blob: 3eac95a90ebe4afa6f023b9a7f1f9f2f3ed969d3 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_tree.h"
#include <stddef.h>
#include <numeric>
#include <set>
#include "base/auto_reset.h"
#include "base/command_line.h"
#include "base/logging.h"
#include "base/no_destructor.h"
#include "base/stl_util.h"
#include "base/strings/stringprintf.h"
#include "ui/accessibility/accessibility_switches.h"
#include "ui/accessibility/ax_language_detection.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_node_position.h"
#include "ui/accessibility/ax_role_properties.h"
#include "ui/accessibility/ax_table_info.h"
#include "ui/accessibility/ax_tree_observer.h"
#include "ui/gfx/transform.h"
namespace ui {
namespace {
std::string TreeToStringHelper(const AXNode* node, int indent) {
if (!node)
return "";
return std::accumulate(
node->children().cbegin(), node->children().cend(),
std::string(2 * indent, ' ') + node->data().ToString() + "\n",
[indent](const std::string& str, const auto* child) {
return str + TreeToStringHelper(child, indent + 1);
});
}
template <typename K, typename V>
bool KeyValuePairsKeysMatch(std::vector<std::pair<K, V>> pairs1,
std::vector<std::pair<K, V>> pairs2) {
if (pairs1.size() != pairs2.size())
return false;
for (size_t i = 0; i < pairs1.size(); ++i) {
if (pairs1[i].first != pairs2[i].first)
return false;
}
return true;
}
template <typename K, typename V>
std::map<K, V> MapFromKeyValuePairs(std::vector<std::pair<K, V>> pairs) {
std::map<K, V> result;
for (size_t i = 0; i < pairs.size(); ++i)
result[pairs[i].first] = pairs[i].second;
return result;
}
// Given two vectors of <K, V> key, value pairs representing an "old" vs "new"
// state, or "before" vs "after", calls a callback function for each key that
// changed value. Note that if an attribute is removed, that will result in
// a call to the callback with the value changing from the previous value to
// |empty_value|, and similarly when an attribute is added.
template <typename K, typename V, typename F>
void CallIfAttributeValuesChanged(const std::vector<std::pair<K, V>>& pairs1,
const std::vector<std::pair<K, V>>& pairs2,
const V& empty_value,
F callback) {
// Fast path - if they both have the same keys in the same order.
if (KeyValuePairsKeysMatch(pairs1, pairs2)) {
for (size_t i = 0; i < pairs1.size(); ++i) {
if (pairs1[i].second != pairs2[i].second)
callback(pairs1[i].first, pairs1[i].second, pairs2[i].second);
}
return;
}
// Slower path - they don't have the same keys in the same order, so
// check all keys against each other, using maps to prevent this from
// becoming O(n^2) as the size grows.
auto map1 = MapFromKeyValuePairs(pairs1);
auto map2 = MapFromKeyValuePairs(pairs2);
for (size_t i = 0; i < pairs1.size(); ++i) {
const auto& new_iter = map2.find(pairs1[i].first);
if (pairs1[i].second != empty_value && new_iter == map2.end())
callback(pairs1[i].first, pairs1[i].second, empty_value);
}
for (size_t i = 0; i < pairs2.size(); ++i) {
const auto& iter = map1.find(pairs2[i].first);
if (iter == map1.end())
callback(pairs2[i].first, empty_value, pairs2[i].second);
else if (iter->second != pairs2[i].second)
callback(pairs2[i].first, iter->second, pairs2[i].second);
}
}
bool IsCollapsed(const AXNode* node) {
return node && node->data().HasState(ax::mojom::State::kCollapsed);
}
} // namespace
// This object is used to track structure changes that will occur for a specific
// AXID. This includes how many times we expect that a node with a specific AXID
// will be created and/or destroyed, and how many times a subtree rooted at AXID
// expects to be destroyed during an AXTreeUpdate.
//
// An AXTreeUpdate is a serialized representation of an atomic change to an
// AXTree. See also |AXTreeUpdate| which documents the nature and invariants
// required to atomically update the AXTree.
//
// The reason that we must track these counts, and the reason these are counts
// rather than a bool/flag is because an AXTreeUpdate may contain multiple
// AXNodeData updates for a given AXID. A common way that this occurs is when
// multiple AXTreeUpdates are merged together, combining their AXNodeData list.
// Additionally AXIDs may be reused after being removed from the tree,
// most notably when "reparenting" a node. A "reparent" occurs when an AXID is
// first destroyed from the tree then created again in the same AXTreeUpdate,
// which may also occur multiple times with merged updates.
//
// We need to accumulate these counts for 3 reasons :
// 1. To determine what structure changes *will* occur before applying
// updates to the tree so that we can notify observers of structure changes
// when the tree is still in a stable and unchanged state.
// 2. Capture any errors *before* applying updates to the tree structure
// due to the order of (or lack of) AXNodeData entries in the update
// so we can abort a bad update instead of applying it partway.
// 3. To validate that the expectations we accumulate actually match
// updates that are applied to the tree.
//
// To reiterate the invariants that this structure is taking a dependency on
// from |AXTreeUpdate|, suppose that the next AXNodeData to be applied is
// |node|. The following invariants must hold:
// 1. Either
// a) |node.id| is already in the tree, or
// b) the tree is empty, and
// |node| is the new root of the tree, and
// |node.role| == WebAXRoleRootWebArea.
// 2. Every child id in |node.child_ids| must either be already a child
// of this node, or a new id not previously in the tree. It is not
// allowed to "reparent" a child to this node without first removing
// that child from its previous parent.
// 3. When a new id appears in |node.child_ids|, the tree should create a
// new uninitialized placeholder node for it immediately. That
// placeholder must be updated within the same AXTreeUpdate, otherwise
// it's a fatal error. This guarantees the tree is always complete
// before or after an AXTreeUpdate.
struct PendingStructureChanges {
PendingStructureChanges(const AXNode* node)
: destroy_subtree_count(0),
destroy_node_count(0),
create_node_count(0),
node_exists(!!node),
parent_node_id((node && node->parent())
? base::Optional<AXNode::AXID>{node->parent()->id()}
: base::nullopt),
last_known_data(node ? &node->data() : nullptr) {}
// Returns true if this node has any changes remaining.
// This includes pending subtree or node destruction, and node creation.
bool DoesNodeExpectAnyStructureChanges() const {
return DoesNodeExpectSubtreeWillBeDestroyed() ||
DoesNodeExpectNodeWillBeDestroyed() ||
DoesNodeExpectNodeWillBeCreated();
}
// Returns true if there are any pending changes that require destroying
// this node or its subtree.
bool DoesNodeExpectSubtreeOrNodeWillBeDestroyed() const {
return DoesNodeExpectSubtreeWillBeDestroyed() ||
DoesNodeExpectNodeWillBeDestroyed();
}
// Returns true if the subtree rooted at this node needs to be destroyed
// during the update, but this may not be the next action that needs to be
// performed on the node.
bool DoesNodeExpectSubtreeWillBeDestroyed() const {
return destroy_subtree_count;
}
// Returns true if this node needs to be destroyed during the update, but this
// may not be the next action that needs to be performed on the node.
bool DoesNodeExpectNodeWillBeDestroyed() const { return destroy_node_count; }
// Returns true if this node needs be created during the update, but this
// may not be the next action that needs to be performed on the node.
bool DoesNodeExpectNodeWillBeCreated() const { return create_node_count; }
// Returns true if this node would exist in the tree as of the last pending
// update that was processed, and the node has not been provided node data.
bool DoesNodeRequireInit() const { return node_exists && !last_known_data; }
// Keep track of the number of times the subtree rooted at this node
// will be destroyed.
// An example of when this count may be larger than 1 is if updates were
// merged together. A subtree may be [created,] destroyed, created, and
// destroyed again within the same |AXTreeUpdate|. The important takeaway here
// is that an update may request destruction of a subtree rooted at an
// AXID more than once, not that a specific subtree is being destroyed
// more than once.
int32_t destroy_subtree_count;
// Keep track of the number of times this node will be destroyed.
// An example of when this count may be larger than 1 is if updates were
// merged together. A node may be [created,] destroyed, created, and destroyed
// again within the same |AXTreeUpdate|. The important takeaway here is that
// an AXID may request destruction more than once, not that a specific node
// is being destroyed more than once.
int32_t destroy_node_count;
// Keep track of the number of times this node will be created.
// An example of when this count may be larger than 1 is if updates were
// merged together. A node may be [destroyed,] created, destroyed, and created
// again within the same |AXTreeUpdate|. The important takeaway here is that
// an AXID may request creation more than once, not that a specific node is
// being created more than once.
int32_t create_node_count;
// Keep track of whether this node exists in the tree as of the last pending
// update that was processed.
bool node_exists;
// Keep track of the parent id for this node as of the last pending
// update that was processed.
base::Optional<AXNode::AXID> parent_node_id;
// Keep track of the last known node data for this node.
// This will be null either when a node does not exist in the tree, or
// when the node is new and has not been initialized with node data yet.
// This is needed to determine what children have changed between pending
// updates.
const AXNodeData* last_known_data;
};
// Intermediate state to keep track of during a tree update.
struct AXTreeUpdateState {
AXTreeUpdateState(const AXTree& tree)
: computing_pending_changes(false),
root_will_be_created(false),
tree(tree) {}
// Returns whether this update removes |node|.
bool IsRemovedNode(const AXNode* node) const {
return base::Contains(removed_node_ids, node->id());
}
// Returns whether this update creates |node|.
bool IsCreatedNode(const AXNode* node) const {
return base::Contains(new_node_ids, node->id());
}
// If this node is removed, it should be considered reparented.
bool IsPotentiallyReparentedNode(const AXNode* node) const {
return base::Contains(node_ids_found_in_update, node->id());
}
// Returns whether this update reparents |node|.
bool IsReparentedNode(const AXNode* node) const {
return IsPotentiallyReparentedNode(node) && IsRemovedNode(node);
}
// Returns true if the node should exist in the tree but doesn't have
// any node data yet.
bool DoesPendingNodeRequireInit(AXNode::AXID node_id) const {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
PendingStructureChanges* data = GetPendingStructureChanges(node_id);
return data && data->DoesNodeRequireInit();
}
// Returns the parent node id for the pending node.
base::Optional<AXNode::AXID> GetParentIdForPendingNode(AXNode::AXID node_id) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
DCHECK(!data->parent_node_id ||
ShouldPendingNodeExistInTree(*data->parent_node_id));
return data->parent_node_id;
}
// Returns true if this node should exist in the tree.
bool ShouldPendingNodeExistInTree(AXNode::AXID node_id) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
return GetOrCreatePendingStructureChanges(node_id)->node_exists;
}
// Returns the last known node data for a pending node.
const AXNodeData& GetLastKnownPendingNodeData(AXNode::AXID node_id) const {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
static base::NoDestructor<ui::AXNodeData> empty_data;
PendingStructureChanges* data = GetPendingStructureChanges(node_id);
return (data && data->last_known_data) ? *data->last_known_data
: *empty_data;
}
// Clear the last known pending data for |node_id|.
void ClearLastKnownPendingNodeData(AXNode::AXID node_id) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
GetOrCreatePendingStructureChanges(node_id)->last_known_data = nullptr;
}
// Update the last known pending node data for |node_data.id|.
void SetLastKnownPendingNodeData(const AXNodeData* node_data) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
GetOrCreatePendingStructureChanges(node_data->id)->last_known_data =
node_data;
}
// Returns the number of times the update is expected to destroy a
// subtree rooted at |node_id|.
int32_t GetPendingDestroySubtreeCount(AXNode::AXID node_id) const {
DCHECK(!computing_pending_changes)
<< "This method should not be called before any updates are made to "
"the tree.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
return data->destroy_subtree_count;
return 0;
}
// Increments the number of times the update is expected to
// destroy a subtree rooted at |node_id|.
// Returns true on success, false on failure when the node will not exist.
bool IncrementPendingDestroySubtreeCount(AXNode::AXID node_id) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
if (!data->node_exists)
return false;
++data->destroy_subtree_count;
return true;
}
// Decrements the number of times the update is expected to
// destroy a subtree rooted at |node_id|.
void DecrementPendingDestroySubtreeCount(AXNode::AXID node_id) {
DCHECK(!computing_pending_changes)
<< "This method should not be called before any updates are made to "
"the tree.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
DCHECK_GT(data->destroy_subtree_count, 0);
--data->destroy_subtree_count;
}
}
// Returns the number of times the update is expected to destroy
// a node with |node_id|.
int32_t GetPendingDestroyNodeCount(AXNode::AXID node_id) const {
DCHECK(!computing_pending_changes)
<< "This method should not be called before any updates are made to "
"the tree.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
return data->destroy_node_count;
return 0;
}
// Increments the number of times the update is expected to
// destroy a node with |node_id|.
// Returns true on success, false on failure when the node will not exist.
bool IncrementPendingDestroyNodeCount(AXNode::AXID node_id) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
if (!data->node_exists)
return false;
++data->destroy_node_count;
data->node_exists = false;
data->last_known_data = nullptr;
data->parent_node_id = base::nullopt;
if (pending_root_id == node_id)
pending_root_id = base::nullopt;
return true;
}
// Decrements the number of times the update is expected to
// destroy a node with |node_id|.
void DecrementPendingDestroyNodeCount(AXNode::AXID node_id) {
DCHECK(!computing_pending_changes)
<< "This method should not be called before any updates are made to "
"the tree.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
DCHECK_GT(data->destroy_node_count, 0);
--data->destroy_node_count;
}
}
// Returns the number of times the update is expected to create
// a node with |node_id|.
int32_t GetPendingCreateNodeCount(AXNode::AXID node_id) const {
DCHECK(!computing_pending_changes)
<< "This method should not be called before any updates are made to "
"the tree.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
return data->create_node_count;
return 0;
}
// Increments the number of times the update is expected to
// create a node with |node_id|.
// Returns true on success, false on failure when the node will already exist.
bool IncrementPendingCreateNodeCount(
AXNode::AXID node_id,
base::Optional<AXNode::AXID> parent_node_id) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
if (data->node_exists)
return false;
++data->create_node_count;
data->node_exists = true;
data->parent_node_id = parent_node_id;
return true;
}
// Decrements the number of times the update is expected to
// create a node with |node_id|.
void DecrementPendingCreateNodeCount(AXNode::AXID node_id) {
DCHECK(!computing_pending_changes)
<< "This method should not be called before any updates are made to "
"the tree.";
if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
DCHECK_GT(data->create_node_count, 0);
--data->create_node_count;
}
}
// Returns whether this update must invalidate the unignored cached
// values for |node_id|.
bool InvalidatesUnignoredCachedValues(AXNode::AXID node_id) {
return base::Contains(invalidate_unignored_cached_values_ids, node_id);
}
// Adds the parent of |node_id| to the list of nodes to invalidate unignored
// cached values.
void InvalidateParentNodeUnignoredCacheValues(AXNode::AXID node_id) {
DCHECK(computing_pending_changes) << "This method should be called before "
"any updates are made to the tree.";
base::Optional<AXNode::AXID> parent_node_id =
GetParentIdForPendingNode(node_id);
if (parent_node_id) {
invalidate_unignored_cached_values_ids.insert(*parent_node_id);
}
}
// Indicates if the tree is calculating what changes will occur during
// an update before the update applies changes.
bool computing_pending_changes;
// Keeps track of the root node id when calculating what changes will occur
// during an update before the update applies changes.
base::Optional<AXNode::AXID> pending_root_id;
// Keeps track of whether the root node will need to be created as a new node.
// This may occur either when the root node does not exist before applying
// updates to the tree (new tree), or if the root is the |node_id_to_clear|
// and will be destroyed before applying AXNodeData updates to the tree.
bool root_will_be_created;
// During an update, this keeps track of all nodes that have been
// implicitly referenced as part of this update, but haven't been
// updated yet. It's an error if there are any pending nodes at the
// end of Unserialize.
std::set<AXNode::AXID> pending_nodes;
// Keeps track of nodes whose cached unignored child count, or unignored
// index in parent may have changed, and must be updated.
std::set<AXNode::AXID> invalidate_unignored_cached_values_ids;
// All child node ids touched by the update, as well as the new root
// node id. Nodes are considered reparented if they are in this list
// and removed from somewhere else.
std::set<AXNode::AXID> node_ids_found_in_update;
// Keeps track of nodes that have changed their node data.
std::set<AXNode::AXID> node_data_changed_ids;
// Keeps track of new nodes created during this update.
std::set<AXNode::AXID> new_node_ids;
// Keeps track of any nodes removed. Nodes are removed when their AXID no
// longer exist in the parent |child_ids| list, or the node is part of to the
// subtree of the AXID that was explicitally cleared with |node_id_to_clear|.
// Used to identify re-parented nodes. A re-parented occurs when any AXID
// is first removed from the tree then added to the tree again.
std::set<AXNode::AXID> removed_node_ids;
// Maps between a node id and its pending update information.
std::map<AXNode::AXID, std::unique_ptr<PendingStructureChanges>>
node_id_to_pending_data;
// Maps between a node id and the data it owned before being updated.
// We need to keep this around in order to correctly fire post-update events.
std::map<AXNode::AXID, AXNodeData> old_node_id_to_data;
// Optional copy of the old tree data, only populated when the tree
// data has changed.
base::Optional<AXTreeData> old_tree_data;
private:
PendingStructureChanges* GetPendingStructureChanges(
AXNode::AXID node_id) const {
auto iter = node_id_to_pending_data.find(node_id);
return (iter != node_id_to_pending_data.cend()) ? iter->second.get()
: nullptr;
}
PendingStructureChanges* GetOrCreatePendingStructureChanges(
AXNode::AXID node_id) {
auto iter = node_id_to_pending_data.find(node_id);
if (iter == node_id_to_pending_data.cend()) {
const AXNode* node = tree.GetFromId(node_id);
iter = node_id_to_pending_data
.emplace(std::make_pair(
node_id, std::make_unique<PendingStructureChanges>(node)))
.first;
}
return iter->second.get();
}
// We need to hold onto a reference to the AXTree so that we can
// lazily initialize |PendingStructureChanges| objects.
const AXTree& tree;
};
AXTree::AXTree() {
AXNodeData root;
root.id = AXNode::kInvalidAXID;
AXTreeUpdate initial_state;
initial_state.root_id = AXNode::kInvalidAXID;
initial_state.nodes.push_back(root);
CHECK(Unserialize(initial_state)) << error();
// TODO(chrishall): should language_detection_manager be a member or pointer?
// TODO(chrishall): do we want to initialize all the time, on demand, or only
// when feature flag is set?
DCHECK(!language_detection_manager);
language_detection_manager = std::make_unique<AXLanguageDetectionManager>();
}
AXTree::AXTree(const AXTreeUpdate& initial_state) {
CHECK(Unserialize(initial_state)) << error();
DCHECK(!language_detection_manager);
language_detection_manager = std::make_unique<AXLanguageDetectionManager>();
}
AXTree::~AXTree() {
if (root_) {
RecursivelyNotifyNodeWillBeDeleted(root_);
base::AutoReset<bool> update_state_resetter(&tree_update_in_progress_,
true);
DestroyNodeAndSubtree(root_, nullptr);
}
for (auto& entry : table_info_map_)
delete entry.second;
table_info_map_.clear();
}
void AXTree::AddObserver(AXTreeObserver* observer) {
observers_.AddObserver(observer);
}
bool AXTree::HasObserver(AXTreeObserver* observer) {
return observers_.HasObserver(observer);
}
void AXTree::RemoveObserver(const AXTreeObserver* observer) {
observers_.RemoveObserver(observer);
}
AXNode* AXTree::GetFromId(int32_t id) const {
auto iter = id_map_.find(id);
return iter != id_map_.end() ? iter->second : nullptr;
}
void AXTree::UpdateData(const AXTreeData& new_data) {
if (data_ == new_data)
return;
AXTreeData old_data = data_;
data_ = new_data;
for (AXTreeObserver& observer : observers_)
observer.OnTreeDataChanged(this, old_data, new_data);
}
gfx::RectF AXTree::RelativeToTreeBounds(const AXNode* node,
gfx::RectF bounds,
bool* offscreen,
bool clip_bounds) const {
// If |bounds| is uninitialized, which is not the same as empty,
// start with the node bounds.
if (bounds.width() == 0 && bounds.height() == 0) {
bounds = node->data().relative_bounds.bounds;
// If the node bounds is empty (either width or height is zero),
// try to compute good bounds from the children.
// If a tree update is in progress, skip this step as children may be in a
// bad state.
if (bounds.IsEmpty() && !GetTreeUpdateInProgressState()) {
for (size_t i = 0; i < node->children().size(); i++) {
ui::AXNode* child = node->children()[i];
bounds.Union(GetTreeBounds(child));
}
if (bounds.width() > 0 && bounds.height() > 0) {
return bounds;
}
}
} else {
bounds.Offset(node->data().relative_bounds.bounds.x(),
node->data().relative_bounds.bounds.y());
}
while (node != nullptr) {
if (node->data().relative_bounds.transform)
node->data().relative_bounds.transform->TransformRect(&bounds);
const AXNode* container;
// Normally we apply any transforms and offsets for each node and
// then walk up to its offset container - however, if the node has
// no width or height, walk up to its nearest ancestor until we find
// one that has bounds.
if (bounds.width() == 0 && bounds.height() == 0)
container = node->parent();
else
container = GetFromId(node->data().relative_bounds.offset_container_id);
if (!container && container != root())
container = root();
if (!container || container == node)
break;
gfx::RectF container_bounds = container->data().relative_bounds.bounds;
bounds.Offset(container_bounds.x(), container_bounds.y());
// If we don't have any size yet, take the size from this ancestor.
// The rationale is that it's not useful to the user for an object to
// have no width or height and it's probably a bug; it's better to
// reflect the bounds of the nearest ancestor rather than a 0x0 box.
// Tag this node as 'offscreen' because it has no true size, just a
// size inherited from the ancestor.
if (bounds.width() == 0 && bounds.height() == 0) {
bounds.set_size(container_bounds.size());
if (offscreen != nullptr)
*offscreen |= true;
}
int scroll_x = 0;
int scroll_y = 0;
if (container->data().GetIntAttribute(ax::mojom::IntAttribute::kScrollX,
&scroll_x) &&
container->data().GetIntAttribute(ax::mojom::IntAttribute::kScrollY,
&scroll_y)) {
bounds.Offset(-scroll_x, -scroll_y);
}
// Get the intersection between the bounds and the container.
gfx::RectF intersection = bounds;
intersection.Intersect(container_bounds);
// Calculate the clipped bounds to determine offscreen state.
gfx::RectF clipped = bounds;
// If this is the root web area, make sure we clip the node to fit.
if (container->data().GetBoolAttribute(
ax::mojom::BoolAttribute::kClipsChildren)) {
if (!intersection.IsEmpty()) {
// We can simply clip it to the container.
clipped = intersection;
} else {
// Totally offscreen. Find the nearest edge or corner.
// Make the minimum dimension 1 instead of 0.
if (clipped.x() >= container_bounds.width()) {
clipped.set_x(container_bounds.right() - 1);
clipped.set_width(1);
} else if (clipped.x() + clipped.width() <= 0) {
clipped.set_x(container_bounds.x());
clipped.set_width(1);
}
if (clipped.y() >= container_bounds.height()) {
clipped.set_y(container_bounds.bottom() - 1);
clipped.set_height(1);
} else if (clipped.y() + clipped.height() <= 0) {
clipped.set_y(container_bounds.y());
clipped.set_height(1);
}
}
}
if (clip_bounds)
bounds = clipped;
if (container->data().GetBoolAttribute(
ax::mojom::BoolAttribute::kClipsChildren) &&
intersection.IsEmpty() && !clipped.IsEmpty()) {
// If it is offscreen with respect to its parent, and the node itself is
// not empty, label it offscreen.
// Here we are extending the definition of offscreen to include elements
// that are clipped by their parents in addition to those clipped by
// the rootWebArea.
// No need to update |offscreen| if |intersection| is not empty, because
// it should be false by default.
if (offscreen != nullptr)
*offscreen |= true;
}
node = container;
}
return bounds;
}
gfx::RectF AXTree::GetTreeBounds(const AXNode* node,
bool* offscreen,
bool clip_bounds) const {
return RelativeToTreeBounds(node, gfx::RectF(), offscreen, clip_bounds);
}
std::set<int32_t> AXTree::GetReverseRelations(ax::mojom::IntAttribute attr,
int32_t dst_id) const {
DCHECK(IsNodeIdIntAttribute(attr));
// Conceptually, this is the "const" version of:
// return int_reverse_relations_[attr][dst_id];
const auto& attr_relations = int_reverse_relations_.find(attr);
if (attr_relations != int_reverse_relations_.end()) {
const auto& result = attr_relations->second.find(dst_id);
if (result != attr_relations->second.end())
return result->second;
}
return std::set<int32_t>();
}
std::set<int32_t> AXTree::GetReverseRelations(ax::mojom::IntListAttribute attr,
int32_t dst_id) const {
DCHECK(IsNodeIdIntListAttribute(attr));
// Conceptually, this is the "const" version of:
// return intlist_reverse_relations_[attr][dst_id];
const auto& attr_relations = intlist_reverse_relations_.find(attr);
if (attr_relations != intlist_reverse_relations_.end()) {
const auto& result = attr_relations->second.find(dst_id);
if (result != attr_relations->second.end())
return result->second;
}
return std::set<int32_t>();
}
std::set<int32_t> AXTree::GetNodeIdsForChildTreeId(
AXTreeID child_tree_id) const {
// Conceptually, this is the "const" version of:
// return child_tree_id_reverse_map_[child_tree_id];
const auto& result = child_tree_id_reverse_map_.find(child_tree_id);
if (result != child_tree_id_reverse_map_.end())
return result->second;
return std::set<int32_t>();
}
const std::set<AXTreeID> AXTree::GetAllChildTreeIds() const {
std::set<AXTreeID> result;
for (auto entry : child_tree_id_reverse_map_)
result.insert(entry.first);
return result;
}
bool AXTree::Unserialize(const AXTreeUpdate& update) {
AXTreeUpdateState update_state(*this);
const AXNode::AXID old_root_id = root_ ? root_->id() : AXNode::kInvalidAXID;
// Get all of the node ids that are certain to exist after the update.
// These are the nodes that are considered reparented if they are removed from
// somewhere else.
if (update.root_id != AXNode::kInvalidAXID)
update_state.node_ids_found_in_update.emplace(update.root_id);
for (const AXNodeData& update_node_data : update.nodes) {
update_state.node_ids_found_in_update.insert(
update_node_data.child_ids.begin(), update_node_data.child_ids.end());
}
// Accumulates the work that will be required to update the AXTree.
// This allows us to notify observers of structure changes when the
// tree is still in a stable and unchanged state.
if (!ComputePendingChanges(update, update_state))
return false;
// Notify observers of subtrees and nodes that are about to be destroyed or
// reparented, this must be done before applying any updates to the tree.
for (auto&& pair : update_state.node_id_to_pending_data) {
const AXNode::AXID node_id = pair.first;
const std::unique_ptr<PendingStructureChanges>& data = pair.second;
if (data->DoesNodeExpectSubtreeOrNodeWillBeDestroyed()) {
if (AXNode* node = GetFromId(node_id)) {
if (data->DoesNodeExpectSubtreeWillBeDestroyed())
NotifySubtreeWillBeReparentedOrDeleted(node, &update_state);
if (data->DoesNodeExpectNodeWillBeDestroyed())
NotifyNodeWillBeReparentedOrDeleted(node, &update_state);
}
}
}
// Notify observers of nodes that are about to change their data.
// This must be done before applying any updates to the tree.
// This is iterating in reverse order so that we only notify once per node id,
// and that we only notify the initial node data against the final node data,
// unless the node is a new root.
std::set<int32_t> notified_node_data_will_change;
for (size_t i = update.nodes.size(); i-- > 0;) {
const AXNodeData& new_data = update.nodes[i];
const bool is_new_root =
update_state.root_will_be_created && new_data.id == update.root_id;
if (!is_new_root) {
AXNode* node = GetFromId(new_data.id);
if (node && notified_node_data_will_change.insert(new_data.id).second)
NotifyNodeDataWillChange(node->data(), new_data);
}
}
// Now that we have finished sending events for changes that will happen,
// set update state to true. |tree_update_in_progress_| gets set back to
// false whenever this function exits.
base::AutoReset<bool> update_state_resetter(&tree_update_in_progress_, true);
// Handle |node_id_to_clear| before applying ordinary node updates.
// We distinguish between updating the root, e.g. changing its children or
// some of its attributes, or replacing the root completely. If the root is
// being updated, update.node_id_to_clear should hold the current root's ID.
// Otherwise if the root is being replaced, update.root_id should hold the ID
// of the new root.
bool root_updated = false;
if (update.node_id_to_clear != AXNode::kInvalidAXID) {
if (AXNode* cleared_node = GetFromId(update.node_id_to_clear)) {
DCHECK(root_);
if (cleared_node == root_) {
// Only destroy the root if the root was replaced and not if it's simply
// updated. To figure out if the root was simply updated, we compare
// the ID of the new root with the existing root ID.
if (update.root_id != old_root_id) {
// Clear root_ before calling DestroySubtree so that root_ doesn't
// ever point to an invalid node.
AXNode* old_root = root_;
root_ = nullptr;
DestroySubtree(old_root, &update_state);
} else {
// If the root has simply been updated, we treat it like an update to
// any other node.
root_updated = true;
}
}
// If the tree doesn't exists any more because the root has just been
// replaced, there is nothing more to clear.
if (root_) {
for (auto* child : cleared_node->children())
DestroySubtree(child, &update_state);
std::vector<AXNode*> children;
cleared_node->SwapChildren(children);
update_state.pending_nodes.insert(cleared_node->id());
}
}
}
DCHECK_EQ(!GetFromId(update.root_id), update_state.root_will_be_created);
// Update the tree data, do not call |UpdateData| since we want to defer
// the |OnTreeDataChanged| event until after the tree has finished updating.
if (update.has_tree_data && data_ != update.tree_data) {
update_state.old_tree_data = data_;
data_ = update.tree_data;
}
// Update all of the nodes in the update.
for (size_t i = 0; i < update.nodes.size(); ++i) {
const bool is_new_root = update_state.root_will_be_created &&
update.nodes[i].id == update.root_id;
if (!UpdateNode(update.nodes[i], is_new_root, &update_state))
return false;
}
if (!root_) {
error_ = "Tree has no root.";
return false;
}
if (!ValidatePendingChangesComplete(update_state))
return false;
// Look for changes to nodes that are a descendant of a table,
// and invalidate their table info if so. We have to walk up the
// ancestry of every node that was updated potentially, so keep track of
// ids that were checked to eliminate duplicate work.
std::set<int32_t> table_ids_checked;
for (size_t i = 0; i < update.nodes.size(); ++i) {
AXNode* node = GetFromId(update.nodes[i].id);
while (node) {
if (table_ids_checked.find(node->id()) != table_ids_checked.end())
break;
// Remove any table infos.
const auto& table_info_entry = table_info_map_.find(node->id());
if (table_info_entry != table_info_map_.end())
table_info_entry->second->Invalidate();
table_ids_checked.insert(node->id());
node = node->parent();
}
}
// Clear list_info_map_
ordered_set_info_map_.clear();
std::vector<AXTreeObserver::Change> changes;
changes.reserve(update.nodes.size());
for (size_t i = 0; i < update.nodes.size(); ++i) {
AXNode* node = GetFromId(update.nodes[i].id);
if (!node)
continue;
bool is_new_node = update_state.IsCreatedNode(node);
bool is_reparented_node = update_state.IsReparentedNode(node);
AXTreeObserver::ChangeType change = AXTreeObserver::NODE_CHANGED;
if (is_new_node) {
if (is_reparented_node) {
// A reparented subtree is any new node whose parent either doesn't
// exist, or whose parent is not new.
// Note that we also need to check for the special case when we update
// the root without replacing it.
bool is_subtree = !node->parent() ||
!update_state.IsCreatedNode(node->parent()) ||
(node->parent() == root_ && root_updated);
change = is_subtree ? AXTreeObserver::SUBTREE_REPARENTED
: AXTreeObserver::NODE_REPARENTED;
} else {
// A new subtree is any new node whose parent is either not new, or
// whose parent happens to be new only because it has been reparented.
// Note that we also need to check for the special case when we update
// the root without replacing it.
bool is_subtree = !node->parent() ||
!update_state.IsCreatedNode(node->parent()) ||
update_state.IsRemovedNode(node->parent()) ||
(node->parent() == root_ && root_updated);
change = is_subtree ? AXTreeObserver::SUBTREE_CREATED
: AXTreeObserver::NODE_CREATED;
}
}
changes.push_back(AXTreeObserver::Change(node, change));
}
// Update the unignored cached values as necessary, ensuring that we only
// update once for each unignored node.
// If the node is ignored, we must update from an unignored ancestor.
std::set<AXNode::AXID> updated_unignored_cached_values_ids;
for (AXNode::AXID node_id :
update_state.invalidate_unignored_cached_values_ids) {
AXNode* node = GetFromId(node_id);
while (node && node->data().HasState(ax::mojom::State::kIgnored))
node = node->parent();
if (node && updated_unignored_cached_values_ids.insert(node->id()).second)
node->UpdateUnignoredCachedValues();
}
// Tree is no longer updating.
SetTreeUpdateInProgressState(false);
// Now that the tree is stable and its nodes have been updated, notify if
// the tree data changed. We must do this after updating nodes in case the
// root has been replaced, so observers have the most up-to-date information.
if (update_state.old_tree_data) {
for (AXTreeObserver& observer : observers_)
observer.OnTreeDataChanged(this, *update_state.old_tree_data, data_);
}
// Now that the unignored cached values are up to date, update observers to
// new nodes in the tree.
for (AXNode::AXID node_id : update_state.new_node_ids) {
NotifyNodeHasBeenReparentedOrCreated(GetFromId(node_id), &update_state);
}
// Now that the unignored cached values are up to date, update observers to
// node changes.
for (AXNode::AXID node_data_changed_id : update_state.node_data_changed_ids) {
AXNode* node = GetFromId(node_data_changed_id);
DCHECK(node);
// If the node exists and is in the old data map, then the node data
// may have changed unless this is a new root.
const bool is_new_root = update_state.root_will_be_created &&
node_data_changed_id == update.root_id;
if (!is_new_root) {
auto it = update_state.old_node_id_to_data.find(node_data_changed_id);
if (it != update_state.old_node_id_to_data.end()) {
const AXNodeData& old_node_data = it->second;
NotifyNodeDataHasBeenChanged(node, old_node_data, node->data());
}
}
// |OnNodeChanged| should be fired for all nodes that have been updated.
for (AXTreeObserver& observer : observers_)
observer.OnNodeChanged(this, node);
}
for (AXTreeObserver& observer : observers_) {
observer.OnAtomicUpdateFinished(this, root_->id() != old_root_id, changes);
}
return true;
}
AXTableInfo* AXTree::GetTableInfo(const AXNode* const_table_node) const {
DCHECK(!GetTreeUpdateInProgressState());
// Note: the const_casts are here because we want this function to be able
// to be called from a const virtual function on AXNode. AXTableInfo is
// computed on demand and cached, but that's an implementation detail
// we want to hide from users of this API.
AXNode* table_node = const_cast<AXNode*>(const_table_node);
AXTree* tree = const_cast<AXTree*>(this);
DCHECK(table_node);
const auto& cached = table_info_map_.find(table_node->id());
if (cached != table_info_map_.end()) {
// Get existing table info, and update if invalid because the
// tree has changed since the last time we accessed it.
AXTableInfo* table_info = cached->second;
if (!table_info->valid()) {
bool success = table_info->Update();
if (!success) {
// If Update() returned false, this is no longer a valid table.
// Remove it from the map.
delete table_info;
table_info = nullptr;
table_info_map_.erase(table_node->id());
}
// See note about const_cast, above.
for (AXTreeObserver& observer : observers_)
observer.OnNodeChanged(tree, table_node);
}
return table_info;
}
AXTableInfo* table_info = AXTableInfo::Create(tree, table_node);
if (!table_info)
return nullptr;
table_info_map_[table_node->id()] = table_info;
for (AXTreeObserver& observer : observers_)
observer.OnNodeChanged(tree, table_node);
return table_info;
}
std::string AXTree::ToString() const {
return "AXTree" + data_.ToString() + "\n" + TreeToStringHelper(root_, 0);
}
AXNode* AXTree::CreateNode(AXNode* parent,
AXNode::AXID id,
size_t index_in_parent,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// |update_state| must already contain information about all of the expected
// changes and invalidations to apply. If any of these are missing, observers
// may not be notified of changes.
DCHECK(!GetFromId(id));
DCHECK_GT(update_state->GetPendingCreateNodeCount(id), 0);
DCHECK(update_state->InvalidatesUnignoredCachedValues(id));
DCHECK(!parent ||
update_state->InvalidatesUnignoredCachedValues(parent->id()));
update_state->DecrementPendingCreateNodeCount(id);
update_state->new_node_ids.insert(id);
// If this node is the root, use the given index_in_parent as the unignored
// index in parent to provide consistency with index_in_parent.
AXNode* new_node = new AXNode(this, parent, id, index_in_parent,
parent ? 0 : index_in_parent);
id_map_[new_node->id()] = new_node;
return new_node;
}
bool AXTree::ComputePendingChanges(const AXTreeUpdate& update,
AXTreeUpdateState& update_state) {
base::AutoReset<bool> computing_pending_changes_resetter(
&update_state.computing_pending_changes, true);
base::AutoReset<base::Optional<AXNode::AXID>> pending_root_id_resetter(
&update_state.pending_root_id,
root_ ? base::Optional<AXNode::AXID>{root_->id()} : base::nullopt);
// We distinguish between updating the root, e.g. changing its children or
// some of its attributes, or replacing the root completely. If the root is
// being updated, update.node_id_to_clear should hold the current root's ID.
// Otherwise if the root is being replaced, update.root_id should hold the ID
// of the new root.
if (update.node_id_to_clear != AXNode::kInvalidAXID) {
if (AXNode* cleared_node = GetFromId(update.node_id_to_clear)) {
DCHECK(root_);
if (cleared_node == root_ &&
update.root_id != update_state.pending_root_id) {
// Only destroy the root if the root was replaced and not if it's simply
// updated. To figure out if the root was simply updated, we compare
// the ID of the new root with the existing root ID.
MarkSubtreeForDestruction(*update_state.pending_root_id, &update_state);
}
// If the tree has been marked for destruction because the root will be
// replaced, there is nothing more to clear.
if (update_state.ShouldPendingNodeExistInTree(root_->id())) {
update_state.invalidate_unignored_cached_values_ids.insert(
cleared_node->id());
update_state.ClearLastKnownPendingNodeData(cleared_node->id());
for (AXNode* child : cleared_node->children()) {
MarkSubtreeForDestruction(child->id(), &update_state);
}
}
}
}
update_state.root_will_be_created =
!GetFromId(update.root_id) ||
!update_state.ShouldPendingNodeExistInTree(update.root_id);
// Populate |update_state| with all of the changes that will be performed
// on the tree during the update.
for (const AXNodeData& new_data : update.nodes) {
bool is_new_root =
update_state.root_will_be_created && new_data.id == update.root_id;
if (!ComputePendingChangesToNode(new_data, is_new_root, &update_state)) {
return false;
}
}
return true;
}
bool AXTree::ComputePendingChangesToNode(const AXNodeData& new_data,
bool is_new_root,
AXTreeUpdateState* update_state) {
// If the node does not exist in the tree throw an error unless this
// is the new root and it can be created.
if (!update_state->ShouldPendingNodeExistInTree(new_data.id)) {
if (!is_new_root) {
error_ = base::StringPrintf(
"%d will not be in the tree and is not the new root", new_data.id);
return false;
}
// Creation is implicit for new root nodes. If |new_data.id| is already
// pending for creation, then it must be a duplicate entry in the tree.
if (!update_state->IncrementPendingCreateNodeCount(new_data.id,
base::nullopt)) {
error_ = base::StringPrintf(
"Node %d is already pending for creation, cannot be the new root",
new_data.id);
return false;
}
if (update_state->pending_root_id) {
MarkSubtreeForDestruction(*update_state->pending_root_id, update_state);
}
update_state->pending_root_id = new_data.id;
}
// Create a set of new child ids so we can use it to find the nodes that
// have been added and removed. Returns false if a duplicate is found.
std::set<AXNode::AXID> new_child_id_set;
for (AXNode::AXID new_child_id : new_data.child_ids) {
if (base::Contains(new_child_id_set, new_child_id)) {
error_ = base::StringPrintf("Node %d has duplicate child id %d",
new_data.id, new_child_id);
return false;
}
new_child_id_set.insert(new_child_id);
}
// If the node has not been initialized yet then its node data has either been
// cleared when handling |node_id_to_clear|, or it's a new node.
// In either case, all children must be created.
if (update_state->DoesPendingNodeRequireInit(new_data.id)) {
update_state->invalidate_unignored_cached_values_ids.insert(new_data.id);
// If this node has been cleared via |node_id_to_clear| or is a new node,
// the last-known parent's unignored cache needs to be updated.
update_state->InvalidateParentNodeUnignoredCacheValues(new_data.id);
for (AXNode::AXID child_id : new_child_id_set) {
// If a |child_id| is already pending for creation, then it must be a
// duplicate entry in the tree.
update_state->invalidate_unignored_cached_values_ids.insert(child_id);
if (!update_state->IncrementPendingCreateNodeCount(child_id,
new_data.id)) {
error_ = base::StringPrintf(
"Node %d is already pending for creation, cannot be a new child",
child_id);
return false;
}
}
update_state->SetLastKnownPendingNodeData(&new_data);
return true;
}
const AXNodeData& old_data =
update_state->GetLastKnownPendingNodeData(new_data.id);
// Create a set of old child ids so we can use it to find the nodes that
// have been added and removed.
std::set<AXNode::AXID> old_child_id_set(old_data.child_ids.cbegin(),
old_data.child_ids.cend());
std::vector<AXNode::AXID> create_or_destroy_ids;
std::set_symmetric_difference(
old_child_id_set.cbegin(), old_child_id_set.cend(),
new_child_id_set.cbegin(), new_child_id_set.cend(),
std::back_inserter(create_or_destroy_ids));
// If the node has changed ignored state or there are any differences in
// its children, then its unignored cached values must be invalidated.
const bool ignored_changed = old_data.HasState(ax::mojom::State::kIgnored) !=
new_data.HasState(ax::mojom::State::kIgnored);
if (!create_or_destroy_ids.empty() || ignored_changed) {
update_state->invalidate_unignored_cached_values_ids.insert(new_data.id);
// If this ignored state had changed also invalidate the parent.
update_state->InvalidateParentNodeUnignoredCacheValues(new_data.id);
}
for (AXNode::AXID child_id : create_or_destroy_ids) {
if (base::Contains(new_child_id_set, child_id)) {
// This is a serious error - nodes should never be reparented without
// first being removed from the tree. If a node exists in the tree already
// then adding it to a new parent would mean stealing the node from its
// old parent which hadn't been updated to reflect the change.
if (update_state->ShouldPendingNodeExistInTree(child_id)) {
error_ = base::StringPrintf(
"Node %d is not marked for destruction, would be reparented to %d",
child_id, new_data.id);
return false;
}
// If a |child_id| is already pending for creation, then it must be a
// duplicate entry in the tree.
update_state->invalidate_unignored_cached_values_ids.insert(child_id);
if (!update_state->IncrementPendingCreateNodeCount(child_id,
new_data.id)) {
error_ = base::StringPrintf(
"Node %d is already pending for creation, cannot be a new child",
child_id);
return false;
}
} else {
// If |child_id| does not exist in the new set, then it has
// been removed from |node|, and the subtree must be deleted.
MarkSubtreeForDestruction(child_id, update_state);
}
}
update_state->SetLastKnownPendingNodeData(&new_data);
return true;
}
bool AXTree::UpdateNode(const AXNodeData& src,
bool is_new_root,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// This method updates one node in the tree based on serialized data
// received in an AXTreeUpdate. See AXTreeUpdate for pre and post
// conditions.
// Look up the node by id. If it's not found, then either the root
// of the tree is being swapped, or we're out of sync with the source
// and this is a serious error.
AXNode* node = GetFromId(src.id);
if (node) {
update_state->pending_nodes.erase(node->id());
UpdateReverseRelations(node, src);
if (!update_state->IsCreatedNode(node) ||
update_state->IsReparentedNode(node)) {
update_state->old_node_id_to_data.insert(
std::make_pair(node->id(), node->TakeData()));
}
node->SetData(src);
} else {
if (!is_new_root) {
error_ = base::StringPrintf(
"%d is not in the tree and not the new root", src.id);
return false;
}
node = CreateNode(nullptr, src.id, 0, update_state);
UpdateReverseRelations(node, src);
node->SetData(src);
}
// If we come across a page breaking object, mark the tree as a paginated root
if (src.GetBoolAttribute(ax::mojom::BoolAttribute::kIsPageBreakingObject))
has_pagination_support_ = true;
update_state->node_data_changed_ids.insert(node->id());
// First, delete nodes that used to be children of this node but aren't
// anymore.
DeleteOldChildren(node, src.child_ids, update_state);
// Now build a new children vector, reusing nodes when possible,
// and swap it in.
std::vector<AXNode*> new_children;
bool success = CreateNewChildVector(
node, src.child_ids, &new_children, update_state);
node->SwapChildren(new_children);
// Update the root of the tree if needed.
if (is_new_root) {
// Make sure root_ always points to something valid or null_, even inside
// DestroySubtree.
AXNode* old_root = root_;
root_ = node;
if (old_root && old_root != node)
DestroySubtree(old_root, update_state);
}
return success;
}
void AXTree::NotifySubtreeWillBeReparentedOrDeleted(
AXNode* node,
const AXTreeUpdateState* update_state) {
DCHECK(!GetTreeUpdateInProgressState());
if (node->id() == AXNode::kInvalidAXID)
return;
for (AXTreeObserver& observer : observers_) {
if (update_state->IsPotentiallyReparentedNode(node)) {
observer.OnSubtreeWillBeReparented(this, node);
} else {
observer.OnSubtreeWillBeDeleted(this, node);
}
}
}
void AXTree::NotifyNodeWillBeReparentedOrDeleted(
AXNode* node,
const AXTreeUpdateState* update_state) {
DCHECK(!GetTreeUpdateInProgressState());
if (node->id() == AXNode::kInvalidAXID)
return;
for (AXTreeObserver& observer : observers_) {
if (update_state->IsPotentiallyReparentedNode(node)) {
observer.OnNodeWillBeReparented(this, node);
} else {
observer.OnNodeWillBeDeleted(this, node);
}
}
}
void AXTree::RecursivelyNotifyNodeWillBeDeleted(AXNode* node) {
DCHECK(!GetTreeUpdateInProgressState());
if (node->id() == AXNode::kInvalidAXID)
return;
for (AXTreeObserver& observer : observers_)
observer.OnNodeWillBeDeleted(this, node);
for (auto* child : node->children())
RecursivelyNotifyNodeWillBeDeleted(child);
}
void AXTree::NotifyNodeHasBeenReparentedOrCreated(
AXNode* node,
const AXTreeUpdateState* update_state) {
DCHECK(!GetTreeUpdateInProgressState());
if (node->id() == AXNode::kInvalidAXID)
return;
for (AXTreeObserver& observer : observers_) {
if (update_state->IsReparentedNode(node)) {
observer.OnNodeReparented(this, node);
} else {
observer.OnNodeCreated(this, node);
}
}
}
void AXTree::NotifyNodeDataWillChange(const AXNodeData& old_data,
const AXNodeData& new_data) {
DCHECK(!GetTreeUpdateInProgressState());
if (new_data.id == AXNode::kInvalidAXID)
return;
for (AXTreeObserver& observer : observers_)
observer.OnNodeDataWillChange(this, old_data, new_data);
}
void AXTree::NotifyNodeDataHasBeenChanged(AXNode* node,
const AXNodeData& old_data,
const AXNodeData& new_data) {
DCHECK(!GetTreeUpdateInProgressState());
if (node->id() == AXNode::kInvalidAXID)
return;
for (AXTreeObserver& observer : observers_)
observer.OnNodeDataChanged(this, old_data, new_data);
if (old_data.role != new_data.role) {
for (AXTreeObserver& observer : observers_)
observer.OnRoleChanged(this, node, old_data.role, new_data.role);
}
if (old_data.state != new_data.state) {
for (int32_t i = static_cast<int32_t>(ax::mojom::State::kNone) + 1;
i <= static_cast<int32_t>(ax::mojom::State::kMaxValue); ++i) {
ax::mojom::State state = static_cast<ax::mojom::State>(i);
if (old_data.HasState(state) != new_data.HasState(state)) {
for (AXTreeObserver& observer : observers_)
observer.OnStateChanged(this, node, state, new_data.HasState(state));
}
}
}
auto string_callback = [this, node](ax::mojom::StringAttribute attr,
const std::string& old_string,
const std::string& new_string) {
for (AXTreeObserver& observer : observers_) {
observer.OnStringAttributeChanged(this, node, attr, old_string,
new_string);
}
};
CallIfAttributeValuesChanged(old_data.string_attributes,
new_data.string_attributes, std::string(),
string_callback);
auto bool_callback = [this, node](ax::mojom::BoolAttribute attr,
const bool& old_bool,
const bool& new_bool) {
for (AXTreeObserver& observer : observers_)
observer.OnBoolAttributeChanged(this, node, attr, new_bool);
};
CallIfAttributeValuesChanged(old_data.bool_attributes,
new_data.bool_attributes, false, bool_callback);
auto float_callback = [this, node](ax::mojom::FloatAttribute attr,
const float& old_float,
const float& new_float) {
for (AXTreeObserver& observer : observers_)
observer.OnFloatAttributeChanged(this, node, attr, old_float, new_float);
};
CallIfAttributeValuesChanged(old_data.float_attributes,
new_data.float_attributes, 0.0f, float_callback);
auto int_callback = [this, node](ax::mojom::IntAttribute attr,
const int& old_int, const int& new_int) {
for (AXTreeObserver& observer : observers_)
observer.OnIntAttributeChanged(this, node, attr, old_int, new_int);
};
CallIfAttributeValuesChanged(old_data.int_attributes, new_data.int_attributes,
0, int_callback);
auto intlist_callback = [this, node](
ax::mojom::IntListAttribute attr,
const std::vector<int32_t>& old_intlist,
const std::vector<int32_t>& new_intlist) {
for (AXTreeObserver& observer : observers_)
observer.OnIntListAttributeChanged(this, node, attr, old_intlist,
new_intlist);
};
CallIfAttributeValuesChanged(old_data.intlist_attributes,
new_data.intlist_attributes,
std::vector<int32_t>(), intlist_callback);
auto stringlist_callback =
[this, node](ax::mojom::StringListAttribute attr,
const std::vector<std::string>& old_stringlist,
const std::vector<std::string>& new_stringlist) {
for (AXTreeObserver& observer : observers_)
observer.OnStringListAttributeChanged(this, node, attr,
old_stringlist, new_stringlist);
};
CallIfAttributeValuesChanged(old_data.stringlist_attributes,
new_data.stringlist_attributes,
std::vector<std::string>(), stringlist_callback);
}
void AXTree::UpdateReverseRelations(AXNode* node, const AXNodeData& new_data) {
DCHECK(GetTreeUpdateInProgressState());
const AXNodeData& old_data = node->data();
int id = new_data.id;
auto int_callback = [this, id](ax::mojom::IntAttribute attr,
const int& old_id, const int& new_id) {
if (!IsNodeIdIntAttribute(attr))
return;
// Remove old_id -> id from the map, and clear map keys if their
// values are now empty.
auto& map = int_reverse_relations_[attr];
if (map.find(old_id) != map.end()) {
map[old_id].erase(id);
if (map[old_id].empty())
map.erase(old_id);
}
// Add new_id -> id to the map, unless new_id is zero indicating that
// we're only removing a relation.
if (new_id)
map[new_id].insert(id);
};
CallIfAttributeValuesChanged(old_data.int_attributes, new_data.int_attributes,
0, int_callback);
auto intlist_callback = [this, id](ax::mojom::IntListAttribute attr,
const std::vector<int32_t>& old_idlist,
const std::vector<int32_t>& new_idlist) {
if (!IsNodeIdIntListAttribute(attr))
return;
auto& map = intlist_reverse_relations_[attr];
for (int32_t old_id : old_idlist) {
if (map.find(old_id) != map.end()) {
map[old_id].erase(id);
if (map[old_id].empty())
map.erase(old_id);
}
}
for (int32_t new_id : new_idlist)
intlist_reverse_relations_[attr][new_id].insert(id);
};
CallIfAttributeValuesChanged(old_data.intlist_attributes,
new_data.intlist_attributes,
std::vector<int32_t>(), intlist_callback);
auto string_callback = [this, id](ax::mojom::StringAttribute attr,
const std::string& old_string,
const std::string& new_string) {
if (attr == ax::mojom::StringAttribute::kChildTreeId) {
// Remove old_string -> id from the map, and clear map keys if
// their values are now empty.
AXTreeID old_ax_tree_id = AXTreeID::FromString(old_string);
if (child_tree_id_reverse_map_.find(old_ax_tree_id) !=
child_tree_id_reverse_map_.end()) {
child_tree_id_reverse_map_[old_ax_tree_id].erase(id);
if (child_tree_id_reverse_map_[old_ax_tree_id].empty())
child_tree_id_reverse_map_.erase(old_ax_tree_id);
}
// Add new_string -> id to the map, unless new_id is zero indicating that
// we're only removing a relation.
if (!new_string.empty()) {
AXTreeID new_ax_tree_id = AXTreeID::FromString(new_string);
child_tree_id_reverse_map_[new_ax_tree_id].insert(id);
}
}
};
CallIfAttributeValuesChanged(old_data.string_attributes,
new_data.string_attributes, std::string(),
string_callback);
}
bool AXTree::ValidatePendingChangesComplete(
const AXTreeUpdateState& update_state) {
if (!update_state.pending_nodes.empty()) {
error_ = "Nodes left pending by the update:";
for (const AXNode::AXID pending_id : update_state.pending_nodes)
error_ += base::StringPrintf(" %d", pending_id);
return false;
}
if (!update_state.node_id_to_pending_data.empty()) {
std::string destroy_subtree_ids;
std::string destroy_node_ids;
std::string create_node_ids;
bool has_pending_changes = false;
for (auto&& pair : update_state.node_id_to_pending_data) {
const AXNode::AXID pending_id = pair.first;
const std::unique_ptr<PendingStructureChanges>& data = pair.second;
if (data->DoesNodeExpectAnyStructureChanges()) {
if (data->DoesNodeExpectSubtreeWillBeDestroyed())
destroy_subtree_ids += base::StringPrintf(" %d", pending_id);
if (data->DoesNodeExpectNodeWillBeDestroyed())
destroy_node_ids += base::StringPrintf(" %d", pending_id);
if (data->DoesNodeExpectNodeWillBeCreated())
create_node_ids += base::StringPrintf(" %d", pending_id);
has_pending_changes = true;
}
}
if (has_pending_changes) {
error_ = base::StringPrintf(
"Changes left pending by the update; "
"destroy subtrees: %s, destroy nodes: %s, create nodes: %s",
destroy_subtree_ids.c_str(), destroy_node_ids.c_str(),
create_node_ids.c_str());
}
return !has_pending_changes;
}
return true;
}
void AXTree::MarkSubtreeForDestruction(AXNode::AXID node_id,
AXTreeUpdateState* update_state) {
update_state->IncrementPendingDestroySubtreeCount(node_id);
MarkNodesForDestructionRecursive(node_id, update_state);
}
void AXTree::MarkNodesForDestructionRecursive(AXNode::AXID node_id,
AXTreeUpdateState* update_state) {
// If this subtree has already been marked for destruction, return so
// we don't walk it again.
if (!update_state->ShouldPendingNodeExistInTree(node_id))
return;
const AXNodeData& last_known_data =
update_state->GetLastKnownPendingNodeData(node_id);
update_state->IncrementPendingDestroyNodeCount(node_id);
for (AXNode::AXID child_id : last_known_data.child_ids) {
MarkNodesForDestructionRecursive(child_id, update_state);
}
}
void AXTree::DestroySubtree(AXNode* node,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// |update_state| must already contain information about all of the expected
// changes and invalidations to apply. If any of these are missing, observers
// may not be notified of changes.
DCHECK(update_state);
DCHECK_GT(update_state->GetPendingDestroySubtreeCount(node->id()), 0);
DCHECK(!node->parent() ||
update_state->InvalidatesUnignoredCachedValues(node->parent()->id()));
update_state->DecrementPendingDestroySubtreeCount(node->id());
DestroyNodeAndSubtree(node, update_state);
}
void AXTree::DestroyNodeAndSubtree(AXNode* node,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
DCHECK(!update_state ||
update_state->GetPendingDestroyNodeCount(node->id()) > 0);
// Clear out any reverse relations.
AXNodeData empty_data;
empty_data.id = node->id();
UpdateReverseRelations(node, empty_data);
// Remove any table infos.
const auto& table_info_entry = table_info_map_.find(node->id());
if (table_info_entry != table_info_map_.end()) {
delete table_info_entry->second;
table_info_map_.erase(node->id());
}
id_map_.erase(node->id());
for (auto* child : node->children())
DestroyNodeAndSubtree(child, update_state);
if (update_state) {
update_state->pending_nodes.erase(node->id());
update_state->DecrementPendingDestroyNodeCount(node->id());
update_state->removed_node_ids.insert(node->id());
update_state->new_node_ids.erase(node->id());
update_state->node_data_changed_ids.erase(node->id());
if (update_state->IsReparentedNode(node)) {
update_state->old_node_id_to_data.emplace(
std::make_pair(node->id(), node->TakeData()));
}
}
node->Destroy();
}
void AXTree::DeleteOldChildren(AXNode* node,
const std::vector<int32_t>& new_child_ids,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
// Create a set of child ids in |src| for fast lookup, we know the set does
// not contain duplicate entries already, because that was handled when
// populating |update_state| with information about all of the expected
// changes to be applied.
std::set<int32_t> new_child_id_set(new_child_ids.begin(),
new_child_ids.end());
// Delete the old children.
for (AXNode* child : node->children()) {
if (!base::Contains(new_child_id_set, child->id()))
DestroySubtree(child, update_state);
}
}
bool AXTree::CreateNewChildVector(AXNode* node,
const std::vector<int32_t>& new_child_ids,
std::vector<AXNode*>* new_children,
AXTreeUpdateState* update_state) {
DCHECK(GetTreeUpdateInProgressState());
bool success = true;
for (size_t i = 0; i < new_child_ids.size(); ++i) {
int32_t child_id = new_child_ids[i];
AXNode* child = GetFromId(child_id);
if (child) {
if (child->parent() != node) {
// This is a serious error - nodes should never be reparented.
// If this case occurs, continue so this node isn't left in an
// inconsistent state, but return failure at the end.
error_ = base::StringPrintf(
"Node %d reparented from %d to %d",
child->id(),
child->parent() ? child->parent()->id() : 0,
node->id());
success = false;
continue;
}
child->SetIndexInParent(i);
} else {
child = CreateNode(node, child_id, i, update_state);
update_state->pending_nodes.insert(child->id());
}
new_children->push_back(child);
}
return success;
}
void AXTree::SetEnableExtraMacNodes(bool enabled) {
DCHECK(enable_extra_mac_nodes_ != enabled);
DCHECK_EQ(0U, table_info_map_.size());
enable_extra_mac_nodes_ = enabled;
}
int32_t AXTree::GetNextNegativeInternalNodeId() {
int32_t return_value = next_negative_internal_node_id_;
next_negative_internal_node_id_--;
if (next_negative_internal_node_id_ > 0)
next_negative_internal_node_id_ = -1;
return return_value;
}
// Populates items vector with all items within ordered_set.
// Will only add items whose roles match the role of the
// ordered_set.
void AXTree::PopulateOrderedSetItems(const AXNode* ordered_set,
const AXNode* local_parent,
std::vector<const AXNode*>& items,
const AXNode& original_node) const {
// Ignored nodes are not a part of ordered sets.
if (original_node.IsIgnored())
return;
// Stop searching current path if roles of local_parent and ordered set match.
// Don't compare the container to itself.
if (!(ordered_set == local_parent)) {
if (local_parent->data().role == ordered_set->data().role)
return;
}
// Initialize necessary variables.
// Default hierarchical_level is 0, which represents that no hierarchical
// level was detected on original_node.
int original_level = original_node.GetIntAttribute(
ax::mojom::IntAttribute::kHierarchicalLevel);
// If original node is ordered set, then set its hierarchical level equal to
// its first child that sets a hierarchical level, if any.
if (ordered_set == &original_node) {
for (auto unignored_iterator = original_node.UnignoredChildrenBegin();
unignored_iterator != original_node.UnignoredChildrenEnd();
++unignored_iterator) {
int32_t level = unignored_iterator->GetIntAttribute(
ax::mojom::IntAttribute::kHierarchicalLevel);
if (level)
original_level =
original_level ? std::min(level, original_level) : level;
}
}
size_t original_node_index = original_node.GetUnignoredIndexInParent();
bool node_is_radio_button =
(original_node.data().role == ax::mojom::Role::kRadioButton);
size_t i = 0;
for (AXNode::UnignoredChildIterator it =
local_parent->UnignoredChildrenBegin();
it != local_parent->UnignoredChildrenEnd(); ++it, ++i) {
const AXNode* child = it.get();
// Invisible children should not be counted.
// However, in the collapsed container case (e.g. a combobox), items can
// still be chosen/navigated. However, the options in these collapsed
// containers are historically marked invisible. Therefore, in that case,
// count the invisible items. Only check 2 levels up, as combobox containers
// are never higher.
if (child->data().HasState(ax::mojom::State::kInvisible) &&
!IsCollapsed(local_parent) && !IsCollapsed(local_parent->parent())) {
continue;
}
int child_level =
child->GetIntAttribute(ax::mojom::IntAttribute::kHierarchicalLevel);
if (child_level < original_level) {
// If a decrease in level occurs after the original node has been
// examined, stop adding to this set.
if (original_node_index < i)
break;
// If a decrease in level has been detected before the original node
// has been examined, then everything previously added to items actually
// belongs to a different set. Clear items vector.
items.clear();
continue;
} else if (child_level > original_level) {
continue;
}
// If role of node is kRadioButton, only add other kRadioButtons.
if (node_is_radio_button &&
child->data().role == ax::mojom::Role::kRadioButton)
items.push_back(child);
// Add child to items if role matches with ordered set's role. If role of
// node is kRadioButton, don't add items of other roles, even if item role
// matches ordered set role.
if (!node_is_radio_button && child->SetRoleMatchesItemRole(ordered_set))
items.push_back(child);
// Recurse if there is a generic container, ignored, or unknown.
if (child->IsIgnored() ||
child->data().role == ax::mojom::Role::kGenericContainer ||
child->data().role == ax::mojom::Role::kUnknown) {
PopulateOrderedSetItems(ordered_set, child, items, original_node);
}
}
}
// Given an ordered_set, compute pos_in_set and set_size for all of its items
// and store values in cache.
// Ordered_set should never be nullptr.
void AXTree::ComputeSetSizePosInSetAndCache(const AXNode& node,
const AXNode* ordered_set) {
DCHECK(ordered_set);
std::vector<const AXNode*> items;
// Find all items within ordered_set and add to vector.
PopulateOrderedSetItems(ordered_set, ordered_set, items, node);
// If ordered_set role is kPopUpButton and it wraps a kMenuListPopUp, then we
// would like it to inherit the SetSize from the kMenuListPopUp it wraps. To
// do this, we treat the kMenuListPopUp as the ordered_set and eventually
// assign its SetSize value to the kPopUpButton.
if ((node.data().role == ax::mojom::Role::kPopUpButton) &&
(items.size() != 0)) {
// kPopUpButtons are only allowed to contain one kMenuListPopUp.
// The single element is guaranteed to be a kMenuListPopUp because that is
// the only item role that matches the ordered set role of kPopUpButton.
// Please see AXNode::SetRoleMatchesItemRole for more details.
DCHECK(items.size() == 1);
const AXNode* menu_list_popup = items[0];
items.clear();
PopulateOrderedSetItems(menu_list_popup, menu_list_popup, items, node);
}
// Keep track of the number of elements ordered_set has.
int32_t num_elements = 0;
// Necessary for calculating set_size.
int32_t largest_assigned_set_size = 0;
int hierarchical_level =
node.GetIntAttribute(ax::mojom::IntAttribute::kHierarchicalLevel);
// Compute pos_in_set_values.
for (size_t i = 0; i < items.size(); ++i) {
const AXNode* item = items[i];
ordered_set_info_map_[item->id()] = OrderedSetInfo();
int32_t pos_in_set_value = 0;
pos_in_set_value = num_elements + 1;
// Check if item has a valid kPosInSet assignment, which takes precedence
// over previous assignment. Invalid assignments are decreasing or
// duplicates, and should be ignored.
pos_in_set_value =
std::max(pos_in_set_value,
item->GetIntAttribute(ax::mojom::IntAttribute::kPosInSet));
// If level is specified, use author-provided value, if present.
if (hierarchical_level != 0 &&
item->HasIntAttribute(ax::mojom::IntAttribute::kPosInSet)) {
pos_in_set_value =
item->GetIntAttribute(ax::mojom::IntAttribute::kPosInSet);
}
// Assign pos_in_set and update role counts.
ordered_set_info_map_[item->id()].pos_in_set = pos_in_set_value;
num_elements = pos_in_set_value;
// Check if kSetSize is assigned and update if it's the largest assigned
// kSetSize.
if (item->HasIntAttribute(ax::mojom::IntAttribute::kSetSize))
largest_assigned_set_size =
std::max(largest_assigned_set_size,
item->GetIntAttribute(ax::mojom::IntAttribute::kSetSize));
}
// Compute set_size value.
// The SetSize of an ordered set (and all of its items) is the maximum of the
// following candidate values:
// 1. The number of elements in the ordered set.
// 2. The Largest assigned SetSize in the ordered set.
// 3. The SetSize assigned within the ordered set.
// Set to 0 if ordered_set has no kSetSize attribute.
int32_t ordered_set_candidate =
ordered_set->GetIntAttribute(ax::mojom::IntAttribute::kSetSize);
int32_t set_size_value = std::max(
std::max(num_elements, largest_assigned_set_size), ordered_set_candidate);
// Assign set_size to ordered_set.
// Must meet one of two conditions:
// 1. Node role matches ordered set role.
// 2. The node that calculations were called on is the ordered_set.
if (node.SetRoleMatchesItemRole(ordered_set) || ordered_set == &node) {
auto ordered_set_info_result =
ordered_set_info_map_.find(ordered_set->id());
// If ordered_set is not in the cache, assign it a new set_size.
if (ordered_set_info_result == ordered_set_info_map_.end()) {
ordered_set_info_map_[ordered_set->id()] = OrderedSetInfo();
ordered_set_info_map_[ordered_set->id()].set_size = set_size_value;
ordered_set_info_map_[ordered_set->id()].lowest_hierarchical_level =
hierarchical_level;
} else {
OrderedSetInfo ordered_set_info = ordered_set_info_result->second;
if (ordered_set_info.lowest_hierarchical_level > hierarchical_level) {
ordered_set_info.set_size = set_size_value;
ordered_set_info.lowest_hierarchical_level = hierarchical_level;
}
}
}
// Assign set_size to items.
for (size_t j = 0; j < items.size(); ++j) {
const AXNode* item = items[j];
// If level is specified, use author-provided value, if present.
if (hierarchical_level != 0 &&
item->HasIntAttribute(ax::mojom::IntAttribute::kSetSize))
ordered_set_info_map_[item->id()].set_size =
item->GetIntAttribute(ax::mojom::IntAttribute::kSetSize);
else
ordered_set_info_map_[item->id()].set_size = set_size_value;
}
}
// Returns the pos_in_set of item. Looks in ordered_set_info_map_ for cached
// value. Calculates pos_in_set and set_size for item (and all other items in
// the same ordered set) if no value is present in the cache.
// This function is guaranteed to be only called on nodes that can hold
// pos_in_set values, minimizing the size of the cache.
int32_t AXTree::GetPosInSet(const AXNode& node, const AXNode* ordered_set) {
// If item's id is not in the cache, compute it.
if (ordered_set_info_map_.find(node.id()) == ordered_set_info_map_.end())
ComputeSetSizePosInSetAndCache(node, ordered_set);
return ordered_set_info_map_[node.id()].pos_in_set;
}
// Returns the set_size of node. node could be an ordered set or an item.
// Looks in ordered_set_info_map_ for cached value. Calculates pos_inset_set
// and set_size for all nodes in same ordered set if no value is present in the
// cache.
// This function is guaranteed to be only called on nodes that can hold
// set_size values, minimizing the size of the cache.
int32_t AXTree::GetSetSize(const AXNode& node, const AXNode* ordered_set) {
// If node's id is not in the cache, compute it.
if (ordered_set_info_map_.find(node.id()) == ordered_set_info_map_.end())
ComputeSetSizePosInSetAndCache(node, ordered_set);
return ordered_set_info_map_[node.id()].set_size;
}
AXTree::Selection AXTree::GetUnignoredSelection() const {
Selection unignored_selection = {
data().sel_is_backward, data().sel_anchor_object_id,
data().sel_anchor_offset, data().sel_anchor_affinity,
data().sel_focus_object_id, data().sel_focus_offset,
data().sel_focus_affinity};
AXNode* anchor_node = GetFromId(data().sel_anchor_object_id);
AXNode* focus_node = GetFromId(data().sel_focus_object_id);
AXNodePosition::AXPositionInstance anchor_position =
anchor_node ? AXNodePosition::CreatePosition(data().tree_id, *anchor_node,
data().sel_anchor_offset,
data().sel_anchor_affinity)
: AXNodePosition::CreateNullPosition();
if (anchor_position->IsIgnoredPosition()) {
anchor_position = anchor_position->AsUnignoredTextPosition(
data().sel_is_backward ? AXNodePosition::AdjustmentBehavior::kMoveRight
: AXNodePosition::AdjustmentBehavior::kMoveLeft);
// We do not expect the selection to have an endpoint on an inline text
// box.
if (!anchor_position->IsNullPosition() &&
anchor_position->GetAnchor()->data().role ==
ax::mojom::Role::kInlineTextBox)
anchor_position = anchor_position->CreateParentPosition();
unignored_selection.anchor_object_id = anchor_position->anchor_id();
unignored_selection.anchor_offset = anchor_position->text_offset();
unignored_selection.anchor_affinity = anchor_position->affinity();
} else if (anchor_position->IsTreePosition()) {
// Fix offset to be in terms of the unignored index.
if (data().sel_anchor_offset == int32_t{anchor_node->children().size()}) {
unignored_selection.anchor_offset = anchor_node->GetUnignoredChildCount();
} else {
AXNode* child = anchor_node->children()[data().sel_anchor_offset];
unignored_selection.anchor_offset = child->GetUnignoredIndexInParent();
}
}
AXNodePosition::AXPositionInstance focus_position =
focus_node ? AXNodePosition::CreatePosition(data().tree_id, *focus_node,
data().sel_focus_offset,
data().sel_focus_affinity)
: AXNodePosition::CreateNullPosition();
if (focus_position->IsIgnoredPosition()) {
focus_position = focus_position->AsUnignoredTextPosition(
!data().sel_is_backward
? AXNodePosition::AdjustmentBehavior::kMoveRight
: AXNodePosition::AdjustmentBehavior::kMoveLeft);
// We do not expect the selection to have an endpoint on an inline text
// box.
if (!focus_position->IsNullPosition() &&
focus_position->GetAnchor()->data().role ==
ax::mojom::Role::kInlineTextBox)
focus_position = focus_position->CreateParentPosition();
unignored_selection.focus_object_id = focus_position->anchor_id();
unignored_selection.focus_offset = focus_position->text_offset();
unignored_selection.focus_affinity = focus_position->affinity();
} else if (focus_position->IsTreePosition()) {
// Fix offset to be in terms of the unignored index.
if (data().sel_focus_offset == int32_t{focus_node->children().size()}) {
unignored_selection.focus_offset = focus_node->GetUnignoredChildCount();
} else {
AXNode* child = focus_node->children()[data().sel_focus_offset];
unignored_selection.focus_offset = child->GetUnignoredIndexInParent();
}
}
return unignored_selection;
}
bool AXTree::GetTreeUpdateInProgressState() const {
return tree_update_in_progress_;
}
void AXTree::SetTreeUpdateInProgressState(bool set_tree_update_value) {
tree_update_in_progress_ = set_tree_update_value;
}
bool AXTree::HasPaginationSupport() const {
return has_pagination_support_;
}
} // namespace ui