blob: 841985698e2acb16cf72049cf8d58f8705a18e99 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/pickle.h"
#include <algorithm>
#include <bit>
#include <cstdlib>
#include <limits>
#include <ostream>
#include <type_traits>
#include "base/bits.h"
#include "base/containers/span.h"
#include "base/numerics/safe_conversions.h"
#include "base/numerics/safe_math.h"
#include "build/build_config.h"
namespace base {
// static
const size_t Pickle::kPayloadUnit = 64;
static const size_t kCapacityReadOnly = static_cast<size_t>(-1);
PickleIterator::PickleIterator(const Pickle& pickle)
: payload_(pickle.payload()),
read_index_(0),
end_index_(pickle.payload_size()) {}
template <typename Type>
inline bool PickleIterator::ReadBuiltinType(Type* result) {
static_assert(
std::is_integral_v<Type> && !std::is_same_v<Type, bool>,
"This method is only safe with to use with types without padding bits.");
const char* read_from = GetReadPointerAndAdvance<Type>();
if (!read_from)
return false;
memcpy(result, read_from, sizeof(*result));
return true;
}
inline void PickleIterator::Advance(size_t size) {
size_t aligned_size = bits::AlignUp(size, sizeof(uint32_t));
if (end_index_ - read_index_ < aligned_size) {
read_index_ = end_index_;
} else {
read_index_ += aligned_size;
}
}
template <typename Type>
inline const char* PickleIterator::GetReadPointerAndAdvance() {
if (sizeof(Type) > end_index_ - read_index_) {
read_index_ = end_index_;
return nullptr;
}
const char* current_read_ptr = payload_ + read_index_;
Advance(sizeof(Type));
return current_read_ptr;
}
const char* PickleIterator::GetReadPointerAndAdvance(size_t num_bytes) {
if (num_bytes > end_index_ - read_index_) {
read_index_ = end_index_;
return nullptr;
}
const char* current_read_ptr = payload_ + read_index_;
Advance(num_bytes);
return current_read_ptr;
}
inline const char* PickleIterator::GetReadPointerAndAdvance(
size_t num_elements,
size_t size_element) {
// Check for size_t overflow.
size_t num_bytes;
if (!CheckMul(num_elements, size_element).AssignIfValid(&num_bytes))
return nullptr;
return GetReadPointerAndAdvance(num_bytes);
}
bool PickleIterator::ReadBool(bool* result) {
// Not all bit patterns are valid bools. Avoid undefined behavior by reading a
// type with no padding bits, then converting to bool.
uint8_t v;
if (!ReadBuiltinType(&v)) {
return false;
}
*result = v != 0;
return true;
}
bool PickleIterator::ReadInt(int* result) {
return ReadBuiltinType(result);
}
bool PickleIterator::ReadLong(long* result) {
// Always read long as a 64-bit value to ensure compatibility between 32-bit
// and 64-bit processes.
int64_t result_int64 = 0;
if (!ReadBuiltinType(&result_int64))
return false;
if (!IsValueInRangeForNumericType<long>(result_int64))
return false;
*result = static_cast<long>(result_int64);
return true;
}
bool PickleIterator::ReadUInt16(uint16_t* result) {
return ReadBuiltinType(result);
}
bool PickleIterator::ReadUInt32(uint32_t* result) {
return ReadBuiltinType(result);
}
bool PickleIterator::ReadInt64(int64_t* result) {
return ReadBuiltinType(result);
}
bool PickleIterator::ReadUInt64(uint64_t* result) {
return ReadBuiltinType(result);
}
bool PickleIterator::ReadFloat(float* result) {
// crbug.com/315213
// The source data may not be properly aligned, and unaligned float reads
// cause SIGBUS on some ARM platforms, so force using memcpy to copy the data
// into the result.
const char* read_from = GetReadPointerAndAdvance<float>();
if (!read_from)
return false;
memcpy(result, read_from, sizeof(*result));
return true;
}
bool PickleIterator::ReadDouble(double* result) {
// crbug.com/315213
// The source data may not be properly aligned, and unaligned double reads
// cause SIGBUS on some ARM platforms, so force using memcpy to copy the data
// into the result.
const char* read_from = GetReadPointerAndAdvance<double>();
if (!read_from)
return false;
memcpy(result, read_from, sizeof(*result));
return true;
}
bool PickleIterator::ReadString(std::string* result) {
size_t len;
if (!ReadLength(&len))
return false;
const char* read_from = GetReadPointerAndAdvance(len);
if (!read_from)
return false;
result->assign(read_from, len);
return true;
}
bool PickleIterator::ReadStringPiece(StringPiece* result) {
size_t len;
if (!ReadLength(&len))
return false;
const char* read_from = GetReadPointerAndAdvance(len);
if (!read_from)
return false;
*result = StringPiece(read_from, len);
return true;
}
bool PickleIterator::ReadString16(std::u16string* result) {
size_t len;
if (!ReadLength(&len))
return false;
const char* read_from = GetReadPointerAndAdvance(len, sizeof(char16_t));
if (!read_from)
return false;
result->assign(reinterpret_cast<const char16_t*>(read_from), len);
return true;
}
bool PickleIterator::ReadStringPiece16(StringPiece16* result) {
size_t len;
if (!ReadLength(&len))
return false;
const char* read_from = GetReadPointerAndAdvance(len, sizeof(char16_t));
if (!read_from)
return false;
*result = StringPiece16(reinterpret_cast<const char16_t*>(read_from), len);
return true;
}
bool PickleIterator::ReadData(const char** data, size_t* length) {
*length = 0;
*data = nullptr;
if (!ReadLength(length))
return false;
return ReadBytes(data, *length);
}
std::optional<base::span<const uint8_t>> PickleIterator::ReadData() {
const char* ptr;
size_t length;
if (!ReadData(&ptr, &length))
return std::nullopt;
return base::as_bytes(base::make_span(ptr, length));
}
bool PickleIterator::ReadBytes(const char** data, size_t length) {
const char* read_from = GetReadPointerAndAdvance(length);
if (!read_from)
return false;
*data = read_from;
return true;
}
Pickle::Attachment::Attachment() = default;
Pickle::Attachment::~Attachment() = default;
// Payload is uint32_t aligned.
Pickle::Pickle()
: header_(nullptr),
header_size_(sizeof(Header)),
capacity_after_header_(0),
write_offset_(0) {
static_assert(std::has_single_bit(Pickle::kPayloadUnit),
"Pickle::kPayloadUnit must be a power of two");
Resize(kPayloadUnit);
header_->payload_size = 0;
}
Pickle::Pickle(size_t header_size)
: header_(nullptr),
header_size_(bits::AlignUp(header_size, sizeof(uint32_t))),
capacity_after_header_(0),
write_offset_(0) {
DCHECK_GE(header_size, sizeof(Header));
DCHECK_LE(header_size, kPayloadUnit);
Resize(kPayloadUnit);
header_->payload_size = 0;
}
Pickle Pickle::WithData(span<const uint8_t> data) {
// Create a pickle with unowned data, then do a copy to internalize the data.
Pickle pickle(kUnownedData, data);
Pickle internalized_data_pickle = pickle;
CHECK_NE(internalized_data_pickle.capacity_after_header_, kCapacityReadOnly);
return internalized_data_pickle;
}
Pickle Pickle::WithUnownedBuffer(span<const uint8_t> data) {
// This uses return value optimization to return a Pickle without copying
// which will preserve the unowned-ness of the data.
return Pickle(kUnownedData, data);
}
Pickle::Pickle(UnownedData, span<const uint8_t> data)
: header_(reinterpret_cast<Header*>(const_cast<uint8_t*>(data.data()))),
header_size_(0),
capacity_after_header_(kCapacityReadOnly),
write_offset_(0) {
if (data.size() >= sizeof(Header)) {
header_size_ = data.size() - header_->payload_size;
}
if (header_size_ > data.size()) {
header_size_ = 0;
}
if (header_size_ != bits::AlignUp(header_size_, sizeof(uint32_t))) {
header_size_ = 0;
}
// If there is anything wrong with the data, we're not going to use it.
if (!header_size_) {
header_ = nullptr;
}
}
Pickle::Pickle(const Pickle& other)
: header_(nullptr),
header_size_(other.header_size_),
capacity_after_header_(0),
write_offset_(other.write_offset_) {
if (other.header_) {
Resize(other.header_->payload_size);
memcpy(header_, other.header_, header_size_ + other.header_->payload_size);
}
}
Pickle::~Pickle() {
if (capacity_after_header_ != kCapacityReadOnly)
free(header_);
}
Pickle& Pickle::operator=(const Pickle& other) {
if (this == &other) {
return *this;
}
if (capacity_after_header_ == kCapacityReadOnly) {
header_ = nullptr;
capacity_after_header_ = 0;
}
if (header_size_ != other.header_size_) {
free(header_);
header_ = nullptr;
header_size_ = other.header_size_;
}
if (other.header_) {
Resize(other.header_->payload_size);
memcpy(header_, other.header_,
other.header_size_ + other.header_->payload_size);
write_offset_ = other.write_offset_;
}
return *this;
}
void Pickle::WriteString(const StringPiece& value) {
WriteData(value.data(), value.size());
}
void Pickle::WriteString16(const StringPiece16& value) {
WriteInt(checked_cast<int>(value.size()));
WriteBytes(value.data(), value.size() * sizeof(char16_t));
}
void Pickle::WriteData(const char* data, size_t length) {
WriteData(as_bytes(span(data, length)));
}
void Pickle::WriteData(std::string_view data) {
WriteData(as_byte_span(data));
}
void Pickle::WriteData(base::span<const uint8_t> data) {
WriteInt(checked_cast<int>(data.size()));
WriteBytes(data);
}
void Pickle::WriteBytes(const void* data, size_t length) {
WriteBytesCommon(make_span(static_cast<const uint8_t*>(data), length));
}
void Pickle::WriteBytes(span<const uint8_t> data) {
WriteBytesCommon(data);
}
void Pickle::Reserve(size_t length) {
size_t data_len = bits::AlignUp(length, sizeof(uint32_t));
DCHECK_GE(data_len, length);
#ifdef ARCH_CPU_64_BITS
DCHECK_LE(data_len, std::numeric_limits<uint32_t>::max());
#endif
DCHECK_LE(write_offset_, std::numeric_limits<uint32_t>::max() - data_len);
size_t new_size = write_offset_ + data_len;
if (new_size > capacity_after_header_)
Resize(capacity_after_header_ * 2 + new_size);
}
bool Pickle::WriteAttachment(scoped_refptr<Attachment> attachment) {
return false;
}
bool Pickle::ReadAttachment(base::PickleIterator* iter,
scoped_refptr<Attachment>* attachment) const {
return false;
}
bool Pickle::HasAttachments() const {
return false;
}
void Pickle::Resize(size_t new_capacity) {
CHECK_NE(capacity_after_header_, kCapacityReadOnly);
capacity_after_header_ = bits::AlignUp(new_capacity, kPayloadUnit);
void* p = realloc(header_, GetTotalAllocatedSize());
CHECK(p);
header_ = reinterpret_cast<Header*>(p);
}
void* Pickle::ClaimBytes(size_t num_bytes) {
void* p = ClaimUninitializedBytesInternal(num_bytes);
CHECK(p);
memset(p, 0, num_bytes);
return p;
}
size_t Pickle::GetTotalAllocatedSize() const {
if (capacity_after_header_ == kCapacityReadOnly)
return 0;
return header_size_ + capacity_after_header_;
}
// static
const char* Pickle::FindNext(size_t header_size,
const char* start,
const char* end) {
size_t pickle_size = 0;
if (!PeekNext(header_size, start, end, &pickle_size))
return nullptr;
if (pickle_size > static_cast<size_t>(end - start))
return nullptr;
return start + pickle_size;
}
// static
bool Pickle::PeekNext(size_t header_size,
const char* start,
const char* end,
size_t* pickle_size) {
DCHECK_EQ(header_size, bits::AlignUp(header_size, sizeof(uint32_t)));
DCHECK_GE(header_size, sizeof(Header));
DCHECK_LE(header_size, static_cast<size_t>(kPayloadUnit));
size_t length = static_cast<size_t>(end - start);
if (length < sizeof(Header))
return false;
const Header* hdr = reinterpret_cast<const Header*>(start);
if (length < header_size)
return false;
// If payload_size causes an overflow, we return maximum possible
// pickle size to indicate that.
*pickle_size = ClampAdd(header_size, hdr->payload_size);
return true;
}
template <size_t length>
void Pickle::WriteBytesStatic(const void* data) {
WriteBytesCommon(make_span(static_cast<const uint8_t*>(data), length));
}
template void Pickle::WriteBytesStatic<2>(const void* data);
template void Pickle::WriteBytesStatic<4>(const void* data);
template void Pickle::WriteBytesStatic<8>(const void* data);
inline void* Pickle::ClaimUninitializedBytesInternal(size_t length) {
DCHECK_NE(kCapacityReadOnly, capacity_after_header_)
<< "oops: pickle is readonly";
size_t data_len = bits::AlignUp(length, sizeof(uint32_t));
DCHECK_GE(data_len, length);
#ifdef ARCH_CPU_64_BITS
DCHECK_LE(data_len, std::numeric_limits<uint32_t>::max());
#endif
DCHECK_LE(write_offset_, std::numeric_limits<uint32_t>::max() - data_len);
size_t new_size = write_offset_ + data_len;
if (new_size > capacity_after_header_) {
size_t new_capacity = capacity_after_header_ * 2;
const size_t kPickleHeapAlign = 4096;
if (new_capacity > kPickleHeapAlign) {
new_capacity =
bits::AlignUp(new_capacity, kPickleHeapAlign) - kPayloadUnit;
}
Resize(std::max(new_capacity, new_size));
}
char* write = mutable_payload() + write_offset_;
std::fill(write + length, write + data_len, 0); // Always initialize padding
header_->payload_size = static_cast<uint32_t>(new_size);
write_offset_ = new_size;
return write;
}
inline void Pickle::WriteBytesCommon(span<const uint8_t> data) {
DCHECK_NE(kCapacityReadOnly, capacity_after_header_)
<< "oops: pickle is readonly";
MSAN_CHECK_MEM_IS_INITIALIZED(data.data(), data.size());
void* write = ClaimUninitializedBytesInternal(data.size());
std::copy(data.data(), data.data() + data.size(), static_cast<char*>(write));
}
} // namespace base