blob: 5215411262d7d701c97c1a8448899cc4f4247dc0 [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/midi/midi_manager_win.h"
#include <windows.h>
#include <ks.h>
#include <ksmedia.h>
#include <mmreg.h>
#include <mmsystem.h>
#include <algorithm>
#include <limits>
#include <map>
#include <string>
#include <utility>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/callback.h"
#include "base/logging.h"
#include "base/optional.h"
#include "base/single_thread_task_runner.h"
#include "base/stl_util.h"
#include "base/strings/string16.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/synchronization/lock.h"
#include "base/win/windows_version.h"
#include "media/midi/message_util.h"
#include "media/midi/midi_manager_winrt.h"
#include "media/midi/midi_service.h"
#include "media/midi/midi_service.mojom.h"
#include "media/midi/midi_switches.h"
#include "services/device/public/cpp/usb/usb_ids.h"
namespace midi {
// Forward declaration of PortManager for anonymous functions and internal
// classes to use it.
class MidiManagerWin::PortManager {
public:
// Calculates event time from elapsed time that system provides.
base::TimeTicks CalculateInEventTime(size_t index, uint32_t elapsed_ms) const;
// Registers HMIDIIN handle to resolve port index.
void RegisterInHandle(HMIDIIN handle, size_t index);
// Unregisters HMIDIIN handle.
void UnregisterInHandle(HMIDIIN handle);
// Finds HMIDIIN handle and fullfil |out_index| with the port index.
bool FindInHandle(HMIDIIN hmi, size_t* out_index);
// Restores used input buffer for the next data receive.
void RestoreInBuffer(size_t index);
// Ports accessors.
std::vector<std::unique_ptr<InPort>>* inputs() { return &input_ports_; }
std::vector<std::unique_ptr<OutPort>>* outputs() { return &output_ports_; }
// Handles MIDI input port callbacks that runs on a system provided thread.
static void CALLBACK HandleMidiInCallback(HMIDIIN hmi,
UINT msg,
DWORD_PTR instance,
DWORD_PTR param1,
DWORD_PTR param2);
// Handles MIDI output port callbacks that runs on a system provided thread.
static void CALLBACK HandleMidiOutCallback(HMIDIOUT hmo,
UINT msg,
DWORD_PTR instance,
DWORD_PTR param1,
DWORD_PTR param2);
private:
// Holds all MIDI input or output ports connected once.
std::vector<std::unique_ptr<InPort>> input_ports_;
std::vector<std::unique_ptr<OutPort>> output_ports_;
// Map to resolve MIDI input port index from HMIDIIN.
std::map<HMIDIIN, size_t> hmidiin_to_index_map_;
};
namespace {
// Assumes that nullptr represents an invalid MIDI handle.
constexpr HMIDIIN kInvalidInHandle = nullptr;
constexpr HMIDIOUT kInvalidOutHandle = nullptr;
// Defines SysEx message size limit.
// TODO(crbug.com/383578): This restriction should be removed once Web MIDI
// defines a standardized way to handle large sysex messages.
// Note for built-in USB-MIDI driver:
// From an observation on Windows 7/8.1 with a USB-MIDI keyboard,
// midiOutLongMsg() will be always blocked. Sending 64 bytes or less data takes
// roughly 300 usecs. Sending 2048 bytes or more data takes roughly
// |message.size() / (75 * 1024)| secs in practice. Here we put 256 KB size
// limit on SysEx message, with hoping that midiOutLongMsg will be blocked at
// most 4 sec or so with a typical USB-MIDI device.
// TODO(toyoshim): Consider to use linked small buffers so that midiOutReset()
// can abort sending unhandled following buffers.
constexpr size_t kSysExSizeLimit = 256 * 1024;
// Defines input buffer size.
constexpr size_t kBufferLength = 32 * 1024;
// Global variables to identify MidiManager instance.
constexpr int64_t kInvalidInstanceId = -1;
int64_t g_active_instance_id = kInvalidInstanceId;
MidiManagerWin* g_manager_instance = nullptr;
// Obtains base::Lock instance pointer to lock instance_id.
base::Lock* GetInstanceIdLock() {
static base::Lock* lock = new base::Lock;
return lock;
}
// Issues unique MidiManager instance ID.
int64_t IssueNextInstanceId(base::Optional<int64_t> override_id) {
static int64_t id = kInvalidInstanceId;
if (override_id) {
int64_t result = ++id;
id = *override_id;
return result;
}
if (id == std::numeric_limits<int64_t>::max())
return kInvalidInstanceId;
return ++id;
}
// Use single TaskRunner for all tasks running outside the I/O thread.
constexpr int kTaskRunner = 0;
// Obtains base::Lock instance pointer to ensure tasks run safely on TaskRunner.
// Since all tasks on TaskRunner run behind a lock of *GetTaskLock(), we can
// access all members even on the I/O thread if a lock of *GetTaskLock() is
// obtained.
base::Lock* GetTaskLock() {
static base::Lock* lock = new base::Lock;
return lock;
}
// Helper function to run a posted task on TaskRunner safely.
void RunTask(int instance_id, base::OnceClosure task) {
// Obtains task lock to ensure that the instance should not complete
// Finalize() while running the |task|.
base::AutoLock task_lock(*GetTaskLock());
{
// If destructor finished before the lock avobe, do nothing.
base::AutoLock lock(*GetInstanceIdLock());
if (instance_id != g_active_instance_id)
return;
}
std::move(task).Run();
}
// TODO(toyoshim): Use midi::TaskService and deprecate its prototype
// implementation above that is still used in this MidiManagerWin class.
// Obtains base::Lock instance pointer to protect
// |g_midi_in_get_num_devs_thread_id|.
base::Lock* GetMidiInGetNumDevsThreadIdLock() {
static base::Lock* lock = new base::Lock;
return lock;
}
// Holds a thread id that calls midiInGetNumDevs() now. We use a platform
// primitive to identify the thread because the following functions can be
// called on a thread that Windows allocates internally, and Chrome or //base
// library does not know.
base::PlatformThreadId g_midi_in_get_num_devs_thread_id;
// Prepares to call midiInGetNumDevs().
void EnterMidiInGetNumDevs() {
base::AutoLock lock(*GetMidiInGetNumDevsThreadIdLock());
g_midi_in_get_num_devs_thread_id = base::PlatformThread::CurrentId();
}
// Finalizes to call midiInGetNumDevs().
void LeaveMidiInGetNumDevs() {
base::AutoLock lock(*GetMidiInGetNumDevsThreadIdLock());
g_midi_in_get_num_devs_thread_id = base::PlatformThreadId();
}
// Checks if the current thread is running midiInGetNumDevs(), that means
// current code is invoked inside midiInGetNumDevs().
bool IsRunningInsideMidiInGetNumDevs() {
base::AutoLock lock(*GetMidiInGetNumDevsThreadIdLock());
return base::PlatformThread::CurrentId() == g_midi_in_get_num_devs_thread_id;
}
// Utility class to handle MIDIHDR struct safely.
class MIDIHDRDeleter {
public:
void operator()(LPMIDIHDR header) {
if (!header)
return;
delete[] static_cast<char*>(header->lpData);
delete header;
}
};
using ScopedMIDIHDR = std::unique_ptr<MIDIHDR, MIDIHDRDeleter>;
ScopedMIDIHDR CreateMIDIHDR(size_t size) {
ScopedMIDIHDR hdr(new MIDIHDR);
ZeroMemory(hdr.get(), sizeof(*hdr));
hdr->lpData = new char[size];
hdr->dwBufferLength = static_cast<DWORD>(size);
return hdr;
}
ScopedMIDIHDR CreateMIDIHDR(const std::vector<uint8_t>& data) {
ScopedMIDIHDR hdr(CreateMIDIHDR(data.size()));
std::copy(data.begin(), data.end(), hdr->lpData);
return hdr;
}
// Helper functions to close MIDI device handles on TaskRunner asynchronously.
void FinalizeInPort(HMIDIIN handle, ScopedMIDIHDR hdr) {
// Resets the device. This stops receiving messages, and allows to release
// registered buffer headers. Otherwise, midiInUnprepareHeader() and
// midiInClose() will fail with MIDIERR_STILLPLAYING.
midiInReset(handle);
if (hdr)
midiInUnprepareHeader(handle, hdr.get(), sizeof(*hdr));
midiInClose(handle);
}
void FinalizeOutPort(HMIDIOUT handle) {
// Resets inflight buffers. This will cancel sending data that system
// holds and were not sent yet.
midiOutReset(handle);
midiOutClose(handle);
}
// Gets manufacturer name in string from identifiers.
std::string GetManufacturerName(uint16_t id, const GUID& guid) {
if (IS_COMPATIBLE_USBAUDIO_MID(&guid)) {
const char* name =
device::UsbIds::GetVendorName(EXTRACT_USBAUDIO_MID(&guid));
if (name)
return std::string(name);
}
if (id == MM_MICROSOFT)
return "Microsoft Corporation";
// TODO(crbug.com/472341): Support other manufacture IDs.
return "";
}
// All instances of Port subclasses are always accessed behind a lock of
// *GetTaskLock(). Port and subclasses implementation do not need to
// consider thread safety.
class Port {
public:
Port(const std::string& type,
uint32_t device_id,
uint16_t manufacturer_id,
uint16_t product_id,
uint32_t driver_version,
const std::string& product_name,
const GUID& manufacturer_guid)
: index_(0u),
type_(type),
device_id_(device_id),
manufacturer_id_(manufacturer_id),
product_id_(product_id),
driver_version_(driver_version),
product_name_(product_name) {
info_.manufacturer =
GetManufacturerName(manufacturer_id, manufacturer_guid);
info_.name = product_name_;
info_.version = base::StringPrintf("%d.%d", HIBYTE(driver_version_),
LOBYTE(driver_version_));
info_.state = mojom::PortState::DISCONNECTED;
}
virtual ~Port() {}
bool operator==(const Port& other) const {
// Should not use |device_id| for comparison because it can be changed on
// each enumeration.
// Since the GUID will be changed on each enumeration for Microsoft GS
// Wavetable synth and might be done for others, do not use it for device
// comparison.
return manufacturer_id_ == other.manufacturer_id_ &&
product_id_ == other.product_id_ &&
driver_version_ == other.driver_version_ &&
product_name_ == other.product_name_;
}
bool IsConnected() const {
return info_.state != mojom::PortState::DISCONNECTED;
}
void set_index(size_t index) {
index_ = index;
// TODO(toyoshim): Use hashed ID.
info_.id = base::StringPrintf("%s-%zd", type_.c_str(), index_);
}
size_t index() { return index_; }
void set_device_id(uint32_t device_id) { device_id_ = device_id; }
uint32_t device_id() { return device_id_; }
const mojom::PortInfo& info() { return info_; }
virtual bool Connect() {
if (info_.state != mojom::PortState::DISCONNECTED)
return false;
info_.state = mojom::PortState::CONNECTED;
// TODO(toyoshim) Until open() / close() are supported, open each device on
// connected.
Open();
return true;
}
virtual bool Disconnect() {
if (info_.state == mojom::PortState::DISCONNECTED)
return false;
info_.state = mojom::PortState::DISCONNECTED;
return true;
}
virtual void Open() { info_.state = mojom::PortState::OPENED; }
protected:
size_t index_;
std::string type_;
uint32_t device_id_;
const uint16_t manufacturer_id_;
const uint16_t product_id_;
const uint32_t driver_version_;
const std::string product_name_;
mojom::PortInfo info_;
}; // class Port
} // namespace
class MidiManagerWin::InPort final : public Port {
public:
InPort(MidiManagerWin* manager,
int instance_id,
UINT device_id,
const MIDIINCAPS2W& caps)
: Port("input",
device_id,
caps.wMid,
caps.wPid,
caps.vDriverVersion,
base::WideToUTF8(
base::string16(caps.szPname, wcslen(caps.szPname))),
caps.ManufacturerGuid),
manager_(manager),
in_handle_(kInvalidInHandle),
instance_id_(instance_id) {}
static std::vector<std::unique_ptr<InPort>> EnumerateActivePorts(
MidiManagerWin* manager,
int instance_id) {
std::vector<std::unique_ptr<InPort>> ports;
// Allow callback invocations indie midiInGetNumDevs().
EnterMidiInGetNumDevs();
const UINT num_devices = midiInGetNumDevs();
LeaveMidiInGetNumDevs();
for (UINT device_id = 0; device_id < num_devices; ++device_id) {
MIDIINCAPS2W caps;
MMRESULT result = midiInGetDevCaps(
device_id, reinterpret_cast<LPMIDIINCAPSW>(&caps), sizeof(caps));
if (result != MMSYSERR_NOERROR) {
LOG(ERROR) << "midiInGetDevCaps fails on device " << device_id;
continue;
}
ports.push_back(
std::make_unique<InPort>(manager, instance_id, device_id, caps));
}
return ports;
}
void Finalize(scoped_refptr<base::SingleThreadTaskRunner> runner) {
if (in_handle_ != kInvalidInHandle) {
runner->PostTask(FROM_HERE, base::BindOnce(&FinalizeInPort, in_handle_,
base::Passed(&hdr_)));
manager_->port_manager()->UnregisterInHandle(in_handle_);
in_handle_ = kInvalidInHandle;
}
}
base::TimeTicks CalculateInEventTime(uint32_t elapsed_ms) const {
return start_time_ + base::TimeDelta::FromMilliseconds(elapsed_ms);
}
void RestoreBuffer() {
if (in_handle_ == kInvalidInHandle || !hdr_)
return;
midiInAddBuffer(in_handle_, hdr_.get(), sizeof(*hdr_));
}
void NotifyPortStateSet(MidiManagerWin* manager) {
manager->PostReplyTask(base::BindOnce(
&MidiManagerWin::SetInputPortState, base::Unretained(manager),
static_cast<uint32_t>(index_), info_.state));
}
void NotifyPortAdded(MidiManagerWin* manager) {
manager->PostReplyTask(base::BindOnce(&MidiManagerWin::AddInputPort,
base::Unretained(manager), info_));
}
// Port overrides:
bool Disconnect() override {
if (in_handle_ != kInvalidInHandle) {
// Following API call may fail because device was already disconnected.
// But just in case.
midiInClose(in_handle_);
manager_->port_manager()->UnregisterInHandle(in_handle_);
in_handle_ = kInvalidInHandle;
}
return Port::Disconnect();
}
void Open() override {
MMRESULT result = midiInOpen(
&in_handle_, device_id_,
reinterpret_cast<DWORD_PTR>(&PortManager::HandleMidiInCallback),
instance_id_, CALLBACK_FUNCTION);
if (result == MMSYSERR_NOERROR) {
hdr_ = CreateMIDIHDR(kBufferLength);
result = midiInPrepareHeader(in_handle_, hdr_.get(), sizeof(*hdr_));
}
if (result != MMSYSERR_NOERROR)
in_handle_ = kInvalidInHandle;
if (result == MMSYSERR_NOERROR)
result = midiInAddBuffer(in_handle_, hdr_.get(), sizeof(*hdr_));
if (result == MMSYSERR_NOERROR)
result = midiInStart(in_handle_);
if (result == MMSYSERR_NOERROR) {
start_time_ = base::TimeTicks::Now();
manager_->port_manager()->RegisterInHandle(in_handle_, index_);
Port::Open();
} else {
if (in_handle_ != kInvalidInHandle) {
midiInUnprepareHeader(in_handle_, hdr_.get(), sizeof(*hdr_));
hdr_.reset();
midiInClose(in_handle_);
in_handle_ = kInvalidInHandle;
}
Disconnect();
}
}
private:
MidiManagerWin* manager_;
HMIDIIN in_handle_;
ScopedMIDIHDR hdr_;
base::TimeTicks start_time_;
const int instance_id_;
};
class MidiManagerWin::OutPort final : public Port {
public:
OutPort(UINT device_id, const MIDIOUTCAPS2W& caps)
: Port("output",
device_id,
caps.wMid,
caps.wPid,
caps.vDriverVersion,
base::WideToUTF8(
base::string16(caps.szPname, wcslen(caps.szPname))),
caps.ManufacturerGuid),
software_(caps.wTechnology == MOD_SWSYNTH),
out_handle_(kInvalidOutHandle) {}
static std::vector<std::unique_ptr<OutPort>> EnumerateActivePorts() {
std::vector<std::unique_ptr<OutPort>> ports;
const UINT num_devices = midiOutGetNumDevs();
for (UINT device_id = 0; device_id < num_devices; ++device_id) {
MIDIOUTCAPS2W caps;
MMRESULT result = midiOutGetDevCaps(
device_id, reinterpret_cast<LPMIDIOUTCAPSW>(&caps), sizeof(caps));
if (result != MMSYSERR_NOERROR) {
LOG(ERROR) << "midiOutGetDevCaps fails on device " << device_id;
continue;
}
ports.push_back(std::make_unique<OutPort>(device_id, caps));
}
return ports;
}
void Finalize(scoped_refptr<base::SingleThreadTaskRunner> runner) {
if (out_handle_ != kInvalidOutHandle) {
runner->PostTask(FROM_HERE,
base::BindOnce(&FinalizeOutPort, out_handle_));
out_handle_ = kInvalidOutHandle;
}
}
void NotifyPortStateSet(MidiManagerWin* manager) {
manager->PostReplyTask(base::BindOnce(
&MidiManagerWin::SetOutputPortState, base::Unretained(manager),
static_cast<uint32_t>(index_), info_.state));
}
void NotifyPortAdded(MidiManagerWin* manager) {
manager->PostReplyTask(base::BindOnce(&MidiManagerWin::AddOutputPort,
base::Unretained(manager), info_));
}
void Send(const std::vector<uint8_t>& data) {
if (out_handle_ == kInvalidOutHandle)
return;
if (data.size() <= 3) {
uint32_t message = 0;
for (size_t i = 0; i < data.size(); ++i)
message |= (static_cast<uint32_t>(data[i]) << (i * 8));
midiOutShortMsg(out_handle_, message);
} else {
if (data.size() > kSysExSizeLimit) {
LOG(ERROR) << "Ignoring SysEx message due to the size limit"
<< ", size = " << data.size();
// TODO(toyoshim): Consider to report metrics here.
return;
}
ScopedMIDIHDR hdr(CreateMIDIHDR(data));
MMRESULT result =
midiOutPrepareHeader(out_handle_, hdr.get(), sizeof(*hdr));
if (result != MMSYSERR_NOERROR)
return;
result = midiOutLongMsg(out_handle_, hdr.get(), sizeof(*hdr));
if (result != MMSYSERR_NOERROR) {
midiOutUnprepareHeader(out_handle_, hdr.get(), sizeof(*hdr));
} else {
// MIDIHDR will be released on MOM_DONE.
ignore_result(hdr.release());
}
}
}
// Port overrides:
bool Connect() override {
// Until |software| option is supported, disable Microsoft GS Wavetable
// Synth that has a known security issue.
if (software_ && manufacturer_id_ == MM_MICROSOFT &&
(product_id_ == MM_MSFT_WDMAUDIO_MIDIOUT ||
product_id_ == MM_MSFT_GENERIC_MIDISYNTH)) {
return false;
}
return Port::Connect();
}
bool Disconnect() override {
if (out_handle_ != kInvalidOutHandle) {
// Following API call may fail because device was already disconnected.
// But just in case.
midiOutClose(out_handle_);
out_handle_ = kInvalidOutHandle;
}
return Port::Disconnect();
}
void Open() override {
MMRESULT result = midiOutOpen(
&out_handle_, device_id_,
reinterpret_cast<DWORD_PTR>(&PortManager::HandleMidiOutCallback), 0,
CALLBACK_FUNCTION);
if (result == MMSYSERR_NOERROR) {
Port::Open();
} else {
out_handle_ = kInvalidOutHandle;
Disconnect();
}
}
const bool software_;
HMIDIOUT out_handle_;
};
base::TimeTicks MidiManagerWin::PortManager::CalculateInEventTime(
size_t index,
uint32_t elapsed_ms) const {
GetTaskLock()->AssertAcquired();
CHECK_GT(input_ports_.size(), index);
return input_ports_[index]->CalculateInEventTime(elapsed_ms);
}
void MidiManagerWin::PortManager::RegisterInHandle(HMIDIIN handle,
size_t index) {
GetTaskLock()->AssertAcquired();
hmidiin_to_index_map_[handle] = index;
}
void MidiManagerWin::PortManager::UnregisterInHandle(HMIDIIN handle) {
GetTaskLock()->AssertAcquired();
hmidiin_to_index_map_.erase(handle);
}
bool MidiManagerWin::PortManager::FindInHandle(HMIDIIN hmi, size_t* out_index) {
GetTaskLock()->AssertAcquired();
auto found = hmidiin_to_index_map_.find(hmi);
if (found == hmidiin_to_index_map_.end())
return false;
*out_index = found->second;
return true;
}
void MidiManagerWin::PortManager::RestoreInBuffer(size_t index) {
GetTaskLock()->AssertAcquired();
CHECK_GT(input_ports_.size(), index);
input_ports_[index]->RestoreBuffer();
}
void CALLBACK
MidiManagerWin::PortManager::HandleMidiInCallback(HMIDIIN hmi,
UINT msg,
DWORD_PTR instance,
DWORD_PTR param1,
DWORD_PTR param2) {
if (msg != MIM_DATA && msg != MIM_LONGDATA)
return;
int instance_id = static_cast<int>(instance);
MidiManagerWin* manager = nullptr;
// Use |g_task_lock| so to ensure the instance can keep alive while running,
// and to access member variables that are used on TaskRunner.
// Exceptionally, we do not take the lock when this callback is invoked inside
// midiInGetNumDevs() on the caller thread because the lock is already
// obtained by the current caller thread.
std::unique_ptr<base::AutoLock> task_lock;
if (IsRunningInsideMidiInGetNumDevs())
GetTaskLock()->AssertAcquired();
else
task_lock.reset(new base::AutoLock(*GetTaskLock()));
{
base::AutoLock lock(*GetInstanceIdLock());
if (instance_id != g_active_instance_id)
return;
manager = g_manager_instance;
}
size_t index;
if (!manager->port_manager()->FindInHandle(hmi, &index))
return;
DCHECK(msg == MIM_DATA || msg == MIM_LONGDATA);
if (msg == MIM_DATA) {
const uint8_t status_byte = static_cast<uint8_t>(param1 & 0xff);
const uint8_t first_data_byte = static_cast<uint8_t>((param1 >> 8) & 0xff);
const uint8_t second_data_byte =
static_cast<uint8_t>((param1 >> 16) & 0xff);
const uint8_t kData[] = {status_byte, first_data_byte, second_data_byte};
const size_t len = GetMessageLength(status_byte);
DCHECK_LE(len, base::size(kData));
std::vector<uint8_t> data;
data.assign(kData, kData + len);
manager->PostReplyTask(base::BindOnce(
&MidiManagerWin::ReceiveMidiData, base::Unretained(manager),
static_cast<uint32_t>(index), data,
manager->port_manager()->CalculateInEventTime(index, param2)));
} else {
DCHECK_EQ(static_cast<UINT>(MIM_LONGDATA), msg);
LPMIDIHDR hdr = reinterpret_cast<LPMIDIHDR>(param1);
if (hdr->dwBytesRecorded > 0) {
const uint8_t* src = reinterpret_cast<const uint8_t*>(hdr->lpData);
std::vector<uint8_t> data;
data.assign(src, src + hdr->dwBytesRecorded);
manager->PostReplyTask(base::BindOnce(
&MidiManagerWin::ReceiveMidiData, base::Unretained(manager),
static_cast<uint32_t>(index), data,
manager->port_manager()->CalculateInEventTime(index, param2)));
}
manager->port_manager()->RestoreInBuffer(index);
}
}
void CALLBACK
MidiManagerWin::PortManager::HandleMidiOutCallback(HMIDIOUT hmo,
UINT msg,
DWORD_PTR instance,
DWORD_PTR param1,
DWORD_PTR param2) {
if (msg == MOM_DONE) {
ScopedMIDIHDR hdr(reinterpret_cast<LPMIDIHDR>(param1));
if (!hdr)
return;
// TODO(toyoshim): Call midiOutUnprepareHeader outside the callback.
// Since this callback may be invoked after the manager is destructed,
// and can not send a task to the TaskRunner in such case, we need to
// consider to track MIDIHDR per port, and clean it in port finalization
// steps, too.
midiOutUnprepareHeader(hmo, hdr.get(), sizeof(*hdr));
}
}
// static
void MidiManagerWin::OverflowInstanceIdForTesting() {
IssueNextInstanceId(std::numeric_limits<int64_t>::max());
}
MidiManagerWin::MidiManagerWin(MidiService* service)
: MidiManager(service),
instance_id_(IssueNextInstanceId(base::nullopt)),
port_manager_(std::make_unique<PortManager>()) {
base::AutoLock lock(*GetInstanceIdLock());
CHECK_EQ(kInvalidInstanceId, g_active_instance_id);
// Obtains the task runner for the current thread that hosts this instnace.
thread_runner_ = base::ThreadTaskRunnerHandle::Get();
}
MidiManagerWin::~MidiManagerWin() {
// Initialization failed. Exit without running actual finalization that should
// not be needed.
if (instance_id_ == kInvalidInstanceId)
return;
// Unregisters on the I/O thread. OnDevicesChanged() won't be called any more.
CHECK(thread_runner_->BelongsToCurrentThread());
base::SystemMonitor::Get()->RemoveDevicesChangedObserver(this);
// Posts tasks that finalize each device port without MidiManager instance
// on TaskRunner. If another MidiManager instance is created, its
// initialization runs on the same task runner after all tasks posted here
// finish.
for (const auto& port : *port_manager_->inputs())
port->Finalize(service()->GetTaskRunner(kTaskRunner));
for (const auto& port : *port_manager_->outputs())
port->Finalize(service()->GetTaskRunner(kTaskRunner));
// Invalidate instance bound tasks.
{
base::AutoLock lock(*GetInstanceIdLock());
CHECK_EQ(instance_id_, g_active_instance_id);
g_active_instance_id = kInvalidInstanceId;
CHECK_EQ(this, g_manager_instance);
g_manager_instance = nullptr;
}
// Ensures that no bound task runs on TaskRunner so to destruct the instance
// safely.
// Tasks that did not started yet will do nothing after invalidate the
// instance ID above.
// Behind the lock below, we can safely access all members for finalization
// even on the I/O thread.
base::AutoLock lock(*GetTaskLock());
}
void MidiManagerWin::StartInitialization() {
{
base::AutoLock lock(*GetInstanceIdLock());
if (instance_id_ == kInvalidInstanceId)
return CompleteInitialization(mojom::Result::INITIALIZATION_ERROR);
CHECK_EQ(kInvalidInstanceId, g_active_instance_id);
g_active_instance_id = instance_id_;
CHECK_EQ(nullptr, g_manager_instance);
g_manager_instance = this;
}
// Registers on the I/O thread to be notified on the I/O thread.
CHECK(thread_runner_->BelongsToCurrentThread());
base::SystemMonitor::Get()->AddDevicesChangedObserver(this);
// Starts asynchronous initialization on TaskRunner.
PostTask(base::BindOnce(&MidiManagerWin::InitializeOnTaskRunner,
base::Unretained(this)));
}
void MidiManagerWin::DispatchSendMidiData(MidiManagerClient* client,
uint32_t port_index,
const std::vector<uint8_t>& data,
base::TimeTicks timestamp) {
PostDelayedTask(
base::BindOnce(&MidiManagerWin::SendOnTaskRunner, base::Unretained(this),
client, port_index, data),
MidiService::TimestampToTimeDeltaDelay(timestamp));
}
void MidiManagerWin::OnDevicesChanged(
base::SystemMonitor::DeviceType device_type) {
// Notified on the I/O thread.
CHECK(thread_runner_->BelongsToCurrentThread());
switch (device_type) {
case base::SystemMonitor::DEVTYPE_AUDIO:
case base::SystemMonitor::DEVTYPE_VIDEO_CAPTURE:
// Add case of other unrelated device types here.
return;
case base::SystemMonitor::DEVTYPE_UNKNOWN: {
PostTask(base::BindOnce(&MidiManagerWin::UpdateDeviceListOnTaskRunner,
base::Unretained(this)));
break;
}
}
}
void MidiManagerWin::ReceiveMidiData(uint32_t index,
const std::vector<uint8_t>& data,
base::TimeTicks time) {
MidiManager::ReceiveMidiData(index, data.data(), data.size(), time);
}
void MidiManagerWin::PostTask(base::OnceClosure task) {
service()
->GetTaskRunner(kTaskRunner)
->PostTask(FROM_HERE,
base::BindOnce(&RunTask, instance_id_, std::move(task)));
}
void MidiManagerWin::PostDelayedTask(base::OnceClosure task,
base::TimeDelta delay) {
service()
->GetTaskRunner(kTaskRunner)
->PostDelayedTask(FROM_HERE,
base::BindOnce(&RunTask, instance_id_, std::move(task)),
delay);
}
void MidiManagerWin::PostReplyTask(base::OnceClosure task) {
thread_runner_->PostTask(
FROM_HERE, base::BindOnce(&RunTask, instance_id_, std::move(task)));
}
void MidiManagerWin::InitializeOnTaskRunner() {
UpdateDeviceListOnTaskRunner();
PostReplyTask(base::BindOnce(&MidiManagerWin::CompleteInitialization,
base::Unretained(this), mojom::Result::OK));
}
void MidiManagerWin::UpdateDeviceListOnTaskRunner() {
std::vector<std::unique_ptr<InPort>> active_input_ports =
InPort::EnumerateActivePorts(this, instance_id_);
ReflectActiveDeviceList(this, port_manager_->inputs(), &active_input_ports);
std::vector<std::unique_ptr<OutPort>> active_output_ports =
OutPort::EnumerateActivePorts();
ReflectActiveDeviceList(this, port_manager_->outputs(), &active_output_ports);
// TODO(toyoshim): This method may run before internal MIDI device lists that
// Windows manages were updated. This may be because MIDI driver may be loaded
// after the raw device list was updated. To avoid this problem, we may want
// to retry device check later if no changes are detected here.
}
template <typename T>
void MidiManagerWin::ReflectActiveDeviceList(MidiManagerWin* manager,
std::vector<T>* known_ports,
std::vector<T>* active_ports) {
// Update existing port states.
for (const auto& port : *known_ports) {
const auto& it = std::find_if(
active_ports->begin(), active_ports->end(),
[&port](const auto& candidate) { return *candidate == *port; });
if (it == active_ports->end()) {
if (port->Disconnect())
port->NotifyPortStateSet(this);
} else {
port->set_device_id((*it)->device_id());
if (port->Connect())
port->NotifyPortStateSet(this);
}
}
// Find new ports from active ports and append them to known ports.
for (auto& port : *active_ports) {
if (std::find_if(known_ports->begin(), known_ports->end(),
[&port](const auto& candidate) {
return *candidate == *port;
}) == known_ports->end()) {
size_t index = known_ports->size();
port->set_index(index);
known_ports->push_back(std::move(port));
(*known_ports)[index]->Connect();
(*known_ports)[index]->NotifyPortAdded(this);
}
}
}
void MidiManagerWin::SendOnTaskRunner(MidiManagerClient* client,
uint32_t port_index,
const std::vector<uint8_t>& data) {
CHECK_GT(port_manager_->outputs()->size(), port_index);
(*port_manager_->outputs())[port_index]->Send(data);
// |client| will be checked inside MidiManager::AccumulateMidiBytesSent.
PostReplyTask(base::BindOnce(&MidiManagerWin::AccumulateMidiBytesSent,
base::Unretained(this), client, data.size()));
}
MidiManager* MidiManager::Create(MidiService* service) {
if (base::FeatureList::IsEnabled(features::kMidiManagerWinrt) &&
base::win::GetVersion() >= base::win::Version::WIN10) {
return new MidiManagerWinrt(service);
}
return new MidiManagerWin(service);
}
} // namespace midi