blob: 9c67ac91ce558ee241053a857975d53cf630dfc7 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/metrics/file_metrics_provider.h"
#include <memory>
#include "base/bind.h"
#include "base/command_line.h"
#include "base/containers/flat_map.h"
#include "base/feature_list.h"
#include "base/files/file.h"
#include "base/files/file_enumerator.h"
#include "base/files/file_util.h"
#include "base/files/memory_mapped_file.h"
#include "base/logging.h"
#include "base/metrics/histogram_base.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/metrics/ranges_manager.h"
#include "base/strings/string_piece.h"
#include "base/task/task_runner.h"
#include "base/task/task_runner_util.h"
#include "base/task/task_traits.h"
#include "base/task/thread_pool.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "components/metrics/metrics_pref_names.h"
#include "components/metrics/metrics_service.h"
#include "components/metrics/persistent_histograms.h"
#include "components/metrics/persistent_system_profile.h"
#include "components/prefs/pref_registry_simple.h"
#include "components/prefs/pref_service.h"
#include "components/prefs/scoped_user_pref_update.h"
namespace metrics {
namespace {
// These structures provide values used to define how files are opened and
// accessed. It obviates the need for multiple code-paths within several of
// the methods.
struct SourceOptions {
// The flags to be used to open a file on disk.
int file_open_flags;
// The access mode to be used when mapping a file into memory.
base::MemoryMappedFile::Access memory_mapped_access;
// Indicates if the file is to be accessed read-only.
bool is_read_only;
};
// Opening a file typically requires at least these flags.
constexpr int STD_OPEN = base::File::FLAG_OPEN | base::File::FLAG_READ;
constexpr SourceOptions kSourceOptions[] = {
// SOURCE_HISTOGRAMS_ATOMIC_FILE
{
// Ensure that no other process reads this at the same time.
STD_OPEN | base::File::FLAG_WIN_EXCLUSIVE_READ,
base::MemoryMappedFile::READ_ONLY,
true,
},
// SOURCE_HISTOGRAMS_ATOMIC_DIR
{
// Ensure that no other process reads this at the same time.
STD_OPEN | base::File::FLAG_WIN_EXCLUSIVE_READ,
base::MemoryMappedFile::READ_ONLY,
true,
},
// SOURCE_HISTOGRAMS_ACTIVE_FILE
{
// Allow writing to the file. This is needed so we can keep track of
// deltas that have been uploaded (by modifying the file), while the
// file may still be open by an external process (e.g. Crashpad).
STD_OPEN | base::File::FLAG_WRITE,
base::MemoryMappedFile::READ_WRITE,
false,
},
};
void DeleteFileWhenPossible(const base::FilePath& path) {
// Open (with delete) and then immediately close the file by going out of
// scope. This is the only cross-platform safe way to delete a file that may
// be open elsewhere, a distinct possibility given the asynchronous nature
// of the delete task.
base::File file(path, base::File::FLAG_OPEN | base::File::FLAG_READ |
base::File::FLAG_DELETE_ON_CLOSE);
}
// A task runner to use for testing.
base::TaskRunner* g_task_runner_for_testing = nullptr;
// Returns a task runner appropriate for running background tasks that perform
// file I/O.
scoped_refptr<base::TaskRunner> CreateBackgroundTaskRunner() {
if (g_task_runner_for_testing)
return scoped_refptr<base::TaskRunner>(g_task_runner_for_testing);
return base::ThreadPool::CreateTaskRunner(
{base::MayBlock(), base::TaskPriority::BEST_EFFORT,
base::TaskShutdownBehavior::SKIP_ON_SHUTDOWN});
}
} // namespace
// This structure stores all the information about the sources being monitored
// and their current reporting state.
struct FileMetricsProvider::SourceInfo {
SourceInfo(const Params& params)
: type(params.type),
association(params.association),
prefs_key(params.prefs_key),
filter(params.filter),
max_age(params.max_age),
max_dir_kib(params.max_dir_kib),
max_dir_files(params.max_dir_files) {
switch (type) {
case SOURCE_HISTOGRAMS_ACTIVE_FILE:
DCHECK(prefs_key.empty());
[[fallthrough]];
case SOURCE_HISTOGRAMS_ATOMIC_FILE:
path = params.path;
break;
case SOURCE_HISTOGRAMS_ATOMIC_DIR:
directory = params.path;
break;
}
}
SourceInfo(const SourceInfo&) = delete;
SourceInfo& operator=(const SourceInfo&) = delete;
~SourceInfo() {}
struct FoundFile {
base::FilePath path;
base::FileEnumerator::FileInfo info;
};
using FoundFiles = base::flat_map<base::Time, FoundFile>;
// How to access this source (file/dir, atomic/active).
const SourceType type;
// With what run this source is associated.
const SourceAssociation association;
// Where on disk the directory is located. This will only be populated when
// a directory is being monitored.
base::FilePath directory;
// The files found in the above directory, ordered by last-modified.
std::unique_ptr<FoundFiles> found_files;
// Where on disk the file is located. If a directory is being monitored,
// this will be updated for whatever file is being read.
base::FilePath path;
// Name used inside prefs to persistent metadata.
std::string prefs_key;
// The filter callback for determining what to do with found files.
FilterCallback filter;
// The maximum allowed age of a file.
base::TimeDelta max_age;
// The maximum allowed bytes in a directory.
size_t max_dir_kib;
// The maximum allowed files in a directory.
size_t max_dir_files;
// The last-seen time of this source to detect change.
base::Time last_seen;
// Indicates if the data has been read out or not.
bool read_complete = false;
// Once a file has been recognized as needing to be read, it is mapped
// into memory and assigned to an |allocator| object.
std::unique_ptr<base::PersistentHistogramAllocator> allocator;
};
FileMetricsProvider::Params::Params(const base::FilePath& path,
SourceType type,
SourceAssociation association,
base::StringPiece prefs_key)
: path(path), type(type), association(association), prefs_key(prefs_key) {}
FileMetricsProvider::Params::~Params() {}
FileMetricsProvider::FileMetricsProvider(PrefService* local_state)
: task_runner_(CreateBackgroundTaskRunner()),
pref_service_(local_state),
main_task_runner_(base::ThreadTaskRunnerHandle::Get()) {
DCHECK(main_task_runner_);
base::StatisticsRecorder::RegisterHistogramProvider(
weak_factory_.GetWeakPtr());
}
FileMetricsProvider::~FileMetricsProvider() {}
void FileMetricsProvider::RegisterSource(const Params& params) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Ensure that kSourceOptions has been filled for this type.
DCHECK_GT(std::size(kSourceOptions), static_cast<size_t>(params.type));
std::unique_ptr<SourceInfo> source(new SourceInfo(params));
// |prefs_key| may be empty if the caller does not wish to persist the
// state across instances of the program.
if (pref_service_ && !params.prefs_key.empty()) {
source->last_seen = pref_service_->GetTime(
metrics::prefs::kMetricsLastSeenPrefix + source->prefs_key);
}
switch (params.association) {
case ASSOCIATE_CURRENT_RUN:
case ASSOCIATE_INTERNAL_PROFILE:
case ASSOCIATE_INTERNAL_PROFILE_SAMPLES_COUNTER:
sources_to_check_.push_back(std::move(source));
break;
case ASSOCIATE_PREVIOUS_RUN:
case ASSOCIATE_INTERNAL_PROFILE_OR_PREVIOUS_RUN:
DCHECK_EQ(SOURCE_HISTOGRAMS_ATOMIC_FILE, source->type);
sources_for_previous_run_.push_back(std::move(source));
break;
}
}
// static
void FileMetricsProvider::RegisterSourcePrefs(
PrefRegistrySimple* prefs,
const base::StringPiece prefs_key) {
prefs->RegisterInt64Pref(
metrics::prefs::kMetricsLastSeenPrefix + std::string(prefs_key), 0);
}
// static
void FileMetricsProvider::RegisterPrefs(PrefRegistrySimple* prefs) {
prefs->RegisterListPref(metrics::prefs::kMetricsFileMetricsMetadata);
}
// static
void FileMetricsProvider::SetTaskRunnerForTesting(
const scoped_refptr<base::TaskRunner>& task_runner) {
DCHECK(!g_task_runner_for_testing || !task_runner);
g_task_runner_for_testing = task_runner.get();
}
// static
void FileMetricsProvider::RecordAccessResult(AccessResult result) {
UMA_HISTOGRAM_ENUMERATION("UMA.FileMetricsProvider.AccessResult", result,
ACCESS_RESULT_MAX);
}
// static
bool FileMetricsProvider::LocateNextFileInDirectory(SourceInfo* source) {
DCHECK_EQ(SOURCE_HISTOGRAMS_ATOMIC_DIR, source->type);
DCHECK(!source->directory.empty());
// Cumulative directory stats. These will remain zero if the directory isn't
// scanned but that's okay since any work they would cause to be done below
// would have been done during the first call where the directory was fully
// scanned.
size_t total_size_kib = 0; // Using KiB allows 4TiB even on 32-bit builds.
size_t file_count = 0;
base::Time now_time = base::Time::Now();
if (!source->found_files) {
source->found_files = std::make_unique<SourceInfo::FoundFiles>();
base::FileEnumerator file_iter(source->directory, /*recursive=*/false,
base::FileEnumerator::FILES);
SourceInfo::FoundFile found_file;
// Open the directory and find all the files, remembering the last-modified
// time of each.
for (found_file.path = file_iter.Next(); !found_file.path.empty();
found_file.path = file_iter.Next()) {
found_file.info = file_iter.GetInfo();
// Ignore directories.
if (found_file.info.IsDirectory())
continue;
// Ignore temporary files.
base::FilePath::CharType first_character =
found_file.path.BaseName().value().front();
if (first_character == FILE_PATH_LITERAL('.') ||
first_character == FILE_PATH_LITERAL('_')) {
continue;
}
// Ignore non-PMA (Persistent Memory Allocator) files.
if (found_file.path.Extension() !=
base::PersistentMemoryAllocator::kFileExtension) {
continue;
}
// Process real files.
total_size_kib += found_file.info.GetSize() >> 10;
base::Time modified = found_file.info.GetLastModifiedTime();
if (modified > source->last_seen) {
// This file hasn't been read. Remember it (unless from the future).
if (modified <= now_time)
source->found_files->emplace(modified, std::move(found_file));
++file_count;
} else {
// This file has been read. Try to delete it. Ignore any errors because
// the file may be un-removeable by this process. It could, for example,
// have been created by a privileged process like setup.exe. Even if it
// is not removed, it will continue to be ignored bacuse of the older
// modification time.
base::DeleteFile(found_file.path);
}
}
}
// Filter files from the front until one is found for processing.
bool have_file = false;
while (!source->found_files->empty()) {
SourceInfo::FoundFile found =
std::move(source->found_files->begin()->second);
source->found_files->erase(source->found_files->begin());
bool too_many =
source->max_dir_files > 0 && file_count > source->max_dir_files;
bool too_big =
source->max_dir_kib > 0 && total_size_kib > source->max_dir_kib;
bool too_old =
source->max_age != base::TimeDelta() &&
now_time - found.info.GetLastModifiedTime() > source->max_age;
if (too_many || too_big || too_old) {
base::DeleteFile(found.path);
--file_count;
total_size_kib -= found.info.GetSize() >> 10;
RecordAccessResult(too_many ? ACCESS_RESULT_TOO_MANY_FILES
: too_big ? ACCESS_RESULT_TOO_MANY_BYTES
: ACCESS_RESULT_TOO_OLD);
continue;
}
AccessResult result = HandleFilterSource(source, found.path);
if (result == ACCESS_RESULT_SUCCESS) {
source->path = std::move(found.path);
have_file = true;
break;
}
// Record the result. Success will be recorded by the caller.
if (result != ACCESS_RESULT_THIS_PID)
RecordAccessResult(result);
}
return have_file;
}
// static
void FileMetricsProvider::FinishedWithSource(SourceInfo* source,
AccessResult result) {
// Different source types require different post-processing.
switch (source->type) {
case SOURCE_HISTOGRAMS_ATOMIC_FILE:
case SOURCE_HISTOGRAMS_ATOMIC_DIR:
// Done with this file so delete the allocator and its owned file.
source->allocator.reset();
// Remove the file if has been recorded. This prevents them from
// accumulating or also being recorded by different instances of
// the browser.
if (result == ACCESS_RESULT_SUCCESS ||
result == ACCESS_RESULT_NOT_MODIFIED ||
result == ACCESS_RESULT_MEMORY_DELETED ||
result == ACCESS_RESULT_TOO_OLD) {
DeleteFileWhenPossible(source->path);
}
break;
case SOURCE_HISTOGRAMS_ACTIVE_FILE:
// Keep the allocator open so it doesn't have to be re-mapped each
// time. This also allows the contents to be merged on-demand.
break;
}
}
void FileMetricsProvider::CheckAndMergeMetricSourcesOnTaskRunner(
SourceInfoList* sources) {
// This method has all state information passed in |sources| and is intended
// to run on a worker thread rather than the UI thread.
for (std::unique_ptr<SourceInfo>& source : *sources) {
AccessResult result;
do {
result = CheckAndMapMetricSource(source.get());
// Some results are not reported in order to keep the dashboard clean.
if (result != ACCESS_RESULT_DOESNT_EXIST &&
result != ACCESS_RESULT_NOT_MODIFIED &&
result != ACCESS_RESULT_THIS_PID) {
RecordAccessResult(result);
}
// If there are no files (or no more files) in this source, stop now.
if (result == ACCESS_RESULT_DOESNT_EXIST)
break;
// Mapping was successful. Merge it.
if (result == ACCESS_RESULT_SUCCESS) {
// Metrics associated with internal profiles have to be fetched directly
// so just keep the mapping for use by the main thread.
if (source->association == ASSOCIATE_INTERNAL_PROFILE)
break;
if (source->association == ASSOCIATE_INTERNAL_PROFILE_SAMPLES_COUNTER) {
RecordFileMetadataOnTaskRunner(source.get());
} else {
MergeHistogramDeltasFromSource(source.get());
}
DCHECK(source->read_complete);
}
// All done with this source.
FinishedWithSource(source.get(), result);
// If it's a directory, keep trying until a file is successfully opened.
// When there are no more files, ACCESS_RESULT_DOESNT_EXIST will be
// returned and the loop will exit above.
} while (result != ACCESS_RESULT_SUCCESS && !source->directory.empty());
// If the set of known files is empty, clear the object so the next run
// will do a fresh scan of the directory.
if (source->found_files && source->found_files->empty())
source->found_files.reset();
}
}
// This method has all state information passed in |source| and is intended
// to run on a worker thread rather than the UI thread.
// static
FileMetricsProvider::AccessResult FileMetricsProvider::CheckAndMapMetricSource(
SourceInfo* source) {
// If source was read, clean up after it.
if (source->read_complete)
FinishedWithSource(source, ACCESS_RESULT_SUCCESS);
source->read_complete = false;
DCHECK(!source->allocator);
// If the source is a directory, look for files within it.
if (!source->directory.empty() && !LocateNextFileInDirectory(source))
return ACCESS_RESULT_DOESNT_EXIST;
// Do basic validation on the file metadata.
base::File::Info info;
if (!base::GetFileInfo(source->path, &info))
return ACCESS_RESULT_DOESNT_EXIST;
if (info.is_directory || info.size == 0)
return ACCESS_RESULT_INVALID_FILE;
if (source->last_seen >= info.last_modified)
return ACCESS_RESULT_NOT_MODIFIED;
if (source->max_age != base::TimeDelta() &&
base::Time::Now() - info.last_modified > source->max_age) {
return ACCESS_RESULT_TOO_OLD;
}
// Non-directory files still need to be filtered.
if (source->directory.empty()) {
AccessResult result = HandleFilterSource(source, source->path);
if (result != ACCESS_RESULT_SUCCESS)
return result;
}
// A new file of metrics has been found.
base::File file(source->path, kSourceOptions[source->type].file_open_flags);
if (!file.IsValid())
return ACCESS_RESULT_NO_OPEN;
// Check that file is writable if that is expected. If a write is attempted
// on an unwritable memory-mapped file, a SIGBUS will cause a crash.
const bool read_only = kSourceOptions[source->type].is_read_only;
if (!read_only) {
constexpr int kTestSize = 16;
char header[kTestSize];
int amount = file.Read(0, header, kTestSize);
if (amount != kTestSize)
return ACCESS_RESULT_INVALID_CONTENTS;
char zeros[kTestSize] = {0};
file.Write(0, zeros, kTestSize);
file.Flush();
// A crash here would be unfortunate as the file would be left invalid
// and skipped/deleted by later attempts. This is unlikely, however, and
// the benefit of avoiding crashes from mapping as read/write a file that
// can't be written more than justifies the risk.
char check[kTestSize];
amount = file.Read(0, check, kTestSize);
if (amount != kTestSize)
return ACCESS_RESULT_INVALID_CONTENTS;
if (memcmp(check, zeros, kTestSize) != 0)
return ACCESS_RESULT_NOT_WRITABLE;
file.Write(0, header, kTestSize);
file.Flush();
amount = file.Read(0, check, kTestSize);
if (amount != kTestSize)
return ACCESS_RESULT_INVALID_CONTENTS;
if (memcmp(check, header, kTestSize) != 0)
return ACCESS_RESULT_NOT_WRITABLE;
}
std::unique_ptr<base::MemoryMappedFile> mapped(new base::MemoryMappedFile());
if (!mapped->Initialize(std::move(file),
kSourceOptions[source->type].memory_mapped_access)) {
return ACCESS_RESULT_SYSTEM_MAP_FAILURE;
}
// Ensure any problems below don't occur repeatedly.
source->last_seen = info.last_modified;
// Test the validity of the file contents.
if (!base::FilePersistentMemoryAllocator::IsFileAcceptable(*mapped,
read_only)) {
return ACCESS_RESULT_INVALID_CONTENTS;
}
// Map the file and validate it.
std::unique_ptr<base::FilePersistentMemoryAllocator> memory_allocator =
std::make_unique<base::FilePersistentMemoryAllocator>(
std::move(mapped), 0, 0, base::StringPiece(), read_only);
if (memory_allocator->GetMemoryState() ==
base::PersistentMemoryAllocator::MEMORY_DELETED) {
return ACCESS_RESULT_MEMORY_DELETED;
}
if (memory_allocator->IsCorrupt())
return ACCESS_RESULT_DATA_CORRUPTION;
// Cache the file data while running in a background thread so that there
// shouldn't be any I/O when the data is accessed from the main thread.
// Files with an internal profile, those from previous runs that include
// a full system profile and are fetched via ProvideIndependentMetrics(),
// are loaded on a background task and so there's no need to cache the
// data in advance.
if (source->association != ASSOCIATE_INTERNAL_PROFILE)
memory_allocator->Cache();
// Create an allocator for the mapped file. Ownership passes to the allocator.
source->allocator = std::make_unique<base::PersistentHistogramAllocator>(
std::move(memory_allocator));
// Check that an "independent" file has the necessary information present.
if (source->association == ASSOCIATE_INTERNAL_PROFILE &&
!PersistentSystemProfile::GetSystemProfile(
*source->allocator->memory_allocator(), nullptr)) {
return ACCESS_RESULT_NO_PROFILE;
}
return ACCESS_RESULT_SUCCESS;
}
// static
void FileMetricsProvider::MergeHistogramDeltasFromSource(SourceInfo* source) {
DCHECK(source->allocator);
base::PersistentHistogramAllocator::Iterator histogram_iter(
source->allocator.get());
const bool read_only = kSourceOptions[source->type].is_read_only;
int histogram_count = 0;
while (true) {
std::unique_ptr<base::HistogramBase> histogram = histogram_iter.GetNext();
if (!histogram)
break;
if (read_only) {
source->allocator->MergeHistogramFinalDeltaToStatisticsRecorder(
histogram.get());
} else {
source->allocator->MergeHistogramDeltaToStatisticsRecorder(
histogram.get());
}
++histogram_count;
}
source->read_complete = true;
DVLOG(1) << "Reported " << histogram_count << " histograms from "
<< source->path.value();
}
// static
void FileMetricsProvider::RecordHistogramSnapshotsFromSource(
base::HistogramSnapshotManager* snapshot_manager,
SourceInfo* source) {
DCHECK_NE(SOURCE_HISTOGRAMS_ACTIVE_FILE, source->type);
base::PersistentHistogramAllocator::Iterator histogram_iter(
source->allocator.get());
int histogram_count = 0;
while (true) {
std::unique_ptr<base::HistogramBase> histogram = histogram_iter.GetNext();
if (!histogram)
break;
snapshot_manager->PrepareFinalDelta(histogram.get());
++histogram_count;
}
source->read_complete = true;
DVLOG(1) << "Reported " << histogram_count << " histograms from "
<< source->path.value();
}
FileMetricsProvider::AccessResult FileMetricsProvider::HandleFilterSource(
SourceInfo* source,
const base::FilePath& path) {
if (!source->filter)
return ACCESS_RESULT_SUCCESS;
// Alternatively, pass a Params object to the filter like what was originally
// used to configure the source.
// Params params(path, source->type, source->association, source->prefs_key);
FilterAction action = source->filter.Run(path);
switch (action) {
case FILTER_PROCESS_FILE:
// Process the file.
return ACCESS_RESULT_SUCCESS;
case FILTER_ACTIVE_THIS_PID:
// Even the file for the current process has to be touched or its stamp
// will be less than "last processed" and thus skipped on future runs,
// even those done by new instances of the browser if a pref key is
// provided so that the last-uploaded stamp is recorded.
case FILTER_TRY_LATER: {
// Touch the file with the current timestamp making it (presumably) the
// newest file in the directory.
base::Time now = base::Time::Now();
base::TouchFile(path, /*accessed=*/now, /*modified=*/now);
if (action == FILTER_ACTIVE_THIS_PID)
return ACCESS_RESULT_THIS_PID;
return ACCESS_RESULT_FILTER_TRY_LATER;
}
case FILTER_SKIP_FILE:
switch (source->type) {
case SOURCE_HISTOGRAMS_ATOMIC_FILE:
case SOURCE_HISTOGRAMS_ATOMIC_DIR:
// Only "atomic" files are deleted (best-effort).
DeleteFileWhenPossible(path);
break;
case SOURCE_HISTOGRAMS_ACTIVE_FILE:
// File will presumably get modified elsewhere and thus tried again.
break;
}
return ACCESS_RESULT_FILTER_SKIP_FILE;
}
// Code never gets here but some compilers don't realize that and so complain
// that "not all control paths return a value".
NOTREACHED();
return ACCESS_RESULT_SUCCESS;
}
/* static */
bool FileMetricsProvider::ProvideIndependentMetricsOnTaskRunner(
SourceInfo* source,
SystemProfileProto* system_profile_proto,
base::HistogramSnapshotManager* snapshot_manager) {
if (PersistentSystemProfile::GetSystemProfile(
*source->allocator->memory_allocator(), system_profile_proto)) {
// Pass a custom RangesManager so that we do not register the BucketRanges
// with the global statistics recorder. Otherwise, it could add unnecessary
// contention, and a low amount of extra memory that will never be released.
source->allocator->SetRangesManager(new base::RangesManager());
system_profile_proto->mutable_stability()->set_from_previous_run(true);
RecordHistogramSnapshotsFromSource(snapshot_manager, source);
return true;
}
return false;
}
void FileMetricsProvider::AppendToSamplesCountPref(size_t samples_count) {
ListPrefUpdate update(pref_service_,
metrics::prefs::kMetricsFileMetricsMetadata);
update->Append(static_cast<int>(samples_count));
}
void FileMetricsProvider::RecordFileMetadataOnTaskRunner(SourceInfo* source) {
base::HistogramBase::Count samples_count = 0;
base::PersistentHistogramAllocator::Iterator it{source->allocator.get()};
std::unique_ptr<base::HistogramBase> histogram;
while ((histogram = it.GetNext()) != nullptr) {
samples_count += histogram->SnapshotFinalDelta()->TotalCount();
}
main_task_runner_->PostTask(
FROM_HERE, base::BindOnce(&FileMetricsProvider::AppendToSamplesCountPref,
base::Unretained(this), samples_count));
source->read_complete = true;
}
void FileMetricsProvider::ScheduleSourcesCheck() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (sources_to_check_.empty())
return;
// Create an independent list of sources for checking. This will be Owned()
// by the reply call given to the task-runner, to be deleted when that call
// has returned. It is also passed Unretained() to the task itself, safe
// because that must complete before the reply runs.
SourceInfoList* check_list = new SourceInfoList();
std::swap(sources_to_check_, *check_list);
task_runner_->PostTaskAndReply(
FROM_HERE,
base::BindOnce(
&FileMetricsProvider::CheckAndMergeMetricSourcesOnTaskRunner,
base::Unretained(this), base::Unretained(check_list)),
base::BindOnce(&FileMetricsProvider::RecordSourcesChecked,
weak_factory_.GetWeakPtr(), base::Owned(check_list)));
}
void FileMetricsProvider::RecordSourcesChecked(SourceInfoList* checked) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Sources that still have an allocator at this point are read/write "active"
// files that may need their contents merged on-demand. If there is no
// allocator (not a read/write file) but a read was done on the task-runner,
// try again immediately to see if more is available (in a directory of
// files). Otherwise, remember the source for checking again at a later time.
bool did_read = false;
for (auto iter = checked->begin(); iter != checked->end();) {
auto temp = iter++;
SourceInfo* source = temp->get();
if (source->read_complete) {
RecordSourceAsRead(source);
did_read = true;
}
if (source->allocator) {
if (source->association == ASSOCIATE_INTERNAL_PROFILE) {
sources_with_profile_.splice(sources_with_profile_.end(), *checked,
temp);
} else {
sources_mapped_.splice(sources_mapped_.end(), *checked, temp);
}
} else {
sources_to_check_.splice(sources_to_check_.end(), *checked, temp);
}
}
// If a read was done, schedule another one immediately. In the case of a
// directory of files, this ensures that all entries get processed. It's
// done here instead of as a loop in CheckAndMergeMetricSourcesOnTaskRunner
// so that (a) it gives the disk a rest and (b) testing of individual reads
// is possible.
if (did_read)
ScheduleSourcesCheck();
}
void FileMetricsProvider::DeleteFileAsync(const base::FilePath& path) {
task_runner_->PostTask(FROM_HERE,
base::BindOnce(DeleteFileWhenPossible, path));
}
void FileMetricsProvider::RecordSourceAsRead(SourceInfo* source) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Persistently record the "last seen" timestamp of the source file to
// ensure that the file is never read again unless it is modified again.
if (pref_service_ && !source->prefs_key.empty()) {
pref_service_->SetTime(
metrics::prefs::kMetricsLastSeenPrefix + source->prefs_key,
source->last_seen);
}
}
void FileMetricsProvider::OnDidCreateMetricsLog() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Schedule a check to see if there are new metrics to load. If so, they will
// be reported during the next collection run after this one. The check is run
// off of a MayBlock() TaskRunner so as to not cause delays on the main UI
// thread (which is currently where metric collection is done).
ScheduleSourcesCheck();
// Clear any data for initial metrics since they're always reported
// before the first call to this method. It couldn't be released after
// being reported in RecordInitialHistogramSnapshots because the data
// will continue to be used by the caller after that method returns. Once
// here, though, all actions to be done on the data have been completed.
for (const std::unique_ptr<SourceInfo>& source : sources_for_previous_run_)
DeleteFileAsync(source->path);
sources_for_previous_run_.clear();
}
bool FileMetricsProvider::HasIndependentMetrics() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return !sources_with_profile_.empty() || SimulateIndependentMetrics();
}
void FileMetricsProvider::ProvideIndependentMetrics(
base::OnceCallback<void(bool)> done_callback,
ChromeUserMetricsExtension* uma_proto,
base::HistogramSnapshotManager* snapshot_manager) {
SystemProfileProto* system_profile_proto =
uma_proto->mutable_system_profile();
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (sources_with_profile_.empty()) {
std::move(done_callback).Run(false);
return;
}
std::unique_ptr<SourceInfo> source =
std::move(*sources_with_profile_.begin());
sources_with_profile_.pop_front();
SourceInfo* source_ptr = source.get();
DCHECK(source->allocator);
// Do the actual work as a background task.
base::PostTaskAndReplyWithResult(
task_runner_.get(), FROM_HERE,
base::BindOnce(
&FileMetricsProvider::ProvideIndependentMetricsOnTaskRunner,
source_ptr, system_profile_proto, snapshot_manager),
base::BindOnce(&FileMetricsProvider::ProvideIndependentMetricsCleanup,
weak_factory_.GetWeakPtr(), std::move(done_callback),
std::move(source)));
}
void FileMetricsProvider::ProvideIndependentMetricsCleanup(
base::OnceCallback<void(bool)> done_callback,
std::unique_ptr<SourceInfo> source,
bool success) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Regardless of whether this source was successfully recorded, it is
// never read again.
source->read_complete = true;
RecordSourceAsRead(source.get());
sources_to_check_.push_back(std::move(source));
ScheduleSourcesCheck();
// Execute the chained callback.
std::move(done_callback).Run(success);
}
bool FileMetricsProvider::HasPreviousSessionData() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Check all sources for previous run to see if they need to be read.
for (auto iter = sources_for_previous_run_.begin();
iter != sources_for_previous_run_.end();) {
auto temp = iter++;
SourceInfo* source = temp->get();
// This would normally be done on a background I/O thread but there
// hasn't been a chance to run any at the time this method is called.
// Do the check in-line.
AccessResult result = CheckAndMapMetricSource(source);
UMA_HISTOGRAM_ENUMERATION("UMA.FileMetricsProvider.InitialAccessResult",
result, ACCESS_RESULT_MAX);
// If it couldn't be accessed, remove it from the list. There is only ever
// one chance to record it so no point keeping it around for later. Also
// mark it as having been read since uploading it with a future browser
// run would associate it with the then-previous run which would no longer
// be the run from which it came.
if (result != ACCESS_RESULT_SUCCESS) {
DCHECK(!source->allocator);
RecordSourceAsRead(source);
DeleteFileAsync(source->path);
sources_for_previous_run_.erase(temp);
continue;
}
DCHECK(source->allocator);
// If the source should be associated with an existing internal profile,
// move it to |sources_with_profile_| for later upload.
if (source->association == ASSOCIATE_INTERNAL_PROFILE_OR_PREVIOUS_RUN) {
if (PersistentSystemProfile::HasSystemProfile(
*source->allocator->memory_allocator())) {
sources_with_profile_.splice(sources_with_profile_.end(),
sources_for_previous_run_, temp);
}
}
}
return !sources_for_previous_run_.empty();
}
void FileMetricsProvider::RecordInitialHistogramSnapshots(
base::HistogramSnapshotManager* snapshot_manager) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
for (const std::unique_ptr<SourceInfo>& source : sources_for_previous_run_) {
// The source needs to have an allocator attached to it in order to read
// histograms out of it.
DCHECK(!source->read_complete);
DCHECK(source->allocator);
// Dump all histograms contained within the source to the snapshot-manager.
RecordHistogramSnapshotsFromSource(snapshot_manager, source.get());
// Update the last-seen time so it isn't read again unless it changes.
RecordSourceAsRead(source.get());
}
}
void FileMetricsProvider::MergeHistogramDeltas() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
for (std::unique_ptr<SourceInfo>& source : sources_mapped_) {
MergeHistogramDeltasFromSource(source.get());
}
}
bool FileMetricsProvider::SimulateIndependentMetrics() {
if (!pref_service_->HasPrefPath(
metrics::prefs::kMetricsFileMetricsMetadata)) {
return false;
}
ListPrefUpdate list_value(pref_service_,
metrics::prefs::kMetricsFileMetricsMetadata);
if (list_value->GetListDeprecated().empty())
return false;
base::Value::ListView mutable_list = list_value->GetListDeprecated();
size_t count = pref_service_->GetInteger(
metrics::prefs::kStabilityFileMetricsUnsentSamplesCount);
pref_service_->SetInteger(
metrics::prefs::kStabilityFileMetricsUnsentSamplesCount,
mutable_list[0].GetInt() + count);
pref_service_->SetInteger(
metrics::prefs::kStabilityFileMetricsUnsentFilesCount,
list_value->GetListDeprecated().size() - 1);
list_value->EraseListIter(mutable_list.begin());
return true;
}
} // namespace metrics