blob: 4883f4ceda46e11f284f06dc4909a8d2f47eca32 [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "platform/inspector_protocol/String16STL.h"
#include "platform/inspector_protocol/Platform.h"
#include <algorithm>
#include <cctype>
#include <cstdio>
#include <functional>
#include <locale>
namespace blink {
namespace protocol {
const UChar replacementCharacter = 0xFFFD;
template<typename CharType> inline bool isASCII(CharType c)
{
return !(c & ~0x7F);
}
template<typename CharType> inline bool isASCIIAlpha(CharType c)
{
return (c | 0x20) >= 'a' && (c | 0x20) <= 'z';
}
template<typename CharType> inline bool isASCIIDigit(CharType c)
{
return c >= '0' && c <= '9';
}
template<typename CharType> inline bool isASCIIAlphanumeric(CharType c)
{
return isASCIIDigit(c) || isASCIIAlpha(c);
}
template<typename CharType> inline bool isASCIIHexDigit(CharType c)
{
return isASCIIDigit(c) || ((c | 0x20) >= 'a' && (c | 0x20) <= 'f');
}
template<typename CharType> inline bool isASCIIOctalDigit(CharType c)
{
return (c >= '0') & (c <= '7');
}
template<typename CharType> inline bool isASCIIPrintable(CharType c)
{
return c >= ' ' && c <= '~';
}
/*
Statistics from a run of Apple's page load test for callers of isASCIISpace:
character count
--------- -----
non-spaces 689383
20 space 294720
0A \n 89059
09 \t 28320
0D \r 0
0C \f 0
0B \v 0
*/
template<typename CharType> inline bool isASCIISpace(CharType c)
{
return c <= ' ' && (c == ' ' || (c <= 0xD && c >= 0x9));
}
extern const LChar ASCIICaseFoldTable[256] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
0x40, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
};
template<typename CharType> inline int toASCIIHexValue(CharType c)
{
DCHECK(isASCIIHexDigit(c));
return c < 'A' ? c - '0' : (c - 'A' + 10) & 0xF;
}
template<typename CharType> inline int toASCIIHexValue(CharType upperValue, CharType lowerValue)
{
DCHECK(isASCIIHexDigit(upperValue) && isASCIIHexDigit(lowerValue));
return ((toASCIIHexValue(upperValue) << 4) & 0xF0) | toASCIIHexValue(lowerValue);
}
inline char lowerNibbleToASCIIHexDigit(char c)
{
char nibble = c & 0xF;
return nibble < 10 ? '0' + nibble : 'A' + nibble - 10;
}
inline char upperNibbleToASCIIHexDigit(char c)
{
char nibble = (c >> 4) & 0xF;
return nibble < 10 ? '0' + nibble : 'A' + nibble - 10;
}
template<typename CharType> inline bool isASCIIAlphaCaselessEqual(CharType cssCharacter, char character)
{
// This function compares a (preferrably) constant ASCII
// lowercase letter to any input character.
DCHECK(character >= 'a' && character <= 'z');
return LIKELY(toASCIILowerUnchecked(cssCharacter) == character);
}
inline int inlineUTF8SequenceLengthNonASCII(char b0)
{
if ((b0 & 0xC0) != 0xC0)
return 0;
if ((b0 & 0xE0) == 0xC0)
return 2;
if ((b0 & 0xF0) == 0xE0)
return 3;
if ((b0 & 0xF8) == 0xF0)
return 4;
return 0;
}
inline int inlineUTF8SequenceLength(char b0)
{
return isASCII(b0) ? 1 : inlineUTF8SequenceLengthNonASCII(b0);
}
// Once the bits are split out into bytes of UTF-8, this is a mask OR-ed
// into the first byte, depending on how many bytes follow. There are
// as many entries in this table as there are UTF-8 sequence types.
// (I.e., one byte sequence, two byte... etc.). Remember that sequences
// for *legal* UTF-8 will be 4 or fewer bytes total.
static const unsigned char firstByteMark[7] = { 0x00, 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
typedef enum {
conversionOK, // conversion successful
sourceExhausted, // partial character in source, but hit end
targetExhausted, // insuff. room in target for conversion
sourceIllegal // source sequence is illegal/malformed
} ConversionResult;
ConversionResult convertLatin1ToUTF8(
const LChar** sourceStart, const LChar* sourceEnd,
char** targetStart, char* targetEnd)
{
ConversionResult result = conversionOK;
const LChar* source = *sourceStart;
char* target = *targetStart;
while (source < sourceEnd) {
UChar32 ch;
unsigned short bytesToWrite = 0;
const UChar32 byteMask = 0xBF;
const UChar32 byteMark = 0x80;
const LChar* oldSource = source; // In case we have to back up because of target overflow.
ch = static_cast<unsigned short>(*source++);
// Figure out how many bytes the result will require
if (ch < (UChar32)0x80)
bytesToWrite = 1;
else
bytesToWrite = 2;
target += bytesToWrite;
if (target > targetEnd) {
source = oldSource; // Back up source pointer!
target -= bytesToWrite;
result = targetExhausted;
break;
}
switch (bytesToWrite) { // note: everything falls through.
case 2:
*--target = (char)((ch | byteMark) & byteMask);
ch >>= 6;
case 1:
*--target = (char)(ch | firstByteMark[bytesToWrite]);
}
target += bytesToWrite;
}
*sourceStart = source;
*targetStart = target;
return result;
}
ConversionResult convertUTF16ToUTF8(
const UChar** sourceStart, const UChar* sourceEnd,
char** targetStart, char* targetEnd, bool strict)
{
ConversionResult result = conversionOK;
const UChar* source = *sourceStart;
char* target = *targetStart;
while (source < sourceEnd) {
UChar32 ch;
unsigned short bytesToWrite = 0;
const UChar32 byteMask = 0xBF;
const UChar32 byteMark = 0x80;
const UChar* oldSource = source; // In case we have to back up because of target overflow.
ch = static_cast<unsigned short>(*source++);
// If we have a surrogate pair, convert to UChar32 first.
if (ch >= 0xD800 && ch <= 0xDBFF) {
// If the 16 bits following the high surrogate are in the source buffer...
if (source < sourceEnd) {
UChar32 ch2 = static_cast<unsigned short>(*source);
// If it's a low surrogate, convert to UChar32.
if (ch2 >= 0xDC00 && ch2 <= 0xDFFF) {
ch = ((ch - 0xD800) << 10) + (ch2 - 0xDC00) + 0x0010000;
++source;
} else if (strict) { // it's an unpaired high surrogate
--source; // return to the illegal value itself
result = sourceIllegal;
break;
}
} else { // We don't have the 16 bits following the high surrogate.
--source; // return to the high surrogate
result = sourceExhausted;
break;
}
} else if (strict) {
// UTF-16 surrogate values are illegal in UTF-32
if (ch >= 0xDC00 && ch <= 0xDFFF) {
--source; // return to the illegal value itself
result = sourceIllegal;
break;
}
}
// Figure out how many bytes the result will require
if (ch < (UChar32)0x80) {
bytesToWrite = 1;
} else if (ch < (UChar32)0x800) {
bytesToWrite = 2;
} else if (ch < (UChar32)0x10000) {
bytesToWrite = 3;
} else if (ch < (UChar32)0x110000) {
bytesToWrite = 4;
} else {
bytesToWrite = 3;
ch = replacementCharacter;
}
target += bytesToWrite;
if (target > targetEnd) {
source = oldSource; // Back up source pointer!
target -= bytesToWrite;
result = targetExhausted;
break;
}
switch (bytesToWrite) { // note: everything falls through.
case 4:
*--target = (char)((ch | byteMark) & byteMask);
ch >>= 6;
case 3:
*--target = (char)((ch | byteMark) & byteMask);
ch >>= 6;
case 2:
*--target = (char)((ch | byteMark) & byteMask);
ch >>= 6;
case 1:
*--target = (char)(ch | firstByteMark[bytesToWrite]);
}
target += bytesToWrite;
}
*sourceStart = source;
*targetStart = target;
return result;
}
/**
* Is this code point a BMP code point (U+0000..U+ffff)?
* @param c 32-bit code point
* @return TRUE or FALSE
* @stable ICU 2.8
*/
#define U_IS_BMP(c) ((uint32_t)(c) <= 0xffff)
/**
* Is this code point a supplementary code point (U+10000..U+10ffff)?
* @param c 32-bit code point
* @return TRUE or FALSE
* @stable ICU 2.8
*/
#define U_IS_SUPPLEMENTARY(c) ((uint32_t)((c) - 0x10000) <= 0xfffff)
/**
* Is this code point a surrogate (U+d800..U+dfff)?
* @param c 32-bit code point
* @return TRUE or FALSE
* @stable ICU 2.4
*/
#define U_IS_SURROGATE(c) (((c) & 0xfffff800) == 0xd800)
/**
* Get the lead surrogate (0xd800..0xdbff) for a
* supplementary code point (0x10000..0x10ffff).
* @param supplementary 32-bit code point (U+10000..U+10ffff)
* @return lead surrogate (U+d800..U+dbff) for supplementary
* @stable ICU 2.4
*/
#define U16_LEAD(supplementary) (UChar)(((supplementary) >> 10) + 0xd7c0)
/**
* Get the trail surrogate (0xdc00..0xdfff) for a
* supplementary code point (0x10000..0x10ffff).
* @param supplementary 32-bit code point (U+10000..U+10ffff)
* @return trail surrogate (U+dc00..U+dfff) for supplementary
* @stable ICU 2.4
*/
#define U16_TRAIL(supplementary) (UChar)(((supplementary) & 0x3ff) | 0xdc00)
// This must be called with the length pre-determined by the first byte.
// If presented with a length > 4, this returns false. The Unicode
// definition of UTF-8 goes up to 4-byte sequences.
static bool isLegalUTF8(const unsigned char* source, int length)
{
unsigned char a;
const unsigned char* srcptr = source + length;
switch (length) {
default:
return false;
// Everything else falls through when "true"...
case 4:
if ((a = (*--srcptr)) < 0x80 || a > 0xBF)
return false;
case 3:
if ((a = (*--srcptr)) < 0x80 || a > 0xBF)
return false;
case 2:
if ((a = (*--srcptr)) > 0xBF)
return false;
// no fall-through in this inner switch
switch (*source) {
case 0xE0:
if (a < 0xA0)
return false;
break;
case 0xED:
if (a > 0x9F)
return false;
break;
case 0xF0:
if (a < 0x90)
return false;
break;
case 0xF4:
if (a > 0x8F)
return false;
break;
default:
if (a < 0x80)
return false;
}
case 1:
if (*source >= 0x80 && *source < 0xC2)
return false;
}
if (*source > 0xF4)
return false;
return true;
}
// Magic values subtracted from a buffer value during UTF8 conversion.
// This table contains as many values as there might be trailing bytes
// in a UTF-8 sequence.
static const UChar32 offsetsFromUTF8[6] = { 0x00000000UL, 0x00003080UL, 0x000E2080UL, 0x03C82080UL, static_cast<UChar32>(0xFA082080UL), static_cast<UChar32>(0x82082080UL) };
static inline UChar32 readUTF8Sequence(const char*& sequence, unsigned length)
{
UChar32 character = 0;
// The cases all fall through.
switch (length) {
case 6:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
case 5:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
case 4:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
case 3:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
case 2:
character += static_cast<unsigned char>(*sequence++);
character <<= 6;
case 1:
character += static_cast<unsigned char>(*sequence++);
}
return character - offsetsFromUTF8[length - 1];
}
ConversionResult convertUTF8ToUTF16(
const char** sourceStart, const char* sourceEnd,
UChar** targetStart, UChar* targetEnd, bool* sourceAllASCII, bool strict)
{
ConversionResult result = conversionOK;
const char* source = *sourceStart;
UChar* target = *targetStart;
UChar orAllData = 0;
while (source < sourceEnd) {
int utf8SequenceLength = inlineUTF8SequenceLength(*source);
if (sourceEnd - source < utf8SequenceLength) {
result = sourceExhausted;
break;
}
// Do this check whether lenient or strict
if (!isLegalUTF8(reinterpret_cast<const unsigned char*>(source), utf8SequenceLength)) {
result = sourceIllegal;
break;
}
UChar32 character = readUTF8Sequence(source, utf8SequenceLength);
if (target >= targetEnd) {
source -= utf8SequenceLength; // Back up source pointer!
result = targetExhausted;
break;
}
if (U_IS_BMP(character)) {
// UTF-16 surrogate values are illegal in UTF-32
if (U_IS_SURROGATE(character)) {
if (strict) {
source -= utf8SequenceLength; // return to the illegal value itself
result = sourceIllegal;
break;
}
*target++ = replacementCharacter;
orAllData |= replacementCharacter;
} else {
*target++ = static_cast<UChar>(character); // normal case
orAllData |= character;
}
} else if (U_IS_SUPPLEMENTARY(character)) {
// target is a character in range 0xFFFF - 0x10FFFF
if (target + 1 >= targetEnd) {
source -= utf8SequenceLength; // Back up source pointer!
result = targetExhausted;
break;
}
*target++ = U16_LEAD(character);
*target++ = U16_TRAIL(character);
orAllData = 0xffff;
} else {
if (strict) {
source -= utf8SequenceLength; // return to the start
result = sourceIllegal;
break; // Bail out; shouldn't continue
} else {
*target++ = replacementCharacter;
orAllData |= replacementCharacter;
}
}
}
*sourceStart = source;
*targetStart = target;
if (sourceAllASCII)
*sourceAllASCII = !(orAllData & ~0x7f);
return result;
}
// Helper to write a three-byte UTF-8 code point to the buffer, caller must check room is available.
static inline void putUTF8Triple(char*& buffer, UChar ch)
{
DCHECK_GE(ch, 0x0800);
*buffer++ = static_cast<char>(((ch >> 12) & 0x0F) | 0xE0);
*buffer++ = static_cast<char>(((ch >> 6) & 0x3F) | 0x80);
*buffer++ = static_cast<char>((ch & 0x3F) | 0x80);
}
String16 String16::fromUTF8(const char* stringStart, size_t length)
{
if (!stringStart || !length)
return String16();
std::vector<UChar> buffer(length);
UChar* bufferStart = buffer.data();
UChar* bufferCurrent = bufferStart;
const char* stringCurrent = stringStart;
if (convertUTF8ToUTF16(&stringCurrent, stringStart + length, &bufferCurrent, bufferCurrent + buffer.size(), 0, true) != conversionOK)
return String16();
unsigned utf16Length = bufferCurrent - bufferStart;
return String16(bufferStart, utf16Length);
}
// trim from start
static inline wstring &ltrim(wstring &s)
{
s.erase(s.begin(), std::find_if(s.begin(), s.end(), std::not1(std::ptr_fun<int, int>(std::isspace))));
return s;
}
// trim from end
static inline wstring &rtrim(wstring &s)
{
s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
return s;
}
// trim from both ends
static inline wstring &trim(wstring &s)
{
return ltrim(rtrim(s));
}
// static
std::string String16::intToString(int i)
{
char buffer[50];
std::sprintf(buffer, "%d", i);
return std::string(buffer);
}
// static
std::string String16::doubleToString(double d)
{
char buffer[100];
std::sprintf(buffer, "%f", d);
return std::string(buffer);
}
std::string String16::utf8() const
{
unsigned length = this->length();
if (!length)
return std::string("");
// Allocate a buffer big enough to hold all the characters
// (an individual UTF-16 UChar can only expand to 3 UTF-8 bytes).
// Optimization ideas, if we find this function is hot:
// * We could speculatively create a CStringBuffer to contain 'length'
// characters, and resize if necessary (i.e. if the buffer contains
// non-ascii characters). (Alternatively, scan the buffer first for
// ascii characters, so we know this will be sufficient).
// * We could allocate a CStringBuffer with an appropriate size to
// have a good chance of being able to write the string into the
// buffer without reallocing (say, 1.5 x length).
if (length > std::numeric_limits<unsigned>::max() / 3)
return std::string();
std::vector<char> bufferVector(length * 3);
char* buffer = bufferVector.data();
const UChar* characters = m_impl.data();
ConversionResult result = convertUTF16ToUTF8(&characters, characters + length, &buffer, buffer + bufferVector.size(), false);
DCHECK(result != targetExhausted); // (length * 3) should be sufficient for any conversion
// Only produced from strict conversion.
DCHECK(result != sourceIllegal);
// Check for an unconverted high surrogate.
if (result == sourceExhausted) {
// This should be one unpaired high surrogate. Treat it the same
// was as an unpaired high surrogate would have been handled in
// the middle of a string with non-strict conversion - which is
// to say, simply encode it to UTF-8.
DCHECK((characters + 1) == (m_impl.data() + length));
DCHECK((*characters >= 0xD800) && (*characters <= 0xDBFF));
// There should be room left, since one UChar hasn't been
// converted.
DCHECK((buffer + 3) <= (buffer + bufferVector.size()));
putUTF8Triple(buffer, *characters);
}
return std::string(bufferVector.data(), buffer - bufferVector.data());
}
String16 String16::stripWhiteSpace() const
{
wstring result(m_impl);
trim(result);
return result;
}
} // namespace protocol
} // namespace blink