blob: 55b0ca4640c98edfe0223bd74d900d892c0ddf0f [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// See the following specification for details on the ETC1 format:
// https://www.khronos.org/registry/gles/extensions/OES/OES_compressed_ETC1_RGB8_texture.txt
#include "cc/raster/texture_compressor_etc1.h"
#include <stdint.h>
#include <string.h>
#include <limits>
#include "base/logging.h"
// Defining the following macro will cause the error metric function to weigh
// each color channel differently depending on how the human eye can perceive
// them. This can give a slight improvement in image quality at the cost of a
// performance hit.
// #define USE_PERCEIVED_ERROR_METRIC
namespace cc {
namespace {
// Constructs a color from a given base color and luminance value.
inline Color MakeColor(const Color& base, int16_t lum) {
int b = static_cast<int>(base.channels.b) + lum;
int g = static_cast<int>(base.channels.g) + lum;
int r = static_cast<int>(base.channels.r) + lum;
Color color;
color.channels.b = static_cast<uint8_t>(clamp(b, 0, 255));
color.channels.g = static_cast<uint8_t>(clamp(g, 0, 255));
color.channels.r = static_cast<uint8_t>(clamp(r, 0, 255));
return color;
}
// Calculates the error metric for two colors. A small error signals that the
// colors are similar to each other, a large error the signals the opposite.
inline uint32_t GetColorError(const Color& u, const Color& v) {
#ifdef USE_PERCEIVED_ERROR_METRIC
float delta_b = static_cast<float>(u.channels.b) - v.channels.b;
float delta_g = static_cast<float>(u.channels.g) - v.channels.g;
float delta_r = static_cast<float>(u.channels.r) - v.channels.r;
return static_cast<uint32_t>(0.299f * delta_b * delta_b +
0.587f * delta_g * delta_g +
0.114f * delta_r * delta_r);
#else
int delta_b = static_cast<int>(u.channels.b) - v.channels.b;
int delta_g = static_cast<int>(u.channels.g) - v.channels.g;
int delta_r = static_cast<int>(u.channels.r) - v.channels.r;
return delta_b * delta_b + delta_g * delta_g + delta_r * delta_r;
#endif
}
void GetAverageColor(const Color* src, float* avg_color) {
uint32_t sum_b = 0, sum_g = 0, sum_r = 0;
for (unsigned int i = 0; i < 8; ++i) {
sum_b += src[i].channels.b;
sum_g += src[i].channels.g;
sum_r += src[i].channels.r;
}
const float kInv8 = 1.0f / 8.0f;
avg_color[0] = static_cast<float>(sum_b) * kInv8;
avg_color[1] = static_cast<float>(sum_g) * kInv8;
avg_color[2] = static_cast<float>(sum_r) * kInv8;
}
void ComputeLuminance(uint8_t* block,
const Color* src,
const Color& base,
int sub_block_id,
const uint8_t* idx_to_num_tab) {
uint32_t best_tbl_err = std::numeric_limits<uint32_t>::max();
uint8_t best_tbl_idx = 0;
uint8_t best_mod_idx[8][8]; // [table][texel]
// Try all codeword tables to find the one giving the best results for this
// block.
for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
// Pre-compute all the candidate colors; combinations of the base color and
// all available luminance values.
Color candidate_color[4]; // [modifier]
for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) {
int16_t lum = g_codeword_tables[tbl_idx][mod_idx];
candidate_color[mod_idx] = MakeColor(base, lum);
}
uint32_t tbl_err = 0;
for (unsigned int i = 0; i < 8; ++i) {
// Try all modifiers in the current table to find which one gives the
// smallest error.
uint32_t best_mod_err = std::numeric_limits<uint32_t>::max();
for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) {
const Color& color = candidate_color[mod_idx];
uint32_t mod_err = GetColorError(src[i], color);
if (mod_err < best_mod_err) {
best_mod_idx[tbl_idx][i] = mod_idx;
best_mod_err = mod_err;
if (mod_err == 0)
break; // We cannot do any better than this.
}
}
tbl_err += best_mod_err;
if (tbl_err > best_tbl_err)
break; // We're already doing worse than the best table so skip.
}
if (tbl_err < best_tbl_err) {
best_tbl_err = tbl_err;
best_tbl_idx = tbl_idx;
if (tbl_err == 0)
break; // We cannot do any better than this.
}
}
WriteCodewordTable(block, sub_block_id, best_tbl_idx);
uint32_t pix_data = 0;
for (unsigned int i = 0; i < 8; ++i) {
uint8_t mod_idx = best_mod_idx[best_tbl_idx][i];
uint8_t pix_idx = g_mod_to_pix[mod_idx];
uint32_t lsb = pix_idx & 0x1;
uint32_t msb = pix_idx >> 1;
// Obtain the texel number as specified in the standard.
int texel_num = idx_to_num_tab[i];
pix_data |= msb << (texel_num + 16);
pix_data |= lsb << (texel_num);
}
WritePixelData(block, pix_data);
}
/**
* Tries to compress the block under the assumption that it's a single color
* block. If it's not the function will bail out without writing anything to
* the destination buffer.
*/
bool TryCompressSolidBlock(uint8_t* dst, const Color* src) {
for (unsigned int i = 1; i < 16; ++i) {
if (src[i].bits != src[0].bits)
return false;
}
// Clear destination buffer so that we can "or" in the results.
memset(dst, 0, 8);
float src_color_float[3] = {static_cast<float>(src->channels.b),
static_cast<float>(src->channels.g),
static_cast<float>(src->channels.r)};
Color base = MakeColor555(src_color_float);
WriteDiff(dst, true);
WriteFlip(dst, false);
WriteColors555(dst, base, base);
uint8_t best_tbl_idx = 0;
uint8_t best_mod_idx = 0;
uint32_t best_mod_err = std::numeric_limits<uint32_t>::max();
// Try all codeword tables to find the one giving the best results for this
// block.
for (unsigned int tbl_idx = 0; tbl_idx < 8; ++tbl_idx) {
// Try all modifiers in the current table to find which one gives the
// smallest error.
for (unsigned int mod_idx = 0; mod_idx < 4; ++mod_idx) {
int16_t lum = g_codeword_tables[tbl_idx][mod_idx];
const Color& color = MakeColor(base, lum);
uint32_t mod_err = GetColorError(*src, color);
if (mod_err < best_mod_err) {
best_tbl_idx = tbl_idx;
best_mod_idx = mod_idx;
best_mod_err = mod_err;
if (mod_err == 0)
break; // We cannot do any better than this.
}
}
if (best_mod_err == 0)
break;
}
WriteCodewordTable(dst, 0, best_tbl_idx);
WriteCodewordTable(dst, 1, best_tbl_idx);
uint8_t pix_idx = g_mod_to_pix[best_mod_idx];
uint32_t lsb = pix_idx & 0x1;
uint32_t msb = pix_idx >> 1;
uint32_t pix_data = 0;
for (unsigned int i = 0; i < 2; ++i) {
for (unsigned int j = 0; j < 8; ++j) {
// Obtain the texel number as specified in the standard.
int texel_num = g_idx_to_num[i][j];
pix_data |= msb << (texel_num + 16);
pix_data |= lsb << (texel_num);
}
}
WritePixelData(dst, pix_data);
return true;
}
void CompressBlock(uint8_t* dst, const Color* ver_src, const Color* hor_src) {
if (TryCompressSolidBlock(dst, ver_src))
return;
const Color* sub_block_src[4] = {ver_src, ver_src + 8, hor_src, hor_src + 8};
Color sub_block_avg[4];
bool use_differential[2] = {true, true};
// Compute the average color for each sub block and determine if differential
// coding can be used.
for (unsigned int i = 0, j = 1; i < 4; i += 2, j += 2) {
float avg_color_0[3];
GetAverageColor(sub_block_src[i], avg_color_0);
Color avg_color_555_0 = MakeColor555(avg_color_0);
float avg_color_1[3];
GetAverageColor(sub_block_src[j], avg_color_1);
Color avg_color_555_1 = MakeColor555(avg_color_1);
for (unsigned int light_idx = 0; light_idx < 3; ++light_idx) {
int u = avg_color_555_0.components[light_idx] >> 3;
int v = avg_color_555_1.components[light_idx] >> 3;
int component_diff = v - u;
if (component_diff < -4 || component_diff > 3) {
use_differential[i / 2] = false;
sub_block_avg[i] = MakeColor444(avg_color_0);
sub_block_avg[j] = MakeColor444(avg_color_1);
} else {
sub_block_avg[i] = avg_color_555_0;
sub_block_avg[j] = avg_color_555_1;
}
}
}
// Compute the error of each sub block before adjusting for luminance. These
// error values are later used for determining if we should flip the sub
// block or not.
uint32_t sub_block_err[4] = {0};
for (unsigned int i = 0; i < 4; ++i) {
for (unsigned int j = 0; j < 8; ++j) {
sub_block_err[i] += GetColorError(sub_block_avg[i], sub_block_src[i][j]);
}
}
bool flip =
sub_block_err[2] + sub_block_err[3] < sub_block_err[0] + sub_block_err[1];
// Clear destination buffer so that we can "or" in the results.
memset(dst, 0, 8);
WriteDiff(dst, use_differential[!!flip]);
WriteFlip(dst, flip);
uint8_t sub_block_off_0 = flip ? 2 : 0;
uint8_t sub_block_off_1 = sub_block_off_0 + 1;
if (use_differential[!!flip]) {
WriteColors555(dst, sub_block_avg[sub_block_off_0],
sub_block_avg[sub_block_off_1]);
} else {
WriteColors444(dst, sub_block_avg[sub_block_off_0],
sub_block_avg[sub_block_off_1]);
}
// Compute luminance for the first sub block.
ComputeLuminance(dst, sub_block_src[sub_block_off_0],
sub_block_avg[sub_block_off_0], 0,
g_idx_to_num[sub_block_off_0]);
// Compute luminance for the second sub block.
ComputeLuminance(dst, sub_block_src[sub_block_off_1],
sub_block_avg[sub_block_off_1], 1,
g_idx_to_num[sub_block_off_1]);
}
} // namespace
void TextureCompressorETC1::Compress(const uint8_t* src,
uint8_t* dst,
int width,
int height,
Quality quality) {
DCHECK_GE(width, 4);
DCHECK_EQ((width & 3), 0);
DCHECK_GE(height, 4);
DCHECK_EQ((height & 3), 0);
Color ver_blocks[16];
Color hor_blocks[16];
for (int y = 0; y < height; y += 4, src += width * 4 * 4) {
for (int x = 0; x < width; x += 4, dst += 8) {
const Color* row0 = reinterpret_cast<const Color*>(src + x * 4);
const Color* row1 = row0 + width;
const Color* row2 = row1 + width;
const Color* row3 = row2 + width;
memcpy(ver_blocks, row0, 8);
memcpy(ver_blocks + 2, row1, 8);
memcpy(ver_blocks + 4, row2, 8);
memcpy(ver_blocks + 6, row3, 8);
memcpy(ver_blocks + 8, row0 + 2, 8);
memcpy(ver_blocks + 10, row1 + 2, 8);
memcpy(ver_blocks + 12, row2 + 2, 8);
memcpy(ver_blocks + 14, row3 + 2, 8);
memcpy(hor_blocks, row0, 16);
memcpy(hor_blocks + 4, row1, 16);
memcpy(hor_blocks + 8, row2, 16);
memcpy(hor_blocks + 12, row3, 16);
CompressBlock(dst, ver_blocks, hor_blocks);
}
}
}
} // namespace cc