaster(renderer->output_surface_->context_provider())),
renderer_(renderer),
frame_(frame) {
// scoped_gpu_raster_ passes context control to Skia.
}
scoped_ptr<ScopedGpuRaster> scoped_gpu_raster_;
GLRenderer* renderer_;
DrawingFrame* frame_;
DISALLOW_COPY_AND_ASSIGN(ScopedUseGrContext);
};
struct GLRenderer::PendingAsyncReadPixels {
PendingAsyncReadPixels() : buffer(0) {}
scoped_ptr<CopyOutputRequest> copy_request;
base::CancelableClosure finished_read_pixels_callback;
unsigned buffer;
private:
DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels);
};
class GLRenderer::SyncQuery {
public:
explicit SyncQuery(gpu::gles2::GLES2Interface* gl)
: gl_(gl), query_id_(0u), is_pending_(false), weak_ptr_factory_(this) {
gl_->GenQueriesEXT(1, &query_id_);
}
virtual ~SyncQuery() { gl_->DeleteQueriesEXT(1, &query_id_); }
scoped_refptr<ResourceProvider::Fence> Begin() {
DCHECK(!IsPending());
// Invalidate weak pointer held by old fence.
weak_ptr_factory_.InvalidateWeakPtrs();
// Note: In case the set of drawing commands issued before End() do not
// depend on the query, defer BeginQueryEXT call until Set() is called and
// query is required.
return make_scoped_refptr<ResourceProvider::Fence>(
new Fence(weak_ptr_factory_.GetWeakPtr()));
}
void Set() {
if (is_pending_)
return;
// Note: BeginQueryEXT on GL_COMMANDS_COMPLETED_CHROMIUM is effectively a
// noop relative to GL, so it doesn't matter where it happens but we still
// make sure to issue this command when Set() is called (prior to issuing
// any drawing commands that depend on query), in case some future extension
// can take advantage of this.
gl_->BeginQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM, query_id_);
is_pending_ = true;
}
void End() {
if (!is_pending_)
return;
gl_->EndQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM);
}
bool IsPending() {
if (!is_pending_)
return false;
unsigned result_available = 1;
gl_->GetQueryObjectuivEXT(
query_id_, GL_QUERY_RESULT_AVAILABLE_EXT, &result_available);
is_pending_ = !result_available;
return is_pending_;
}
void Wait() {
if (!is_pending_)
return;
unsigned result = 0;
gl_->GetQueryObjectuivEXT(query_id_, GL_QUERY_RESULT_EXT, &result);
is_pending_ = false;
}
private:
class Fence : public ResourceProvider::Fence {
public:
explicit Fence(base::WeakPtr<GLRenderer::SyncQuery> query)
: query_(query) {}
// Overridden from ResourceProvider::Fence:
void Set() override {
DCHECK(query_);
query_->Set();
}
bool HasPassed() override { return !query_ || !query_->IsPending(); }
void Wait() override {
if (query_)
query_->Wait();
}
private:
~Fence() override {}
base::WeakPtr<SyncQuery> query_;
DISALLOW_COPY_AND_ASSIGN(Fence);
};
gpu::gles2::GLES2Interface* gl_;
unsigned query_id_;
bool is_pending_;
base::WeakPtrFactory<SyncQuery> weak_ptr_factory_;
DISALLOW_COPY_AND_ASSIGN(SyncQuery);
};
scoped_ptr<GLRenderer> GLRenderer::Create(
RendererClient* client,
const RendererSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider,
TextureMailboxDeleter* texture_mailbox_deleter,
int highp_threshold_min) {
return make_scoped_ptr(new GLRenderer(client,
settings,
output_surface,
resource_provider,
texture_mailbox_deleter,
highp_threshold_min));
}
GLRenderer::GLRenderer(RendererClient* client,
const RendererSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider,
TextureMailboxDeleter* texture_mailbox_deleter,
int highp_threshold_min)
: DirectRenderer(client, settings, output_surface, resource_provider),
offscreen_framebuffer_id_(0),
shared_geometry_quad_(QuadVertexRect()),
gl_(output_surface->context_provider()->ContextGL()),
context_support_(output_surface->context_provider()->ContextSupport()),
texture_mailbox_deleter_(texture_mailbox_deleter),
is_backbuffer_discarded_(false),
is_scissor_enabled_(false),
scissor_rect_needs_reset_(true),
stencil_shadow_(false),
blend_shadow_(false),
highp_threshold_min_(highp_threshold_min),
highp_threshold_cache_(0),
use_sync_query_(false),
on_demand_tile_raster_resource_id_(0),
bound_geometry_(NO_BINDING) {
DCHECK(gl_);
DCHECK(context_support_);
ContextProvider::Capabilities context_caps =
output_surface_->context_provider()->ContextCapabilities();
capabilities_.using_partial_swap =
settings_->partial_swap_enabled && context_caps.gpu.post_sub_buffer;
capabilities_.allow_empty_swap = capabilities_.using_partial_swap ||
context_caps.gpu.commit_overlay_planes;
DCHECK(!context_caps.gpu.iosurface || context_caps.gpu.texture_rectangle);
capabilities_.using_egl_image = context_caps.gpu.egl_image_external;
capabilities_.max_texture_size = resource_provider_->max_texture_size();
capabilities_.best_texture_format = resource_provider_->best_texture_format();
// The updater can access textures while the GLRenderer is using them.
capabilities_.allow_partial_texture_updates = true;
capabilities_.using_image = context_caps.gpu.image;
capabilities_.using_discard_framebuffer =
context_caps.gpu.discard_framebuffer;
capabilities_.allow_rasterize_on_demand = true;
capabilities_.max_msaa_samples = context_caps.gpu.max_samples;
use_sync_query_ = context_caps.gpu.sync_query;
use_blend_equation_advanced_ = context_caps.gpu.blend_equation_advanced;
use_blend_equation_advanced_coherent_ =
context_caps.gpu.blend_equation_advanced_coherent;
InitializeSharedObjects();
}
GLRenderer::~GLRenderer() {
while (!pending_async_read_pixels_.empty()) {
PendingAsyncReadPixels* pending_read =
pending_async_read_pixels_.back().get();
pending_read->finished_read_pixels_callback.Cancel();
pending_async_read_pixels_.pop_back();
}
swapped_overlay_resources_.clear();
CleanupSharedObjects();
}
const RendererCapabilitiesImpl& GLRenderer::Capabilities() const {
return capabilities_;
}
void GLRenderer::DidChangeVisibility() {
EnforceMemoryPolicy();
// If we are not visible, we ask the context to aggressively free resources.
context_support_->SetAggressivelyFreeResources(!visible());
}
void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); }
void GLRenderer::DiscardPixels() {
if (!capabilities_.using_discard_framebuffer)
return;
bool using_default_framebuffer =
!current_framebuffer_lock_ &&
output_surface_->capabilities().uses_default_gl_framebuffer;
GLenum attachments[] = {static_cast<GLenum>(
using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
gl_->DiscardFramebufferEXT(
GL_FRAMEBUFFER, arraysize(attachments), attachments);
}
void GLRenderer::PrepareSurfaceForPass(
DrawingFrame* frame,
SurfaceInitializationMode initialization_mode,
const gfx::Rect& render_pass_scissor) {
SetViewport();
switch (initialization_mode) {
case SURFACE_INITIALIZATION_MODE_PRESERVE:
EnsureScissorTestDisabled();
return;
case SURFACE_INITIALIZATION_MODE_FULL_SURFACE_CLEAR:
EnsureScissorTestDisabled();
DiscardPixels();
ClearFramebuffer(frame);
break;
case SURFACE_INITIALIZATION_MODE_SCISSORED_CLEAR:
SetScissorTestRect(render_pass_scissor);
ClearFramebuffer(frame);
break;
}
}
void GLRenderer::ClearFramebuffer(DrawingFrame* frame) {
// On DEBUG builds, opaque render passes are cleared to blue to easily see
// regions that were not drawn on the screen.
if (frame->current_render_pass->has_transparent_background)
gl_->ClearColor(0, 0, 0, 0);
else
gl_->ClearColor(0, 0, 1, 1);
bool always_clear = false;
#ifndef NDEBUG
always_clear = true;
#endif
if (always_clear || frame->current_render_pass->has_transparent_background) {
GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
if (always_clear)
clear_bits |= GL_STENCIL_BUFFER_BIT;
gl_->Clear(clear_bits);
}
}
void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) {
TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame");
scoped_refptr<ResourceProvider::Fence> read_lock_fence;
if (use_sync_query_) {
// Block until oldest sync query has passed if the number of pending queries
// ever reach kMaxPendingSyncQueries.
if (pending_sync_queries_.size() >= kMaxPendingSyncQueries) {
LOG(ERROR) << "Reached limit of pending sync queries.";
pending_sync_queries_.front()->Wait();
DCHECK(!pending_sync_queries_.front()->IsPending());
}
while (!pending_sync_queries_.empty()) {
if (pending_sync_queries_.front()->IsPending())
break;
available_sync_queries_.push_back(PopFront(&pending_sync_queries_));
}
current_sync_query_ = available_sync_queries_.empty()
? make_scoped_ptr(new SyncQuery(gl_))
: PopFront(&available_sync_queries_);
read_lock_fence = current_sync_query_->Begin();
} else {
read_lock_fence =
make_scoped_refptr(new ResourceProvider::SynchronousFence(gl_));
}
resource_provider_->SetReadLockFence(read_lock_fence.get());
// Insert WaitSyncTokenCHROMIUM on quad resources prior to drawing the frame,
// so that drawing can proceed without GL context switching interruptions.
ResourceProvider* resource_provider = resource_provider_;
for (const auto& pass : *frame->render_passes_in_draw_order) {
for (const auto& quad : pass->quad_list) {
for (ResourceId resource_id : quad->resources)
resource_provider->WaitSyncTokenIfNeeded(resource_id);
}
}
// TODO(enne): Do we need to reinitialize all of this state per frame?
ReinitializeGLState();
}
void GLRenderer::DoDrawQuad(DrawingFrame* frame,
const DrawQuad* quad,
const gfx::QuadF* clip_region) {
DCHECK(quad->rect.Contains(quad->visible_rect));
if (quad->material != DrawQuad::TEXTURE_CONTENT) {
FlushTextureQuadCache(SHARED_BINDING);
}
switch (quad->material) {
case DrawQuad::INVALID:
NOTREACHED();
break;
case DrawQuad::DEBUG_BORDER:
DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad));
break;
case DrawQuad::IO_SURFACE_CONTENT:
DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad),
clip_region);
break;
case DrawQuad::PICTURE_CONTENT:
// PictureDrawQuad should only be used for resourceless software draws.
NOTREACHED();
break;
case DrawQuad::RENDER_PASS:
DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad),
clip_region);
break;
case DrawQuad::SOLID_COLOR:
DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad),
clip_region);
break;
case DrawQuad::STREAM_VIDEO_CONTENT:
DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad),
clip_region);
break;
case DrawQuad::SURFACE_CONTENT:
// Surface content should be fully resolved to other quad types before
// reaching a direct renderer.
NOTREACHED();
break;
case DrawQuad::TEXTURE_CONTENT:
EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad),
clip_region);
break;
case DrawQuad::TILED_CONTENT:
DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad), clip_region);
break;
case DrawQuad::YUV_VIDEO_CONTENT:
DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad),
clip_region);
break;
}
}
// This function does not handle 3D sorting right now, since the debug border
// quads are just drawn as their original quads and not in split pieces. This
// results in some debug border quads drawing over foreground quads.
void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame,
const DebugBorderDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
static float gl_matrix[16];
const DebugBorderProgram* program = GetDebugBorderProgram();
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
// Use the full quad_rect for debug quads to not move the edges based on
// partial swaps.
gfx::Rect layer_rect = quad->rect;
gfx::Transform render_matrix;
QuadRectTransform(&render_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(layer_rect));
GLRenderer::ToGLMatrix(&gl_matrix[0],
frame->projection_matrix * render_matrix);
gl_->UniformMatrix4fv(program->vertex_shader().matrix_location(), 1, false,
&gl_matrix[0]);
SkColor color = quad->color;
float alpha = SkColorGetA(color) * (1.0f / 255.0f);
gl_->Uniform4f(program->fragment_shader().color_location(),
(SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha);
gl_->LineWidth(quad->width);
// The indices for the line are stored in the same array as the triangle
// indices.
gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0);
}
static skia::RefPtr<SkImage> ApplyImageFilter(
scoped_ptr<GLRenderer::ScopedUseGrContext> use_gr_context,
ResourceProvider* resource_provider,
const gfx::Rect& rect,
const gfx::Vector2dF& scale,
SkImageFilter* filter,
ScopedResource* source_texture_resource) {
if (!filter)
return skia::RefPtr<SkImage>();
if (!use_gr_context)
return skia::RefPtr<SkImage>();
ResourceProvider::ScopedReadLockGL lock(resource_provider,
source_texture_resource->id());
// Wrap the source texture in a Ganesh platform texture.
GrBackendTextureDesc backend_texture_description;
backend_texture_description.fWidth = source_texture_resource->size().width();
backend_texture_description.fHeight =
source_texture_resource->size().height();
backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
backend_texture_description.fTextureHandle = lock.texture_id();
backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
skia::RefPtr<SkImage> srcImage = skia::AdoptRef(SkImage::NewFromTexture(
use_gr_context->context(), backend_texture_description));
if (!srcImage.get()) {
TRACE_EVENT_INSTANT0("cc",
"ApplyImageFilter wrap background texture failed",
TRACE_EVENT_SCOPE_THREAD);
return skia::RefPtr<SkImage>();
}
// Create surface to draw into.
SkImageInfo dst_info =
SkImageInfo::MakeN32Premul(srcImage->width(), srcImage->height());
skia::RefPtr<SkSurface> surface = skia::AdoptRef(SkSurface::NewRenderTarget(
use_gr_context->context(), SkSurface::kYes_Budgeted, dst_info, 0));
if (!surface) {
TRACE_EVENT_INSTANT0("cc", "ApplyImageFilter surface allocation failed",
TRACE_EVENT_SCOPE_THREAD);
return skia::RefPtr<SkImage>();
}
// The origin of the filter is top-left and the origin of the source is
// bottom-left, but the orientation is the same, so we must translate the
// filter so that it renders at the bottom of the texture to avoid
// misregistration.
int y_translate = source_texture_resource->size().height() - rect.height() -
rect.origin().y();
SkMatrix localM;
localM.setTranslate(-rect.origin().x(), y_translate);
localM.preScale(scale.x(), scale.y());
skia::RefPtr<SkImageFilter> localIMF =
skia::AdoptRef(filter->newWithLocalMatrix(localM));
SkPaint paint;
paint.setImageFilter(localIMF.get());
surface->getCanvas()->drawImage(srcImage.get(), 0, 0, &paint);
skia::RefPtr<SkImage> image = skia::AdoptRef(surface->newImageSnapshot());
if (!image || !image->isTextureBacked()) {
return skia::RefPtr<SkImage>();
}
CHECK(image->isTextureBacked());
return image;
}
bool GLRenderer::CanApplyBlendModeUsingBlendFunc(SkXfermode::Mode blend_mode) {
return use_blend_equation_advanced_ ||
blend_mode == SkXfermode::kScreen_Mode ||
blend_mode == SkXfermode::kSrcOver_Mode;
}
void GLRenderer::ApplyBlendModeUsingBlendFunc(SkXfermode::Mode blend_mode) {
DCHECK(CanApplyBlendModeUsingBlendFunc(blend_mode));
// Any modes set here must be reset in RestoreBlendFuncToDefault
if (use_blend_equation_advanced_) {
GLenum equation = GL_FUNC_ADD;
switch (blend_mode) {
case SkXfermode::kScreen_Mode:
equation = GL_SCREEN_KHR;
break;
case SkXfermode::kOverlay_Mode:
equation = GL_OVERLAY_KHR;
break;
case SkXfermode::kDarken_Mode:
equation = GL_DARKEN_KHR;
break;
case SkXfermode::kLighten_Mode:
equation = GL_LIGHTEN_KHR;
break;
case SkXfermode::kColorDodge_Mode:
equation = GL_COLORDODGE_KHR;
break;
case SkXfermode::kColorBurn_Mode:
equation = GL_COLORBURN_KHR;
break;
case SkXfermode::kHardLight_Mode:
equation = GL_HARDLIGHT_KHR;
break;
case SkXfermode::kSoftLight_Mode:
equation = GL_SOFTLIGHT_KHR;
break;
case SkXfermode::kDifference_Mode:
equation = GL_DIFFERENCE_KHR;
break;
case SkXfermode::kExclusion_Mode:
equation = GL_EXCLUSION_KHR;
break;
case SkXfermode::kMultiply_Mode:
equation = GL_MULTIPLY_KHR;
break;
case SkXfermode::kHue_Mode:
equation = GL_HSL_HUE_KHR;
break;
case SkXfermode::kSaturation_Mode:
equation = GL_HSL_SATURATION_KHR;
break;
case SkXfermode::kColor_Mode:
equation = GL_HSL_COLOR_KHR;
break;
case SkXfermode::kLuminosity_Mode:
equation = GL_HSL_LUMINOSITY_KHR;
break;
default:
return;
}
gl_->BlendEquation(equation);
} else {
if (blend_mode == SkXfermode::kScreen_Mode) {
gl_->BlendFunc(GL_ONE_MINUS_DST_COLOR, GL_ONE);
}
}
}
void GLRenderer::RestoreBlendFuncToDefault(SkXfermode::Mode blend_mode) {
if (blend_mode == SkXfermode::kSrcOver_Mode)
return;
if (use_blend_equation_advanced_) {
gl_->BlendEquation(GL_FUNC_ADD);
} else {
gl_->BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
}
bool GLRenderer::ShouldApplyBackgroundFilters(const RenderPassDrawQuad* quad) {
if (quad->background_filters.IsEmpty())
return false;
// TODO(hendrikw): Look into allowing background filters to see pixels from
// other render targets. See crbug.com/314867.
return true;
}
// This takes a gfx::Rect and a clip region quad in the same space,
// and returns a quad with the same proportions in the space -0.5->0.5.
bool GetScaledRegion(const gfx::Rect& rect,
const gfx::QuadF* clip,
gfx::QuadF* scaled_region) {
if (!clip)
return false;
gfx::PointF p1(((clip->p1().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p1().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p2(((clip->p2().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p2().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p3(((clip->p3().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p3().y() - rect.y()) / rect.height()) - 0.5f);
gfx::PointF p4(((clip->p4().x() - rect.x()) / rect.width()) - 0.5f,
((clip->p4().y() - rect.y()) / rect.height()) - 0.5f);
*scaled_region = gfx::QuadF(p1, p2, p3, p4);
return true;
}
// This takes a gfx::Rect and a clip region quad in the same space,
// and returns the proportional uv's in the space 0->1.
bool GetScaledUVs(const gfx::Rect& rect, const gfx::QuadF* clip, float uvs[8]) {
if (!clip)
return false;
uvs[0] = ((clip->p1().x() - rect.x()) / rect.width());
uvs[1] = ((clip->p1().y() - rect.y()) / rect.height());
uvs[2] = ((clip->p2().x() - rect.x()) / rect.width());
uvs[3] = ((clip->p2().y() - rect.y()) / rect.height());
uvs[4] = ((clip->p3().x() - rect.x()) / rect.width());
uvs[5] = ((clip->p3().y() - rect.y()) / rect.height());
uvs[6] = ((clip->p4().x() - rect.x()) / rect.width());
uvs[7] = ((clip->p4().y() - rect.y()) / rect.height());
return true;
}
gfx::Rect GLRenderer::GetBackdropBoundingBoxForRenderPassQuad(
DrawingFrame* frame,
const RenderPassDrawQuad* quad,
const gfx::Transform& contents_device_transform,
const gfx::QuadF* clip_region,
bool use_aa) {
gfx::QuadF scaled_region;
if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) {
scaled_region = SharedGeometryQuad().BoundingBox();
}
gfx::Rect backdrop_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect(
contents_device_transform, scaled_region.BoundingBox()));
if (ShouldApplyBackgroundFilters(quad)) {
int top, right, bottom, left;
quad->background_filters.GetOutsets(&top, &right, &bottom, &left);
backdrop_rect.Inset(-left, -top, -right, -bottom);
}
if (!backdrop_rect.IsEmpty() && use_aa) {
const int kOutsetForAntialiasing = 1;
backdrop_rect.Inset(-kOutsetForAntialiasing, -kOutsetForAntialiasing);
}
backdrop_rect.Intersect(MoveFromDrawToWindowSpace(
frame, frame->current_render_pass->output_rect));
return backdrop_rect;
}
scoped_ptr<ScopedResource> GLRenderer::GetBackdropTexture(
const gfx::Rect& bounding_rect) {
scoped_ptr<ScopedResource> device_background_texture =
ScopedResource::Create(resource_provider_);
// CopyTexImage2D fails when called on a texture having immutable storage.
device_background_texture->Allocate(
bounding_rect.size(), ResourceProvider::TEXTURE_HINT_DEFAULT,
resource_provider_->best_texture_format());
{
ResourceProvider::ScopedWriteLockGL lock(resource_provider_,
device_background_texture->id());
GetFramebufferTexture(lock.texture_id(), RGBA_8888, bounding_rect);
}
return device_background_texture;
}
skia::RefPtr<SkImage> GLRenderer::ApplyBackgroundFilters(
DrawingFrame* frame,
const RenderPassDrawQuad* quad,
ScopedResource* background_texture) {
DCHECK(ShouldApplyBackgroundFilters(quad));
skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
quad->background_filters, gfx::SizeF(background_texture->size()));
skia::RefPtr<SkImage> background_with_filters = ApplyImageFilter(
ScopedUseGrContext::Create(this, frame), resource_provider_, quad->rect,
quad->filters_scale, filter.get(), background_texture);
return background_with_filters;
}
void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame,
const RenderPassDrawQuad* quad,
const gfx::QuadF* clip_region) {
ScopedResource* contents_texture =
render_pass_textures_.get(quad->render_pass_id);
DCHECK(contents_texture);
DCHECK(contents_texture->id());
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect));
gfx::Transform contents_device_transform =
frame->window_matrix * frame->projection_matrix * quad_rect_matrix;
contents_device_transform.FlattenTo2d();
// Can only draw surface if device matrix is invertible.
if (!contents_device_transform.IsInvertible())
return;
gfx::QuadF surface_quad = SharedGeometryQuad();
gfx::QuadF device_layer_quad;
bool use_aa = false;
if (settings_->allow_antialiasing) {
bool clipped = false;
device_layer_quad =
MathUtil::MapQuad(contents_device_transform, surface_quad, &clipped);
use_aa = ShouldAntialiasQuad(device_layer_quad, clipped,
settings_->force_antialiasing);
}
float edge[24];
const gfx::QuadF* aa_quad = use_aa ? &device_layer_quad : nullptr;
SetupRenderPassQuadForClippingAndAntialiasing(contents_device_transform, quad,
aa_quad, clip_region,
&surface_quad, edge);
SkXfermode::Mode blend_mode = quad->shared_quad_state->blend_mode;
bool use_shaders_for_blending =
!CanApplyBlendModeUsingBlendFunc(blend_mode) ||
ShouldApplyBackgroundFilters(quad) ||
settings_->force_blending_with_shaders;
scoped_ptr<ScopedResource> background_texture;
skia::RefPtr<SkImage> background_image;
GLuint background_image_id = 0;
gfx::Rect background_rect;
if (use_shaders_for_blending) {
// Compute a bounding box around the pixels that will be visible through
// the quad.
background_rect = GetBackdropBoundingBoxForRenderPassQuad(
frame, quad, contents_device_transform, clip_region, use_aa);
if (!background_rect.IsEmpty()) {
// The pixels from the filtered background should completely replace the
// current pixel values.
if (blend_enabled())
SetBlendEnabled(false);
// Read the pixels in the bounding box into a buffer R.
// This function allocates a texture, which should contribute to the
// amount of memory used by render surfaces:
// LayerTreeHost::CalculateMemoryForRenderSurfaces.
background_texture = GetBackdropTexture(background_rect);
if (ShouldApplyBackgroundFilters(quad) && background_texture) {
// Apply the background filters to R, so that it is applied in the
// pixels' coordinate space.
background_image =
ApplyBackgroundFilters(frame, quad, background_texture.get());
if (background_image)
background_image_id = background_image->getTextureHandle(true);
DCHECK(background_image_id);
}
}
if (!background_texture) {
// Something went wrong with reading the backdrop.
DCHECK(!background_image_id);
use_shaders_for_blending = false;
} else if (background_image_id) {
// Reset original background texture if there is not any mask
if (!quad->mask_resource_id())
background_texture.reset();
} else if (CanApplyBlendModeUsingBlendFunc(blend_mode) &&
ShouldApplyBackgroundFilters(quad)) {
// Something went wrong with applying background filters to the backdrop.
use_shaders_for_blending = false;
background_texture.reset();
}
}
// Need original background texture for mask?
bool mask_for_background =
background_texture && // Have original background texture
background_image_id && // Have filtered background texture
quad->mask_resource_id(); // Have mask texture
SetBlendEnabled(
!use_shaders_for_blending &&
(quad->ShouldDrawWithBlending() || !IsDefaultBlendMode(blend_mode)));
// TODO(senorblanco): Cache this value so that we don't have to do it for both
// the surface and its replica. Apply filters to the contents texture.
skia::RefPtr<SkImage> filter_image;
GLuint filter_image_id = 0;
SkScalar color_matrix[20];
bool use_color_matrix = false;
if (!quad->filters.IsEmpty()) {
skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
quad->filters, gfx::SizeF(contents_texture->size()));
if (filter) {
skia::RefPtr<SkColorFilter> cf;
{
SkColorFilter* colorfilter_rawptr = NULL;
filter->asColorFilter(&colorfilter_rawptr);
cf = skia::AdoptRef(colorfilter_rawptr);
}
if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) {
// We have a single color matrix as a filter; apply it locally
// in the compositor.
use_color_matrix = true;
} else {
filter_image = ApplyImageFilter(
ScopedUseGrContext::Create(this, frame), resource_provider_,
quad->rect, quad->filters_scale, filter.get(), contents_texture);
if (filter_image) {
filter_image_id = filter_image->getTextureHandle(true);
DCHECK(filter_image_id);
}
}
}
}
scoped_ptr<ResourceProvider::ScopedSamplerGL> mask_resource_lock;
unsigned mask_texture_id = 0;
SamplerType mask_sampler = SAMPLER_TYPE_NA;
if (quad->mask_resource_id()) {
mask_resource_lock.reset(new ResourceProvider::ScopedSamplerGL(
resource_provider_, quad->mask_resource_id(), GL_TEXTURE1, GL_LINEAR));
mask_texture_id = mask_resource_lock->texture_id();
mask_sampler = SamplerTypeFromTextureTarget(mask_resource_lock->target());
}
scoped_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock;
if (filter_image_id) {
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_2D, filter_image_id);
} else {
contents_resource_lock =
make_scoped_ptr(new ResourceProvider::ScopedSamplerGL(
resource_provider_, contents_texture->id(), GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
contents_resource_lock->target());
}
if (!use_shaders_for_blending) {
if (!use_blend_equation_advanced_coherent_ && use_blend_equation_advanced_)
gl_->BlendBarrierKHR();
ApplyBlendModeUsingBlendFunc(blend_mode);
}
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
ShaderLocations locations;
DCHECK_EQ(background_texture || background_image_id,
use_shaders_for_blending);
BlendMode shader_blend_mode = use_shaders_for_blending
? BlendModeFromSkXfermode(blend_mode)
: BLEND_MODE_NONE;
if (use_aa && mask_texture_id && !use_color_matrix) {
const RenderPassMaskProgramAA* program = GetRenderPassMaskProgramAA(
tex_coord_precision, mask_sampler,
shader_blend_mode, mask_for_background);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
} else if (!use_aa && mask_texture_id && !use_color_matrix) {
const RenderPassMaskProgram* program = GetRenderPassMaskProgram(
tex_coord_precision, mask_sampler,
shader_blend_mode, mask_for_background);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
} else if (use_aa && !mask_texture_id && !use_color_matrix) {
const RenderPassProgramAA* program =
GetRenderPassProgramAA(tex_coord_precision, shader_blend_mode);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
} else if (use_aa && mask_texture_id && use_color_matrix) {
const RenderPassMaskColorMatrixProgramAA* program =
GetRenderPassMaskColorMatrixProgramAA(
tex_coord_precision, mask_sampler,
shader_blend_mode, mask_for_background);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
} else if (use_aa && !mask_texture_id && use_color_matrix) {
const RenderPassColorMatrixProgramAA* program =
GetRenderPassColorMatrixProgramAA(tex_coord_precision,
shader_blend_mode);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
} else if (!use_aa && mask_texture_id && use_color_matrix) {
const RenderPassMaskColorMatrixProgram* program =
GetRenderPassMaskColorMatrixProgram(
tex_coord_precision, mask_sampler,
shader_blend_mode, mask_for_background);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
} else if (!use_aa && !mask_texture_id && use_color_matrix) {
const RenderPassColorMatrixProgram* program =
GetRenderPassColorMatrixProgram(tex_coord_precision, shader_blend_mode);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
} else {
const RenderPassProgram* program =
GetRenderPassProgram(tex_coord_precision, shader_blend_mode);
SetUseProgram(program->program());
program->vertex_shader().FillLocations(&locations);
program->fragment_shader().FillLocations(&locations);
gl_->Uniform1i(locations.sampler, 0);
}
float tex_scale_x =
quad->rect.width() / static_cast<float>(contents_texture->size().width());
float tex_scale_y = quad->rect.height() /
static_cast<float>(contents_texture->size().height());
DCHECK_LE(tex_scale_x, 1.0f);
DCHECK_LE(tex_scale_y, 1.0f);
DCHECK(locations.tex_transform != -1 || IsContextLost());
// Flip the content vertically in the shader, as the RenderPass input
// texture is already oriented the same way as the framebuffer, but the
// projection transform does a flip.
gl_->Uniform4f(locations.tex_transform, 0.0f, tex_scale_y, tex_scale_x,
-tex_scale_y);
GLint last_texture_unit = 0;
if (locations.mask_sampler != -1) {
DCHECK_NE(locations.mask_tex_coord_scale, 1);
DCHECK_NE(locations.mask_tex_coord_offset, 1);
gl_->Uniform1i(locations.mask_sampler, 1);
gfx::RectF mask_uv_rect = quad->MaskUVRect();
if (mask_sampler != SAMPLER_TYPE_2D) {
mask_uv_rect.Scale(quad->mask_texture_size.width(),
quad->mask_texture_size.height());
}
// Mask textures are oriented vertically flipped relative to the framebuffer
// and the RenderPass contents texture, so we flip the tex coords from the
// RenderPass texture to find the mask texture coords.
gl_->Uniform2f(locations.mask_tex_coord_offset, mask_uv_rect.x(),
mask_uv_rect.bottom());
gl_->Uniform2f(locations.mask_tex_coord_scale,
mask_uv_rect.width() / tex_scale_x,
-mask_uv_rect.height() / tex_scale_y);
last_texture_unit = 1;
}
if (locations.edge != -1)
gl_->Uniform3fv(locations.edge, 8, edge);
if (locations.viewport != -1) {
float viewport[4] = {
static_cast<float>(current_window_space_viewport_.x()),
static_cast<float>(current_window_space_viewport_.y()),
static_cast<float>(current_window_space_viewport_.width()),
static_cast<float>(current_window_space_viewport_.height()),
};
gl_->Uniform4fv(locations.viewport, 1, viewport);
}
if (locations.color_matrix != -1) {
float matrix[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j)
matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]);
}
gl_->UniformMatrix4fv(locations.color_matrix, 1, false, matrix);
}
static const float kScale = 1.0f / 255.0f;
if (locations.color_offset != -1) {
float offset[4];
for (int i = 0; i < 4; ++i)
offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale;
gl_->Uniform4fv(locations.color_offset, 1, offset);
}
scoped_ptr<ResourceProvider::ScopedSamplerGL> shader_background_sampler_lock;
if (locations.backdrop != -1) {
DCHECK(background_texture || background_image_id);
DCHECK_NE(locations.backdrop, 0);
DCHECK_NE(locations.backdrop_rect, 0);
gl_->Uniform1i(locations.backdrop, ++last_texture_unit);
gl_->Uniform4f(locations.backdrop_rect, background_rect.x(),
background_rect.y(), background_rect.width(),
background_rect.height());
if (background_image_id) {
gl_->ActiveTexture(GL_TEXTURE0 + last_texture_unit);
gl_->BindTexture(GL_TEXTURE_2D, background_image_id);
gl_->ActiveTexture(GL_TEXTURE0);
if (mask_for_background)
gl_->Uniform1i(locations.original_backdrop, ++last_texture_unit);
}
if (background_texture) {
shader_background_sampler_lock = make_scoped_ptr(
new ResourceProvider::ScopedSamplerGL(resource_provider_,
background_texture->id(),
GL_TEXTURE0 + last_texture_unit,
GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
shader_background_sampler_lock->target());
}
}
SetShaderOpacity(quad->shared_quad_state->opacity, locations.alpha);
SetShaderQuadF(surface_quad, locations.quad);
DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect), locations.matrix);
// Flush the compositor context before the filter bitmap goes out of
// scope, so the draw gets processed before the filter texture gets deleted.
if (filter_image_id)
gl_->Flush();
if (!use_shaders_for_blending)
RestoreBlendFuncToDefault(blend_mode);
}
struct SolidColorProgramUniforms {
unsigned program;
unsigned matrix_location;
unsigned viewport_location;
unsigned quad_location;
unsigned edge_location;
unsigned color_location;
};
template <class T>
static void SolidColorUniformLocation(T program,
SolidColorProgramUniforms* uniforms) {
uniforms->program = program->program();
uniforms->matrix_location = program->vertex_shader().matrix_location();
uniforms->viewport_location = program->vertex_shader().viewport_location();
uniforms->quad_location = program->vertex_shader().quad_location();
uniforms->edge_location = program->vertex_shader().edge_location();
uniforms->color_location = program->fragment_shader().color_location();
}
namespace {
// These functions determine if a quad, clipped by a clip_region contains
// the entire {top|bottom|left|right} edge.
bool is_top(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsTopEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p1().y()) < kAntiAliasingEpsilon &&
std::abs(clip_region->p2().y()) < kAntiAliasingEpsilon;
}
bool is_bottom(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsBottomEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p3().y() -
quad->shared_quad_state->quad_layer_bounds.height()) <
kAntiAliasingEpsilon &&
std::abs(clip_region->p4().y() -
quad->shared_quad_state->quad_layer_bounds.height()) <
kAntiAliasingEpsilon;
}
bool is_left(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsLeftEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p1().x()) < kAntiAliasingEpsilon &&
std::abs(clip_region->p4().x()) < kAntiAliasingEpsilon;
}
bool is_right(const gfx::QuadF* clip_region, const DrawQuad* quad) {
if (!quad->IsRightEdge())
return false;
if (!clip_region)
return true;
return std::abs(clip_region->p2().x() -
quad->shared_quad_state->quad_layer_bounds.width()) <
kAntiAliasingEpsilon &&
std::abs(clip_region->p3().x() -
quad->shared_quad_state->quad_layer_bounds.width()) <
kAntiAliasingEpsilon;
}
} // anonymous namespace
static gfx::QuadF GetDeviceQuadWithAntialiasingOnExteriorEdges(
const LayerQuad& device_layer_edges,
const gfx::Transform& device_transform,
const gfx::QuadF& tile_quad,
const gfx::QuadF* clip_region,
const DrawQuad* quad) {
auto tile_rect = gfx::RectF(quad->visible_rect);
gfx::PointF bottom_right = tile_quad.p3();
gfx::PointF bottom_left = tile_quad.p4();
gfx::PointF top_left = tile_quad.p1();
gfx::PointF top_right = tile_quad.p2();
bool clipped = false;
// Map points to device space. We ignore |clipped|, since the result of
// |MapPoint()| still produces a valid point to draw the quad with. When
// clipped, the point will be outside of the viewport. See crbug.com/416367.
bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped);
bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped);
top_left = MathUtil::MapPoint(device_transform, top_left, &clipped);
top_right = MathUtil::MapPoint(device_transform, top_right, &clipped);
LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
LayerQuad::Edge left_edge(bottom_left, top_left);
LayerQuad::Edge top_edge(top_left, top_right);
LayerQuad::Edge right_edge(top_right, bottom_right);
// Only apply anti-aliasing to edges not clipped by culling or scissoring.
// If an edge is degenerate we do not want to replace it with a "proper" edge
// as that will cause the quad to possibly expand is strange ways.
if (!top_edge.degenerate() && is_top(clip_region, quad) &&
tile_rect.y() == quad->rect.y()) {
top_edge = device_layer_edges.top();
}
if (!left_edge.degenerate() && is_left(clip_region, quad) &&
tile_rect.x() == quad->rect.x()) {
left_edge = device_layer_edges.left();
}
if (!right_edge.degenerate() && is_right(clip_region, quad) &&
tile_rect.right() == quad->rect.right()) {
right_edge = device_layer_edges.right();
}
if (!bottom_edge.degenerate() && is_bottom(clip_region, quad) &&
tile_rect.bottom() == quad->rect.bottom()) {
bottom_edge = device_layer_edges.bottom();
}
float sign = tile_quad.IsCounterClockwise() ? -1 : 1;
bottom_edge.scale(sign);
left_edge.scale(sign);
top_edge.scale(sign);
right_edge.scale(sign);
// Create device space quad.
return LayerQuad(left_edge, top_edge, right_edge, bottom_edge).ToQuadF();
}
float GetTotalQuadError(const gfx::QuadF* clipped_quad,
const gfx::QuadF* ideal_rect) {
return (clipped_quad->p1() - ideal_rect->p1()).LengthSquared() +
(clipped_quad->p2() - ideal_rect->p2()).LengthSquared() +
(clipped_quad->p3() - ideal_rect->p3()).LengthSquared() +
(clipped_quad->p4() - ideal_rect->p4()).LengthSquared();
}
// Attempt to rotate the clipped quad until it lines up the most
// correctly. This is necessary because we check the edges of this
// quad against the expected left/right/top/bottom for anti-aliasing.
void AlignQuadToBoundingBox(gfx::QuadF* clipped_quad) {
auto bounding_quad = gfx::QuadF(clipped_quad->BoundingBox());
gfx::QuadF best_rotation = *clipped_quad;
float least_error_amount = GetTotalQuadError(clipped_quad, &bounding_quad);
for (size_t i = 1; i < 4; ++i) {
clipped_quad->Realign(1);
float new_error = GetTotalQuadError(clipped_quad, &bounding_quad);
if (new_error < least_error_amount) {
least_error_amount = new_error;
best_rotation = *clipped_quad;
}
}
*clipped_quad = best_rotation;
}
// Map device space quad to local space. Device_transform has no 3d
// component since it was flattened, so we don't need to project. We should
// have already checked that the transform was uninvertible before this call.
gfx::QuadF MapQuadToLocalSpace(const gfx::Transform& device_transform,
const gfx::QuadF& device_quad) {
gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization);
DCHECK(device_transform.IsInvertible());
bool did_invert = device_transform.GetInverse(&inverse_device_transform);
DCHECK(did_invert);
bool clipped = false;
gfx::QuadF local_quad =
MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped);
// We should not DCHECK(!clipped) here, because anti-aliasing inflation may
// cause device_quad to become clipped. To our knowledge this scenario does
// not need to be handled differently than the unclipped case.
return local_quad;
}
void InflateAntiAliasingDistances(const gfx::QuadF& quad,
LayerQuad* device_layer_edges,
float edge[24]) {
DCHECK(!quad.BoundingBox().IsEmpty());
LayerQuad device_layer_bounds(gfx::QuadF(quad.BoundingBox()));
device_layer_edges->InflateAntiAliasingDistance();
device_layer_edges->ToFloatArray(edge);
device_layer_bounds.InflateAntiAliasingDistance();
device_layer_bounds.ToFloatArray(&edge[12]);
}
// static
bool GLRenderer::ShouldAntialiasQuad(const gfx::QuadF& device_layer_quad,
bool clipped,
bool force_aa) {
// AAing clipped quads is not supported by the code yet.
if (clipped)
return false;
if (device_layer_quad.BoundingBox().IsEmpty())
return false;
if (force_aa)
return true;
bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
bool is_nearest_rect_within_epsilon =
is_axis_aligned_in_target &&
gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
kAntiAliasingEpsilon);
return !is_nearest_rect_within_epsilon;
}
// static
void GLRenderer::SetupQuadForClippingAndAntialiasing(
const gfx::Transform& device_transform,
const DrawQuad* quad,
const gfx::QuadF* aa_quad,
const gfx::QuadF* clip_region,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::QuadF rotated_clip;
const gfx::QuadF* local_clip_region = clip_region;
if (local_clip_region) {
rotated_clip = *clip_region;
AlignQuadToBoundingBox(&rotated_clip);
local_clip_region = &rotated_clip;
}
if (!aa_quad) {
if (local_clip_region)
*local_quad = *local_clip_region;
return;
}
LayerQuad device_layer_edges(*aa_quad);
InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge);
// If we have a clip region then we are split, and therefore
// by necessity, at least one of our edges is not an external
// one.
bool is_full_rect = quad->visible_rect == quad->rect;
bool region_contains_all_outside_edges =
is_full_rect &&
(is_top(local_clip_region, quad) && is_left(local_clip_region, quad) &&
is_bottom(local_clip_region, quad) && is_right(local_clip_region, quad));
bool use_aa_on_all_four_edges =
!local_clip_region && region_contains_all_outside_edges;
gfx::QuadF device_quad;
if (use_aa_on_all_four_edges) {
device_quad = device_layer_edges.ToQuadF();
} else {
gfx::QuadF tile_quad(local_clip_region
? *local_clip_region
: gfx::QuadF(gfx::RectF(quad->visible_rect)));
device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges(
device_layer_edges, device_transform, tile_quad, local_clip_region,
quad);
}
*local_quad = MapQuadToLocalSpace(device_transform, device_quad);
}
// static
void GLRenderer::SetupRenderPassQuadForClippingAndAntialiasing(
const gfx::Transform& device_transform,
const RenderPassDrawQuad* quad,
const gfx::QuadF* aa_quad,
const gfx::QuadF* clip_region,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::QuadF rotated_clip;
const gfx::QuadF* local_clip_region = clip_region;
if (local_clip_region) {
rotated_clip = *clip_region;
AlignQuadToBoundingBox(&rotated_clip);
local_clip_region = &rotated_clip;
}
if (!aa_quad) {
GetScaledRegion(quad->rect, local_clip_region, local_quad);
return;
}
LayerQuad device_layer_edges(*aa_quad);
InflateAntiAliasingDistances(*aa_quad, &device_layer_edges, edge);
gfx::QuadF device_quad;
// Apply anti-aliasing only to the edges that are not being clipped
if (local_clip_region) {
gfx::QuadF tile_quad(gfx::RectF(quad->visible_rect));
GetScaledRegion(quad->rect, local_clip_region, &tile_quad);
device_quad = GetDeviceQuadWithAntialiasingOnExteriorEdges(
device_layer_edges, device_transform, tile_quad, local_clip_region,
quad);
} else {
device_quad = device_layer_edges.ToQuadF();
}
*local_quad = MapQuadToLocalSpace(device_transform, device_quad);
}
void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame,
const SolidColorDrawQuad* quad,
const gfx::QuadF* clip_region) {
gfx::Rect tile_rect = quad->visible_rect;
SkColor color = quad->color;
float opacity = quad->shared_quad_state->opacity;
float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
// Early out if alpha is small enough that quad doesn't contribute to output.
if (alpha < std::numeric_limits<float>::epsilon() &&
quad->ShouldDrawWithBlending())
return;
gfx::Transform device_transform =
frame->window_matrix * frame->projection_matrix *
quad->shared_quad_state->quad_to_target_transform;
device_transform.FlattenTo2d();
if (!device_transform.IsInvertible())
return;
auto local_quad = gfx::QuadF(gfx::RectF(tile_rect));
gfx::QuadF device_layer_quad;
bool use_aa = false;
bool allow_aa = settings_->allow_antialiasing &&
!quad->force_anti_aliasing_off && quad->IsEdge();
if (allow_aa) {
bool clipped = false;
bool force_aa = false;
device_layer_quad = MathUtil::MapQuad(
device_transform,
gfx::QuadF(
gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)),
&clipped);
use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa);
}
float edge[24];
const gfx::QuadF* aa_quad = use_aa ? &device_layer_quad : nullptr;
SetupQuadForClippingAndAntialiasing(device_transform, quad, aa_quad,
clip_region, &local_quad, edge);
SolidColorProgramUniforms uniforms;
if (use_aa) {
SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms);
} else {
SolidColorUniformLocation(GetSolidColorProgram(), &uniforms);
}
SetUseProgram(uniforms.program);
gl_->Uniform4f(uniforms.color_location,
(SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetB(color) * (1.0f / 255.0f)) * alpha, alpha);
if (use_aa) {
float viewport[4] = {
static_cast<float>(current_window_space_viewport_.x()),
static_cast<float>(current_window_space_viewport_.y()),
static_cast<float>(current_window_space_viewport_.width()),
static_cast<float>(current_window_space_viewport_.height()),
};
gl_->Uniform4fv(uniforms.viewport_location, 1, viewport);
gl_->Uniform3fv(uniforms.edge_location, 8, edge);
}
// Enable blending when the quad properties require it or if we decided
// to use antialiasing.
SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
// Antialising requires a normalized quad, but this could lead to floating
// point precision errors, so only normalize when antialising is on.
if (use_aa) {
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderQuadF(local_quad, uniforms.quad_location);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original
// quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
gfx::SizeF(tile_rect.size()));
DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform,
centered_rect, uniforms.matrix_location);
} else {
PrepareGeometry(SHARED_BINDING);
SetShaderQuadF(local_quad, uniforms.quad_location);
static float gl_matrix[16];
ToGLMatrix(&gl_matrix[0],
frame->projection_matrix *
quad->shared_quad_state->quad_to_target_transform);
gl_->UniformMatrix4fv(uniforms.matrix_location, 1, false, &gl_matrix[0]);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
}
}
struct TileProgramUniforms {
unsigned program;
unsigned matrix_location;
unsigned viewport_location;
unsigned quad_location;
unsigned edge_location;
unsigned vertex_tex_transform_location;
unsigned sampler_location;
unsigned fragment_tex_transform_location;
unsigned alpha_location;
};
template <class T>
static void TileUniformLocation(T program, TileProgramUniforms* uniforms) {
uniforms->program = program->program();
uniforms->matrix_location = program->vertex_shader().matrix_location();
uniforms->viewport_location = program->vertex_shader().viewport_location();
uniforms->quad_location = program->vertex_shader().quad_location();
uniforms->edge_location = program->vertex_shader().edge_location();
uniforms->vertex_tex_transform_location =
program->vertex_shader().vertex_tex_transform_location();
uniforms->sampler_location = program->fragment_shader().sampler_location();
uniforms->alpha_location = program->fragment_shader().alpha_location();
uniforms->fragment_tex_transform_location =
program->fragment_shader().fragment_tex_transform_location();
}
void GLRenderer::DrawTileQuad(const DrawingFrame* frame,
const TileDrawQuad* quad,
const gfx::QuadF* clip_region) {
DrawContentQuad(frame, quad, quad->resource_id(), clip_region);
}
void GLRenderer::DrawContentQuad(const DrawingFrame* frame,
const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::QuadF* clip_region) {
gfx::Transform device_transform =
frame->window_matrix * frame->projection_matrix *
quad->shared_quad_state->quad_to_target_transform;
device_transform.FlattenTo2d();
gfx::QuadF device_layer_quad;
bool use_aa = false;
bool allow_aa = settings_->allow_antialiasing && quad->IsEdge();
if (allow_aa) {
bool clipped = false;
bool force_aa = false;
device_layer_quad = MathUtil::MapQuad(
device_transform,
gfx::QuadF(
gfx::RectF(quad->shared_quad_state->visible_quad_layer_rect)),
&clipped);
use_aa = ShouldAntialiasQuad(device_layer_quad, clipped, force_aa);
}
// TODO(timav): simplify coordinate transformations in DrawContentQuadAA
// similar to the way DrawContentQuadNoAA works and then consider
// combining DrawContentQuadAA and DrawContentQuadNoAA into one method.
if (use_aa)
DrawContentQuadAA(frame, quad, resource_id, device_transform,
device_layer_quad, clip_region);
else
DrawContentQuadNoAA(frame, quad, resource_id, clip_region);
}
void GLRenderer::DrawContentQuadAA(const DrawingFrame* frame,
const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::Transform& device_transform,
const gfx::QuadF& aa_quad,
const gfx::QuadF* clip_region) {
if (!device_transform.IsInvertible())
return;
gfx::Rect tile_rect = quad->visible_rect;
gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
quad->tex_coord_rect, gfx::RectF(quad->rect), gfx::RectF(tile_rect));
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
gfx::RectF clamp_geom_rect(tile_rect);
gfx::RectF clamp_tex_rect(tex_coord_rect);
// Clamp texture coordinates to avoid sampling outside the layer
// by deflating the tile region half a texel or half a texel
// minus epsilon for one pixel layers. The resulting clamp region
// is mapped to the unit square by the vertex shader and mapped
// back to normalized texture coordinates by the fragment shader
// after being clamped to 0-1 range.
float tex_clamp_x =
std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
float tex_clamp_y =
std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
float geom_clamp_x =
std::min(tex_clamp_x * tex_to_geom_scale_x,
0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
float geom_clamp_y =
std::min(tex_clamp_y * tex_to_geom_scale_y,
0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
// Map clamping rectangle to unit square.
float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
float vertex_tex_translate_y =
-clamp_geom_rect.y() / clamp_geom_rect.height();
float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
auto local_quad = gfx::QuadF(gfx::RectF(tile_rect));
float edge[24];
SetupQuadForClippingAndAntialiasing(device_transform, quad, &aa_quad,
clip_region, &local_quad, edge);
ResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id,
quad->nearest_neighbor ? GL_NEAREST : GL_LINEAR);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
float fragment_tex_translate_x = clamp_tex_rect.x();
float fragment_tex_translate_y = clamp_tex_rect.y();
float fragment_tex_scale_x = clamp_tex_rect.width();
float fragment_tex_scale_y = clamp_tex_rect.height();
// Map to normalized texture coordinates.
if (sampler != SAMPLER_TYPE_2D_RECT) {
gfx::Size texture_size = quad->texture_size;
DCHECK(!texture_size.IsEmpty());
fragment_tex_translate_x /= texture_size.width();
fragment_tex_translate_y /= texture_size.height();
fragment_tex_scale_x /= texture_size.width();
fragment_tex_scale_y /= texture_size.height();
}
TileProgramUniforms uniforms;
if (quad->swizzle_contents) {
TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler),
&uniforms);
}
SetUseProgram(uniforms.program);
gl_->Uniform1i(uniforms.sampler_location, 0);
float viewport[4] = {
static_cast<float>(current_window_space_viewport_.x()),
static_cast<float>(current_window_space_viewport_.y()),
static_cast<float>(current_window_space_viewport_.width()),
static_cast<float>(current_window_space_viewport_.height()),
};
gl_->Uniform4fv(uniforms.viewport_location, 1, viewport);
gl_->Uniform3fv(uniforms.edge_location, 8, edge);
gl_->Uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x,
vertex_tex_translate_y, vertex_tex_scale_x,
vertex_tex_scale_y);
gl_->Uniform4f(uniforms.fragment_tex_transform_location,
fragment_tex_translate_x, fragment_tex_translate_y,
fragment_tex_scale_x, fragment_tex_scale_y);
// Blending is required for antialiasing.
SetBlendEnabled(true);
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderOpacity(quad->shared_quad_state->opacity, uniforms.alpha_location);
SetShaderQuadF(local_quad, uniforms.quad_location);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
gfx::SizeF(tile_rect.size()));
DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform,
centered_rect, uniforms.matrix_location);
}
void GLRenderer::DrawContentQuadNoAA(const DrawingFrame* frame,
const ContentDrawQuadBase* quad,
ResourceId resource_id,
const gfx::QuadF* clip_region) {
gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
quad->tex_coord_rect, gfx::RectF(quad->rect),
gfx::RectF(quad->visible_rect));
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
GLenum filter = (scaled ||
!quad->shared_quad_state->quad_to_target_transform
.IsIdentityOrIntegerTranslation()) &&
!quad->nearest_neighbor
? GL_LINEAR
: GL_NEAREST;
ResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id, filter);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
float vertex_tex_translate_x = tex_coord_rect.x();
float vertex_tex_translate_y = tex_coord_rect.y();
float vertex_tex_scale_x = tex_coord_rect.width();
float vertex_tex_scale_y = tex_coord_rect.height();
// Map to normalized texture coordinates.
if (sampler != SAMPLER_TYPE_2D_RECT) {
gfx::Size texture_size = quad->texture_size;
DCHECK(!texture_size.IsEmpty());
vertex_tex_translate_x /= texture_size.width();
vertex_tex_translate_y /= texture_size.height();
vertex_tex_scale_x /= texture_size.width();
vertex_tex_scale_y /= texture_size.height();
}
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
TileProgramUniforms uniforms;
if (quad->ShouldDrawWithBlending()) {
if (quad->swizzle_contents) {
TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgram(tex_coord_precision, sampler),
&uniforms);
}
} else {
if (quad->swizzle_contents) {
TileUniformLocation(
GetTileProgramSwizzleOpaque(tex_coord_precision, sampler), &uniforms);
} else {
TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler),
&uniforms);
}
}
SetUseProgram(uniforms.program);
gl_->Uniform1i(uniforms.sampler_location, 0);
gl_->Uniform4f(uniforms.vertex_tex_transform_location, vertex_tex_translate_x,
vertex_tex_translate_y, vertex_tex_scale_x,
vertex_tex_scale_y);
SetBlendEnabled(quad->ShouldDrawWithBlending());
SetShaderOpacity(quad->shared_quad_state->opacity, uniforms.alpha_location);
// Pass quad coordinates to the uniform in the same order as GeometryBinding
// does, then vertices will match the texture mapping in the vertex buffer.
// The method SetShaderQuadF() changes the order of vertices and so it's
// not used here.
auto tile_quad = gfx::QuadF(gfx::RectF(quad->visible_rect));
float width = quad->visible_rect.width();
float height = quad->visible_rect.height();
auto top_left = gfx::PointF(quad->visible_rect.origin());
if (clip_region) {
tile_quad = *clip_region;
float gl_uv[8] = {
(tile_quad.p4().x() - top_left.x()) / width,
(tile_quad.p4().y() - top_left.y()) / height,
(tile_quad.p1().x() - top_left.x()) / width,
(tile_quad.p1().y() - top_left.y()) / height,
(tile_quad.p2().x() - top_left.x()) / width,
(tile_quad.p2().y() - top_left.y()) / height,
(tile_quad.p3().x() - top_left.x()) / width,
(tile_quad.p3().y() - top_left.y()) / height,
};
PrepareGeometry(CLIPPED_BINDING);
clipped_geometry_->InitializeCustomQuadWithUVs(
gfx::QuadF(gfx::RectF(quad->visible_rect)), gl_uv);
} else {
PrepareGeometry(SHARED_BINDING);
}
float gl_quad[8] = {
tile_quad.p4().x(), tile_quad.p4().y(), tile_quad.p1().x(),
tile_quad.p1().y(), tile_quad.p2().x(), tile_quad.p2().y(),
tile_quad.p3().x(), tile_quad.p3().y(),
};
gl_->Uniform2fv(uniforms.quad_location, 4, gl_quad);
static float gl_matrix[16];
ToGLMatrix(&gl_matrix[0],
frame->projection_matrix *
quad->shared_quad_state->quad_to_target_transform);
gl_->UniformMatrix4fv(uniforms.matrix_location, 1, false, &gl_matrix[0]);
gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0);
}
void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame,
const YUVVideoDrawQuad* quad,
const gfx::QuadF* clip_region) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
bool use_alpha_plane = quad->a_plane_resource_id() != 0;
ResourceProvider::ScopedSamplerGL y_plane_lock(
resource_provider_, quad->y_plane_resource_id(), GL_TEXTURE1, GL_LINEAR);
ResourceProvider::ScopedSamplerGL u_plane_lock(
resource_provider_, quad->u_plane_resource_id(), GL_TEXTURE2, GL_LINEAR);
DCHECK_EQ(y_plane_lock.target(), u_plane_lock.target());
ResourceProvider::ScopedSamplerGL v_plane_lock(
resource_provider_, quad->v_plane_resource_id(), GL_TEXTURE3, GL_LINEAR);
DCHECK_EQ(y_plane_lock.target(), v_plane_lock.target());
scoped_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock;
if (use_alpha_plane) {
a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
resource_provider_, quad->a_plane_resource_id(), GL_TEXTURE4,
GL_LINEAR));
DCHECK_EQ(y_plane_lock.target(), a_plane_lock->target());
}
// All planes must have the same sampler type.
SamplerType sampler = SamplerTypeFromTextureTarget(y_plane_lock.target());
int matrix_location = -1;
int ya_tex_scale_location = -1;
int ya_tex_offset_location = -1;
int uv_tex_scale_location = -1;
int uv_tex_offset_location = -1;
int ya_clamp_rect_location = -1;
int uv_clamp_rect_location = -1;
int y_texture_location = -1;
int u_texture_location = -1;
int v_texture_location = -1;
int a_texture_location = -1;
int yuv_matrix_location = -1;
int yuv_adj_location = -1;
int alpha_location = -1;
if (use_alpha_plane) {
const VideoYUVAProgram* program =
GetVideoYUVAProgram(tex_coord_precision, sampler);
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
matrix_location = program->vertex_shader().matrix_location();
ya_tex_scale_location = program->vertex_shader().ya_tex_scale_location();
ya_tex_offset_location = program->vertex_shader().ya_tex_offset_location();
uv_tex_scale_location = program->vertex_shader().uv_tex_scale_location();
uv_tex_offset_location = program->vertex_shader().uv_tex_offset_location();
y_texture_location = program->fragment_shader().y_texture_location();
u_texture_location = program->fragment_shader().u_texture_location();
v_texture_location = program->fragment_shader().v_texture_location();
a_texture_location = program->fragment_shader().a_texture_location();
yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
yuv_adj_location = program->fragment_shader().yuv_adj_location();
ya_clamp_rect_location =
program->fragment_shader().ya_clamp_rect_location();
uv_clamp_rect_location =
program->fragment_shader().uv_clamp_rect_location();
alpha_location = program->fragment_shader().alpha_location();
} else {
const VideoYUVProgram* program =
GetVideoYUVProgram(tex_coord_precision, sampler);
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
matrix_location = program->vertex_shader().matrix_location();
ya_tex_scale_location = program->vertex_shader().ya_tex_scale_location();
ya_tex_offset_location = program->vertex_shader().ya_tex_offset_location();
uv_tex_scale_location = program->vertex_shader().uv_tex_scale_location();
uv_tex_offset_location = program->vertex_shader().uv_tex_offset_location();
y_texture_location = program->fragment_shader().y_texture_location();
u_texture_location = program->fragment_shader().u_texture_location();
v_texture_location = program->fragment_shader().v_texture_location();
yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
yuv_adj_location = program->fragment_shader().yuv_adj_location();
ya_clamp_rect_location =
program->fragment_shader().ya_clamp_rect_location();
uv_clamp_rect_location =
program->fragment_shader().uv_clamp_rect_location();
alpha_location = program->fragment_shader().alpha_location();
}
gfx::SizeF ya_tex_scale(1.0f, 1.0f);
gfx::SizeF uv_tex_scale(1.0f, 1.0f);
if (sampler != SAMPLER_TYPE_2D_RECT) {
DCHECK(!quad->ya_tex_size.IsEmpty());
DCHECK(!quad->uv_tex_size.IsEmpty());
ya_tex_scale = gfx::SizeF(1.0f / quad->ya_tex_size.width(),
1.0f / quad->ya_tex_size.height());
uv_tex_scale = gfx::SizeF(1.0f / quad->uv_tex_size.width(),
1.0f / quad->uv_tex_size.height());
}
float ya_vertex_tex_translate_x =
quad->ya_tex_coord_rect.x() * ya_tex_scale.width();
float ya_vertex_tex_translate_y =
quad->ya_tex_coord_rect.y() * ya_tex_scale.height();
float ya_vertex_tex_scale_x =
quad->ya_tex_coord_rect.width() * ya_tex_scale.width();
float ya_vertex_tex_scale_y =
quad->ya_tex_coord_rect.height() * ya_tex_scale.height();
float uv_vertex_tex_translate_x =
quad->uv_tex_coord_rect.x() * uv_tex_scale.width();
float uv_vertex_tex_translate_y =
quad->uv_tex_coord_rect.y() * uv_tex_scale.height();
float uv_vertex_tex_scale_x =
quad->uv_tex_coord_rect.width() * uv_tex_scale.width();
float uv_vertex_tex_scale_y =
quad->uv_tex_coord_rect.height() * uv_tex_scale.height();
gl_->Uniform2f(ya_tex_scale_location, ya_vertex_tex_scale_x,
ya_vertex_tex_scale_y);
gl_->Uniform2f(ya_tex_offset_location, ya_vertex_tex_translate_x,
ya_vertex_tex_translate_y);
gl_->Uniform2f(uv_tex_scale_location, uv_vertex_tex_scale_x,
uv_vertex_tex_scale_y);
gl_->Uniform2f(uv_tex_offset_location, uv_vertex_tex_translate_x,
uv_vertex_tex_translate_y);
gfx::RectF ya_clamp_rect(ya_vertex_tex_translate_x, ya_vertex_tex_translate_y,
ya_vertex_tex_scale_x, ya_vertex_tex_scale_y);
ya_clamp_rect.Inset(0.5f * ya_tex_scale.width(),
0.5f * ya_tex_scale.height());
gfx::RectF uv_clamp_rect(uv_vertex_tex_translate_x, uv_vertex_tex_translate_y,
uv_vertex_tex_scale_x, uv_vertex_tex_scale_y);
uv_clamp_rect.Inset(0.5f * uv_tex_scale.width(),
0.5f * uv_tex_scale.height());
gl_->Uniform4f(ya_clamp_rect_location, ya_clamp_rect.x(), ya_clamp_rect.y(),
ya_clamp_rect.right(), ya_clamp_rect.bottom());
gl_->Uniform4f(uv_clamp_rect_location, uv_clamp_rect.x(), uv_clamp_rect.y(),
uv_clamp_rect.right(), uv_clamp_rect.bottom());
gl_->Uniform1i(y_texture_location, 1);
gl_->Uniform1i(u_texture_location, 2);
gl_->Uniform1i(v_texture_location, 3);
if (use_alpha_plane)
gl_->Uniform1i(a_texture_location, 4);
// These values are magic numbers that are used in the transformation from YUV
// to RGB color values. They are taken from the following webpage:
// http://www.fourcc.org/fccyvrgb.php
float yuv_to_rgb_rec601[9] = {
1.164f, 1.164f, 1.164f, 0.0f, -.391f, 2.018f, 1.596f, -.813f, 0.0f,
};
float yuv_to_rgb_jpeg[9] = {
1.f, 1.f, 1.f, 0.0f, -.34414f, 1.772f, 1.402f, -.71414f, 0.0f,
};
float yuv_to_rgb_rec709[9] = {
1.164f, 1.164f, 1.164f, 0.0f, -0.213f, 2.112f, 1.793f, -0.533f, 0.0f,
};
// These values map to 16, 128, and 128 respectively, and are computed
// as a fraction over 256 (e.g. 16 / 256 = 0.0625).
// They are used in the YUV to RGBA conversion formula:
// Y - 16 : Gives 16 values of head and footroom for overshooting
// U - 128 : Turns unsigned U into signed U [-128,127]
// V - 128 : Turns unsigned V into signed V [-128,127]
float yuv_adjust_constrained[3] = {
-0.0625f, -0.5f, -0.5f,
};
// Same as above, but without the head and footroom.
float yuv_adjust_full[3] = {
0.0f, -0.5f, -0.5f,
};
float* yuv_to_rgb = NULL;
float* yuv_adjust = NULL;
switch (quad->color_space) {
case YUVVideoDrawQuad::REC_601:
yuv_to_rgb = yuv_to_rgb_rec601;
yuv_adjust = yuv_adjust_constrained;
break;
case YUVVideoDrawQuad::REC_709:
yuv_to_rgb = yuv_to_rgb_rec709;
yuv_adjust = yuv_adjust_constrained;
break;
case YUVVideoDrawQuad::JPEG:
yuv_to_rgb = yuv_to_rgb_jpeg;
yuv_adjust = yuv_adjust_full;
break;
}
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
auto tile_rect = gfx::RectF(quad->rect);
gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb);
gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust);
SetShaderOpacity(quad->shared_quad_state->opacity, alpha_location);
if (!clip_region) {
DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform,
tile_rect, matrix_location);
} else {
float uvs[8] = {0};
GetScaledUVs(quad->visible_rect, clip_region, uvs);
gfx::QuadF region_quad = *clip_region;
region_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
region_quad -= gfx::Vector2dF(0.5f, 0.5f);
DrawQuadGeometryClippedByQuadF(
frame, quad->shared_quad_state->quad_to_target_transform, tile_rect,
region_quad, matrix_location, uvs);
}
}
void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame,
const StreamVideoDrawQuad* quad,
const gfx::QuadF* clip_region) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
static float gl_matrix[16];
DCHECK(capabilities_.using_egl_image);
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
const VideoStreamTextureProgram* program =
GetVideoStreamTextureProgram(tex_coord_precision);
SetUseProgram(program->program());
ToGLMatrix(&gl_matrix[0], quad->matrix);
gl_->UniformMatrix4fv(program->vertex_shader().tex_matrix_location(), 1,
false, gl_matrix);
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id());
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id());
gl_->Uniform1i(program->fragment_shader().sampler_location(), 0);
SetShaderOpacity(quad->shared_quad_state->opacity,
program->fragment_shader().alpha_location());
if (!clip_region) {
DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect),
program->vertex_shader().matrix_location());
} else {
gfx::QuadF region_quad(*clip_region);
region_quad.Scale(1.0f / quad->rect.width(), 1.0f / quad->rect.height());
region_quad -= gfx::Vector2dF(0.5f, 0.5f);
float uvs[8] = {0};
GetScaledUVs(quad->visible_rect, clip_region, uvs);
DrawQuadGeometryClippedByQuadF(
frame, quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect), region_quad,
program->vertex_shader().matrix_location(), uvs);
}
}
struct TextureProgramBinding {
template <class Program>
void Set(Program* program) {
DCHECK(program);
program_id = program->program();
sampler_location = program->fragment_shader().sampler_location();
matrix_location = program->vertex_shader().matrix_location();
background_color_location =
program->fragment_shader().background_color_location();
}
int program_id;
int sampler_location;
int matrix_location;
int transform_location;
int background_color_location;
};
struct TexTransformTextureProgramBinding : TextureProgramBinding {
template <class Program>
void Set(Program* program) {
TextureProgramBinding::Set(program);
tex_transform_location = program->vertex_shader().tex_transform_location();
vertex_opacity_location =
program->vertex_shader().vertex_opacity_location();
}
int tex_transform_location;
int vertex_opacity_location;
};
void GLRenderer::FlushTextureQuadCache(BoundGeometry flush_binding) {
// Check to see if we have anything to draw.
if (draw_cache_.program_id == -1)
return;
PrepareGeometry(flush_binding);
// Set the correct blending mode.
SetBlendEnabled(draw_cache_.needs_blending);
// Bind the program to the GL state.
SetUseProgram(draw_cache_.program_id);
// Bind the correct texture sampler location.
gl_->Uniform1i(draw_cache_.sampler_location, 0);
// Assume the current active textures is 0.
ResourceProvider::ScopedSamplerGL locked_quad(
resource_provider_,
draw_cache_.resource_id,
draw_cache_.nearest_neighbor ? GL_NEAREST : GL_LINEAR);
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(locked_quad.target(), locked_quad.texture_id());
static_assert(sizeof(Float4) == 4 * sizeof(float),
"Float4 struct should be densely packed");
static_assert(sizeof(Float16) == 16 * sizeof(float),
"Float16 struct should be densely packed");
// Upload the tranforms for both points and uvs.
gl_->UniformMatrix4fv(
static_cast<int>(draw_cache_.matrix_location),
static_cast<int>(draw_cache_.matrix_data.size()), false,
reinterpret_cast<float*>(&draw_cache_.matrix_data.front()));
gl_->Uniform4fv(static_cast<int>(draw_cache_.uv_xform_location),
static_cast<int>(draw_cache_.uv_xform_data.size()),
reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front()));
if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
Float4 background_color = PremultipliedColor(draw_cache_.background_color);
gl_->Uniform4fv(draw_cache_.background_color_location, 1,
background_color.data);
}
gl_->Uniform1fv(
static_cast<int>(draw_cache_.vertex_opacity_location),
static_cast<int>(draw_cache_.vertex_opacity_data.size()),
static_cast<float*>(&draw_cache_.vertex_opacity_data.front()));
DCHECK_LE(draw_cache_.matrix_data.size(),
static_cast<size_t>(std::numeric_limits<int>::max()) / 6u);
// Draw the quads!
gl_->DrawElements(GL_TRIANGLES,
6 * static_cast<int>(draw_cache_.matrix_data.size()),
GL_UNSIGNED_SHORT, 0);
// Clear the cache.
draw_cache_.program_id = -1;
draw_cache_.uv_xform_data.resize(0);
draw_cache_.vertex_opacity_data.resize(0);
draw_cache_.matrix_data.resize(0);
// If we had a clipped binding, prepare the shared binding for the
// next inserts.
if (flush_binding == CLIPPED_BINDING) {
PrepareGeometry(SHARED_BINDING);
}
}
void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame,
const TextureDrawQuad* quad,
const gfx::QuadF* clip_region) {
// If we have a clip_region then we have to render the next quad
// with dynamic geometry, therefore we must flush all pending
// texture quads.
if (clip_region) {
// We send in false here because we want to flush what's currently in the
// queue using the shared_geometry and not clipped_geometry
FlushTextureQuadCache(SHARED_BINDING);
}
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id());
const SamplerType sampler = SamplerTypeFromTextureTarget(lock.target());
// Choose the correct texture program binding
TexTransformTextureProgramBinding binding;
if (quad->premultiplied_alpha) {
if (quad->background_color == SK_ColorTRANSPARENT) {
binding.Set(GetTextureProgram(tex_coord_precision, sampler));
} else {
binding.Set(GetTextureBackgroundProgram(tex_coord_precision, sampler));
}
} else {
if (quad->background_color == SK_ColorTRANSPARENT) {
binding.Set(
GetNonPremultipliedTextureProgram(tex_coord_precision, sampler));
} else {
binding.Set(GetNonPremultipliedTextureBackgroundProgram(
tex_coord_precision, sampler));
}
}
int resource_id = quad->resource_id();
size_t max_quads = StaticGeometryBinding::NUM_QUADS;
if (draw_cache_.program_id != binding.program_id ||
draw_cache_.resource_id != resource_id ||
draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
draw_cache_.nearest_neighbor != quad->nearest_neighbor ||
draw_cache_.background_color != quad->background_color ||
draw_cache_.matrix_data.size() >= max_quads) {
FlushTextureQuadCache(SHARED_BINDING);
draw_cache_.program_id = binding.program_id;
draw_cache_.resource_id = resource_id;
draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
draw_cache_.nearest_neighbor = quad->nearest_neighbor;
draw_cache_.background_color = quad->background_color;
draw_cache_.uv_xform_location = binding.tex_transform_location;
draw_cache_.background_color_location = binding.background_color_location;
draw_cache_.vertex_opacity_location = binding.vertex_opacity_location;
draw_cache_.matrix_location = binding.matrix_location;
draw_cache_.sampler_location = binding.sampler_location;
}
// Generate the uv-transform
Float4 uv_transform = {{0.0f, 0.0f, 1.0f, 1.0f}};
if (!clip_region)
uv_transform = UVTransform(quad);
if (sampler == SAMPLER_TYPE_2D_RECT) {
// Un-normalize the texture coordiantes for rectangle targets.
gfx::Size texture_size = lock.texture_size();
uv_transform.data[0] *= texture_size.width();
uv_transform.data[2] *= texture_size.width();
uv_transform.data[1] *= texture_size.height();
uv_transform.data[3] *= texture_size.height();
}
draw_cache_.uv_xform_data.push_back(uv_transform);
// Generate the vertex opacity
const float opacity = quad->shared_quad_state->opacity;
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
// Generate the transform matrix
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix,
quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect));
quad_rect_matrix = frame->projection_matrix * quad_rect_matrix;
Float16 m;
quad_rect_matrix.matrix().asColMajorf(m.data);
draw_cache_.matrix_data.push_back(m);
if (clip_region) {
gfx::QuadF scaled_region;
if (!GetScaledRegion(quad->rect, clip_region, &scaled_region)) {
scaled_region = SharedGeometryQuad().BoundingBox();
}
// Both the scaled region and the SharedGeomtryQuad are in the space
// -0.5->0.5. We need to move that to the space 0->1.
float uv[8];
uv[0] = scaled_region.p1().x() + 0.5f;
uv[1] = scaled_region.p1().y() + 0.5f;
uv[2] = scaled_region.p2().x() + 0.5f;
uv[3] = scaled_region.p2().y() + 0.5f;
uv[4] = scaled_region.p3().x() + 0.5f;
uv[5] = scaled_region.p3().y() + 0.5f;
uv[6] = scaled_region.p4().x() + 0.5f;
uv[7] = scaled_region.p4().y() + 0.5f;
PrepareGeometry(CLIPPED_BINDING);
clipped_geometry_->InitializeCustomQuadWithUVs(scaled_region, uv);
FlushTextureQuadCache(CLIPPED_BINDING);
}
}
void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame,
const IOSurfaceDrawQuad* quad,
const gfx::QuadF* clip_region) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_,
quad->shared_quad_state->visible_quad_layer_rect.bottom_right());
TexTransformTextureProgramBinding binding;
binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision));
SetUseProgram(binding.program_id);
gl_->Uniform1i(binding.sampler_location, 0);
if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) {
gl_->Uniform4f(
binding.tex_transform_location, 0, quad->io_surface_size.height(),
quad->io_surface_size.width(), quad->io_surface_size.height() * -1.0f);
} else {
gl_->Uniform4f(binding.tex_transform_location, 0, 0,
quad->io_surface_size.width(),
quad->io_surface_size.height());
}
const float vertex_opacity[] = {quad->shared_quad_state->opacity,
quad->shared_quad_state->opacity,
quad->shared_quad_state->opacity,
quad->shared_quad_state->opacity};
gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity);
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->io_surface_resource_id());
DCHECK_EQ(GL_TEXTURE0, GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id());
if (!clip_region) {
DrawQuadGeometry(frame, quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect), binding.matrix_location);
} else {
float uvs[8] = {0};
GetScaledUVs(quad->visible_rect, clip_region, uvs);
DrawQuadGeometryClippedByQuadF(
frame, quad->shared_quad_state->quad_to_target_transform,
gfx::RectF(quad->rect), *clip_region, binding.matrix_location, uvs);
}
gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0);
}
void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) {
if (use_sync_query_) {
DCHECK(current_sync_query_);
current_sync_query_->End();
pending_sync_queries_.push_back(std::move(current_sync_query_));
}
current_framebuffer_lock_ = nullptr;
swap_buffer_rect_.Union(frame->root_damage_rect);
gl_->Disable(GL_BLEND);
blend_shadow_ = false;
ScheduleCALayers(frame);
ScheduleOverlays(frame);
}
void GLRenderer::FinishDrawingQuadList() {
FlushTextureQuadCache(SHARED_BINDING);
}
bool GLRenderer::FlippedFramebuffer(const DrawingFrame* frame) const {
if (frame->current_render_pass != frame->root_render_pass)
return true;
return FlippedRootFramebuffer();
}
bool GLRenderer::FlippedRootFramebuffer() const {
// GL is normally flipped, so a flipped output results in an unflipping.
return !output_surface_->capabilities().flipped_output_surface;
}
void GLRenderer::EnsureScissorTestEnabled() {
if (is_scissor_enabled_)
return;
FlushTextureQuadCache(SHARED_BINDING);
gl_->Enable(GL_SCISSOR_TEST);
is_scissor_enabled_ = true;
}
void GLRenderer::EnsureScissorTestDisabled() {
if (!is_scissor_enabled_)
return;
FlushTextureQuadCache(SHARED_BINDING);
gl_->Disable(GL_SCISSOR_TEST);
is_scissor_enabled_ = false;
}
void GLRenderer::CopyCurrentRenderPassToBitmap(
DrawingFrame* frame,
scoped_ptr<CopyOutputRequest> request) {
TRACE_EVENT0("cc", "GLRenderer::CopyCurrentRenderPassToBitmap");
gfx::Rect copy_rect = frame->current_render_pass->output_rect;
if (request->has_area())
copy_rect.Intersect(request->area());
GetFramebufferPixelsAsync(frame, copy_rect, std::move(request));
}
void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
transform.matrix().asColMajorf(gl_matrix);
}
void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) {
if (quad_location == -1)