blob: e3d33ca219315f751f1039c92122a2f2f802d7fa [file] [log] [blame]
// Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/zucchini/reloc_win32.h"
#include <stdint.h>
#include <algorithm>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "base/numerics/safe_conversions.h"
#include "base/test/gtest_util.h"
#include "components/zucchini/address_translator.h"
#include "components/zucchini/algorithm.h"
#include "components/zucchini/image_utils.h"
#include "components/zucchini/test_utils.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace zucchini {
class RelocUtilsWin32Test : public testing::Test {
protected:
using Units = std::vector<RelocUnitWin32>;
RelocUtilsWin32Test() {}
// Resets all tester data, calls RelocRvaReaderWin32::FindRelocBlocks(), and
// returns its results.
bool Initialize(const std::vector<uint8_t>& image_raw,
BufferRegion reloc_region) {
image_ = BufferSource(image_raw.data(), image_raw.size());
reloc_region_ = reloc_region;
return RelocRvaReaderWin32::FindRelocBlocks(image_, reloc_region_,
&reloc_block_offsets_);
}
// Uses RelocRvaReaderWin32 to get all relocs, returned as Units.
Units EmitAll(offset_t lo, offset_t hi) {
RelocRvaReaderWin32 reader(image_, reloc_region_, reloc_block_offsets_, lo,
hi);
Units units;
for (auto unit = reader.GetNext(); unit.has_value();
unit = reader.GetNext()) {
units.push_back(unit.value());
}
return units;
}
ConstBufferView image_;
BufferRegion reloc_region_;
std::vector<uint32_t> reloc_block_offsets_;
};
TEST_F(RelocUtilsWin32Test, RvaReaderEmpty) {
{
std::vector<uint8_t> image_raw = ParseHexString("");
EXPECT_TRUE(Initialize(image_raw, {0U, 0U}));
EXPECT_EQ(std::vector<uint32_t>(), reloc_block_offsets_); // Nothing.
EXPECT_EQ(Units(), EmitAll(0U, 0U));
}
{
std::vector<uint8_t> image_raw = ParseHexString("AA BB CC DD EE FF");
EXPECT_TRUE(Initialize(image_raw, {2U, 0U}));
EXPECT_EQ(std::vector<uint32_t>(), reloc_block_offsets_); // Nothing.
EXPECT_EQ(Units(), EmitAll(2U, 2U));
}
{
std::vector<uint8_t> image_raw = ParseHexString("00 C0 00 00 08 00 00 00");
EXPECT_TRUE(Initialize(image_raw, {0U, image_raw.size()}));
EXPECT_EQ(std::vector<uint32_t>({0U}),
reloc_block_offsets_); // Empty block.
EXPECT_EQ(Units(), EmitAll(0U, 8U));
}
}
TEST_F(RelocUtilsWin32Test, RvaReaderBad) {
std::string test_cases[] = {
"00 C0 00 00 07 00 00", // Header too small.
"00 C0 00 00 08 00 00", // Header too small, lies about size.
"00 C0 00 00 0A 00 00 00 66 31", // Odd number of units.
"00 C0 00 00 0C 00 00 00 66 31 88 31 FF", // Trailing data.
};
for (const std::string& test_case : test_cases) {
std::vector<uint8_t> image_raw = ParseHexString(test_case);
EXPECT_FALSE(Initialize(image_raw, {0U, image_raw.size()}));
}
}
TEST_F(RelocUtilsWin32Test, RvaReaderSingle) {
// Block 0: All type 0x3: {0xC166, 0xC288, 0xC342, (padding) 0xCFFF}.
std::vector<uint8_t> image_raw = ParseHexString(
"FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF "
"00 C0 00 00 10 00 00 00 66 31 88 32 42 33 FF 0F "
"FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF");
constexpr offset_t kBlock0 = 16U;
Units exp0 = {{3, kBlock0 + 8U, 0xC166U},
{3, kBlock0 + 10U, 0xC288U},
{3, kBlock0 + 12U, 0xC342U},
{0, kBlock0 + 14U, 0xCFFFU}};
EXPECT_TRUE(Initialize(image_raw, {16U, 16U}));
EXPECT_EQ(exp0, EmitAll(kBlock0, kBlock0 + 16U));
EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0));
EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0 + 8U));
EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0 + 9U));
EXPECT_EQ(Sub(exp0, 0, 1), EmitAll(kBlock0, kBlock0 + 10U));
EXPECT_EQ(Sub(exp0, 0, 1), EmitAll(kBlock0 + 8U, kBlock0 + 10U));
EXPECT_EQ(Units(), EmitAll(kBlock0 + 9U, kBlock0 + 10U));
EXPECT_EQ(Sub(exp0, 0, 3), EmitAll(kBlock0, kBlock0 + 15U));
EXPECT_EQ(Sub(exp0, 2, 3), EmitAll(kBlock0 + 11U, kBlock0 + 15U));
}
TEST_F(RelocUtilsWin32Test, RvaReaderMulti) {
// The sample image encodes 3 reloc blocks:
// Block 0: All type 0x3: {0xC166, 0xC288, 0xC344, (padding) 0xCFFF}.
// Block 1: All type 0x3: {0x12166, 0x12288}.
// Block 2: All type 0xA: {0x24000, 0x24010, 0x24020, 0x24028, 0x24A3C,
// 0x24170}.
std::vector<uint8_t> image_raw = ParseHexString(
"FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF "
"00 C0 00 00 10 00 00 00 66 31 88 32 42 33 FF 0F "
"00 20 01 00 0C 00 00 00 66 31 88 32 "
"00 40 02 00 14 00 00 00 00 A0 10 A0 20 A0 28 A0 3C A0 70 A1 "
"FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF");
offset_t image_size = base::checked_cast<offset_t>(image_raw.size());
constexpr offset_t kBlock0 = 16U;
constexpr offset_t kBlock1 = kBlock0 + 16U;
constexpr offset_t kBlock2 = kBlock1 + 12U;
constexpr offset_t kBlockEnd = kBlock2 + 20U;
Units exp0 = {{3, kBlock0 + 8U, 0xC166U},
{3, kBlock0 + 10U, 0xC288U},
{3, kBlock0 + 12U, 0xC342U},
{0, kBlock0 + 14U, 0xCFFFU}};
Units exp1 = {{3, kBlock0 + 24U, 0x12166U}, {3, kBlock0 + 26U, 0x12288U}};
Units exp2 = {{10, kBlock0 + 36U, 0x24000U}, {10, kBlock0 + 38U, 0x24010U},
{10, kBlock0 + 40U, 0x24020U}, {10, kBlock0 + 42U, 0x24028U},
{10, kBlock0 + 44U, 0x2403CU}, {10, kBlock0 + 46U, 0x24170U}};
EXPECT_TRUE(Initialize(image_raw, {kBlock0, kBlockEnd - kBlock0}));
EXPECT_EQ(std::vector<uint32_t>({kBlock0, kBlock1, kBlock2}),
reloc_block_offsets_);
// Everything.
EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(kBlock0, kBlockEnd));
EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(0, image_size));
// Entire blocks.
EXPECT_EQ(exp0, EmitAll(kBlock0, kBlock1));
EXPECT_EQ(exp1, EmitAll(kBlock1, kBlock2));
EXPECT_EQ(exp2, EmitAll(kBlock2, kBlockEnd));
EXPECT_EQ(Units(), EmitAll(0, kBlock0));
EXPECT_EQ(Units(), EmitAll(kBlockEnd, image_size));
// Within blocks, clipped at boundaries.
EXPECT_EQ(exp0, EmitAll(kBlock0 + 5U, kBlock1));
EXPECT_EQ(exp0, EmitAll(kBlock0 + 8U, kBlock1));
EXPECT_EQ(Sub(exp0, 1, 4), EmitAll(kBlock0 + 9U, kBlock1));
EXPECT_EQ(Sub(exp0, 0, 3), EmitAll(kBlock0, kBlock0 + 15U));
EXPECT_EQ(Sub(exp0, 0, 3), EmitAll(kBlock0, kBlock0 + 14U));
EXPECT_EQ(Sub(exp0, 0, 1), EmitAll(kBlock0 + 8U, kBlock0 + 10U));
EXPECT_EQ(Sub(exp1, 1, 2), EmitAll(kBlock1 + 10U, kBlock1 + 12U));
EXPECT_EQ(Sub(exp2, 2, 4), EmitAll(kBlock2 + 12U, kBlock2 + 16U));
EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0));
EXPECT_EQ(Units(), EmitAll(kBlock0, kBlock0 + 8U));
EXPECT_EQ(Units(), EmitAll(kBlock2 + 10U, kBlock2 + 11U));
EXPECT_EQ(Units(), EmitAll(kBlock2 + 11U, kBlock2 + 12U));
// Across blocks.
EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(kBlock0 - 5U, kBlockEnd));
EXPECT_EQ(Cat(Cat(exp0, exp1), exp2), EmitAll(kBlock0 + 6U, kBlockEnd));
EXPECT_EQ(Cat(Cat(exp0, exp1), Sub(exp2, 0, 5)),
EmitAll(kBlock0 + 6U, kBlock2 + 18U));
EXPECT_EQ(Cat(Sub(exp0, 2, 4), Sub(exp1, 0, 1)),
EmitAll(kBlock0 + 12U, kBlock1 + 10U));
EXPECT_EQ(Cat(Sub(exp0, 2, 4), Sub(exp1, 0, 1)),
EmitAll(kBlock0 + 11U, kBlock1 + 10U));
EXPECT_EQ(Cat(Sub(exp0, 2, 4), Sub(exp1, 0, 1)),
EmitAll(kBlock0 + 12U, kBlock1 + 11U));
EXPECT_EQ(Sub(exp1, 1, 2), EmitAll(kBlock1 + 10U, kBlock2 + 5U));
EXPECT_EQ(Cat(Sub(exp1, 1, 2), exp2), EmitAll(kBlock1 + 10U, kBlockEnd + 5));
EXPECT_EQ(Units(), EmitAll(kBlock0 + 15, kBlock1 + 9));
}
TEST_F(RelocUtilsWin32Test, ReadWrite) {
// Set up mock image: Size = 0x3000, .reloc at 0x600. RVA is 0x40000 + offset.
constexpr rva_t kBaseRva = 0x40000;
std::vector<uint8_t> image_data(0x3000, 0xFF);
// 4 x86 relocs (xx 3x), 3 x64 relocs (xx Ax), 1 padding (xx 0X).
std::vector<uint8_t> reloc_data = ParseHexString(
"00 10 04 00 10 00 00 00 C0 32 18 A3 F8 A7 FF 0F "
"00 20 04 00 10 00 00 00 80 A0 65 31 F8 37 BC 3A");
reloc_region_ = {0x600, reloc_data.size()};
std::copy(reloc_data.begin(), reloc_data.end(),
image_data.begin() + reloc_region_.lo());
image_ = {image_data.data(), image_data.size()};
offset_t image_size = base::checked_cast<offset_t>(image_.size());
AddressTranslator translator;
translator.Initialize({{0, image_size, kBaseRva, image_size}});
// Precompute |reloc_block_offsets_|.
EXPECT_TRUE(RelocRvaReaderWin32::FindRelocBlocks(image_, reloc_region_,
&reloc_block_offsets_));
EXPECT_EQ(std::vector<uint32_t>({0x600U, 0x610U}), reloc_block_offsets_);
// Focus on x86.
constexpr uint16_t kRelocTypeX86 = 3;
constexpr offset_t kVAWidthX86 = 4;
// Make RelocRvaReaderWin32.
RelocRvaReaderWin32 reloc_rva_reader(image_, reloc_region_,
reloc_block_offsets_, 0, image_size);
offset_t offset_bound = image_size - kVAWidthX86 + 1;
// Make RelocReaderWin32 that wraps |reloc_rva_reader|.
auto reader = std::make_unique<RelocReaderWin32>(
std::move(reloc_rva_reader), kRelocTypeX86, offset_bound, translator);
// Read all references and check.
std::vector<Reference> refs;
for (absl::optional<Reference> ref = reader->GetNext(); ref.has_value();
ref = reader->GetNext()) {
refs.push_back(ref.value());
}
std::vector<Reference> exp_refs{
{0x608, 0x12C0}, {0x61A, 0x2165}, {0x61C, 0x27F8}, {0x61E, 0x2ABC}};
EXPECT_EQ(exp_refs, refs);
// Write reference, extract bytes and check.
MutableBufferView mutable_image(&image_data[0], image_data.size());
auto writer = std::make_unique<RelocWriterWin32>(
kRelocTypeX86, mutable_image, reloc_region_, reloc_block_offsets_,
translator);
writer->PutNext({0x608, 0x1F83});
std::vector<uint8_t> exp_reloc_data1 = ParseHexString(
"00 10 04 00 10 00 00 00 83 3F 18 A3 F8 A7 FF 0F "
"00 20 04 00 10 00 00 00 80 A0 65 31 F8 37 BC 3A");
EXPECT_EQ(exp_reloc_data1,
Sub(image_data, reloc_region_.lo(), reloc_region_.hi()));
writer->PutNext({0x61C, 0x2950});
std::vector<uint8_t> exp_reloc_data2 = ParseHexString(
"00 10 04 00 10 00 00 00 83 3F 18 A3 F8 A7 FF 0F "
"00 20 04 00 10 00 00 00 80 A0 65 31 50 39 BC 3A");
EXPECT_EQ(exp_reloc_data2,
Sub(image_data, reloc_region_.lo(), reloc_region_.hi()));
}
} // namespace zucchini