blob: 6089962d5ef771dd4bb4aa745441d9749f1e42bc [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "wtf/Vector.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "wtf/HashSet.h"
#include "wtf/Optional.h"
#include "wtf/PtrUtil.h"
#include "wtf/text/WTFString.h"
#include <memory>
namespace WTF {
namespace {
TEST(VectorTest, Basic) {
Vector<int> intVector;
EXPECT_TRUE(intVector.isEmpty());
EXPECT_EQ(0ul, intVector.size());
EXPECT_EQ(0ul, intVector.capacity());
}
TEST(VectorTest, Reverse) {
Vector<int> intVector;
intVector.push_back(10);
intVector.push_back(11);
intVector.push_back(12);
intVector.push_back(13);
intVector.reverse();
EXPECT_EQ(13, intVector[0]);
EXPECT_EQ(12, intVector[1]);
EXPECT_EQ(11, intVector[2]);
EXPECT_EQ(10, intVector[3]);
intVector.push_back(9);
intVector.reverse();
EXPECT_EQ(9, intVector[0]);
EXPECT_EQ(10, intVector[1]);
EXPECT_EQ(11, intVector[2]);
EXPECT_EQ(12, intVector[3]);
EXPECT_EQ(13, intVector[4]);
}
TEST(VectorTest, Remove) {
Vector<int> intVector;
intVector.push_back(0);
intVector.push_back(1);
intVector.push_back(2);
intVector.push_back(3);
EXPECT_EQ(4u, intVector.size());
EXPECT_EQ(0, intVector[0]);
EXPECT_EQ(1, intVector[1]);
EXPECT_EQ(2, intVector[2]);
EXPECT_EQ(3, intVector[3]);
intVector.remove(2, 0);
EXPECT_EQ(4u, intVector.size());
EXPECT_EQ(2, intVector[2]);
intVector.remove(2, 1);
EXPECT_EQ(3u, intVector.size());
EXPECT_EQ(3, intVector[2]);
intVector.remove(0, 0);
EXPECT_EQ(3u, intVector.size());
EXPECT_EQ(0, intVector[0]);
intVector.remove(0);
EXPECT_EQ(2u, intVector.size());
EXPECT_EQ(1, intVector[0]);
}
TEST(VectorTest, Iterator) {
Vector<int> intVector;
intVector.push_back(10);
intVector.push_back(11);
intVector.push_back(12);
intVector.push_back(13);
Vector<int>::iterator it = intVector.begin();
Vector<int>::iterator end = intVector.end();
EXPECT_TRUE(end != it);
EXPECT_EQ(10, *it);
++it;
EXPECT_EQ(11, *it);
++it;
EXPECT_EQ(12, *it);
++it;
EXPECT_EQ(13, *it);
++it;
EXPECT_TRUE(end == it);
}
TEST(VectorTest, ReverseIterator) {
Vector<int> intVector;
intVector.push_back(10);
intVector.push_back(11);
intVector.push_back(12);
intVector.push_back(13);
Vector<int>::reverse_iterator it = intVector.rbegin();
Vector<int>::reverse_iterator end = intVector.rend();
EXPECT_TRUE(end != it);
EXPECT_EQ(13, *it);
++it;
EXPECT_EQ(12, *it);
++it;
EXPECT_EQ(11, *it);
++it;
EXPECT_EQ(10, *it);
++it;
EXPECT_TRUE(end == it);
}
class DestructCounter {
public:
explicit DestructCounter(int i, int* destructNumber)
: m_i(i), m_destructNumber(destructNumber) {}
~DestructCounter() { ++(*m_destructNumber); }
int get() const { return m_i; }
private:
int m_i;
int* m_destructNumber;
};
typedef WTF::Vector<std::unique_ptr<DestructCounter>> OwnPtrVector;
TEST(VectorTest, OwnPtr) {
int destructNumber = 0;
OwnPtrVector vector;
vector.push_back(WTF::wrapUnique(new DestructCounter(0, &destructNumber)));
vector.push_back(WTF::wrapUnique(new DestructCounter(1, &destructNumber)));
EXPECT_EQ(2u, vector.size());
std::unique_ptr<DestructCounter>& counter0 = vector.front();
ASSERT_EQ(0, counter0->get());
int counter1 = vector.back()->get();
ASSERT_EQ(1, counter1);
ASSERT_EQ(0, destructNumber);
size_t index = 0;
for (OwnPtrVector::iterator iter = vector.begin(); iter != vector.end();
++iter) {
std::unique_ptr<DestructCounter>* refCounter = iter;
EXPECT_EQ(index, static_cast<size_t>(refCounter->get()->get()));
EXPECT_EQ(index, static_cast<size_t>((*refCounter)->get()));
index++;
}
EXPECT_EQ(0, destructNumber);
for (index = 0; index < vector.size(); index++) {
std::unique_ptr<DestructCounter>& refCounter = vector[index];
EXPECT_EQ(index, static_cast<size_t>(refCounter->get()));
}
EXPECT_EQ(0, destructNumber);
EXPECT_EQ(0, vector[0]->get());
EXPECT_EQ(1, vector[1]->get());
vector.remove(0);
EXPECT_EQ(1, vector[0]->get());
EXPECT_EQ(1u, vector.size());
EXPECT_EQ(1, destructNumber);
std::unique_ptr<DestructCounter> ownCounter1 = std::move(vector[0]);
vector.remove(0);
ASSERT_EQ(counter1, ownCounter1->get());
ASSERT_EQ(0u, vector.size());
ASSERT_EQ(1, destructNumber);
ownCounter1.reset();
EXPECT_EQ(2, destructNumber);
size_t count = 1025;
destructNumber = 0;
for (size_t i = 0; i < count; i++)
vector.push_front(WTF::wrapUnique(new DestructCounter(i, &destructNumber)));
// Vector relocation must not destruct std::unique_ptr element.
EXPECT_EQ(0, destructNumber);
EXPECT_EQ(count, vector.size());
OwnPtrVector copyVector;
vector.swap(copyVector);
EXPECT_EQ(0, destructNumber);
EXPECT_EQ(count, copyVector.size());
EXPECT_EQ(0u, vector.size());
copyVector.clear();
EXPECT_EQ(count, static_cast<size_t>(destructNumber));
}
class MoveOnly {
public:
explicit MoveOnly(int i = 0) : m_i(i) {}
MoveOnly(MoveOnly&& other) : m_i(other.m_i) { other.m_i = 0; }
MoveOnly& operator=(MoveOnly&& other) {
if (this != &other) {
m_i = other.m_i;
other.m_i = 0;
}
return *this;
}
int value() const { return m_i; }
private:
WTF_MAKE_NONCOPYABLE(MoveOnly);
int m_i;
};
TEST(VectorTest, MoveOnlyType) {
WTF::Vector<MoveOnly> vector;
vector.push_back(MoveOnly(1));
vector.push_back(MoveOnly(2));
EXPECT_EQ(2u, vector.size());
ASSERT_EQ(1, vector.front().value());
ASSERT_EQ(2, vector.back().value());
vector.remove(0);
EXPECT_EQ(2, vector[0].value());
EXPECT_EQ(1u, vector.size());
MoveOnly moveOnly(std::move(vector[0]));
vector.remove(0);
ASSERT_EQ(2, moveOnly.value());
ASSERT_EQ(0u, vector.size());
size_t count = vector.capacity() + 1;
for (size_t i = 0; i < count; i++)
vector.push_back(
MoveOnly(i + 1)); // +1 to distinguish from default-constructed.
// Reallocation did not affect the vector's content.
EXPECT_EQ(count, vector.size());
for (size_t i = 0; i < vector.size(); i++)
EXPECT_EQ(static_cast<int>(i + 1), vector[i].value());
WTF::Vector<MoveOnly> otherVector;
vector.swap(otherVector);
EXPECT_EQ(count, otherVector.size());
EXPECT_EQ(0u, vector.size());
vector = std::move(otherVector);
EXPECT_EQ(count, vector.size());
}
// WrappedInt class will fail if it was memmoved or memcpyed.
static HashSet<void*> constructedWrappedInts;
class WrappedInt {
public:
WrappedInt(int i = 0) : m_originalThisPtr(this), m_i(i) {
constructedWrappedInts.insert(this);
}
WrappedInt(const WrappedInt& other)
: m_originalThisPtr(this), m_i(other.m_i) {
constructedWrappedInts.insert(this);
}
WrappedInt& operator=(const WrappedInt& other) {
m_i = other.m_i;
return *this;
}
~WrappedInt() {
EXPECT_EQ(m_originalThisPtr, this);
EXPECT_TRUE(constructedWrappedInts.contains(this));
constructedWrappedInts.erase(this);
}
int get() const { return m_i; }
private:
void* m_originalThisPtr;
int m_i;
};
TEST(VectorTest, SwapWithInlineCapacity) {
const size_t inlineCapacity = 2;
Vector<WrappedInt, inlineCapacity> vectorA;
vectorA.push_back(WrappedInt(1));
Vector<WrappedInt, inlineCapacity> vectorB;
vectorB.push_back(WrappedInt(2));
EXPECT_EQ(vectorA.size(), vectorB.size());
vectorA.swap(vectorB);
EXPECT_EQ(1u, vectorA.size());
EXPECT_EQ(2, vectorA.at(0).get());
EXPECT_EQ(1u, vectorB.size());
EXPECT_EQ(1, vectorB.at(0).get());
vectorA.push_back(WrappedInt(3));
EXPECT_GT(vectorA.size(), vectorB.size());
vectorA.swap(vectorB);
EXPECT_EQ(1u, vectorA.size());
EXPECT_EQ(1, vectorA.at(0).get());
EXPECT_EQ(2u, vectorB.size());
EXPECT_EQ(2, vectorB.at(0).get());
EXPECT_EQ(3, vectorB.at(1).get());
EXPECT_LT(vectorA.size(), vectorB.size());
vectorA.swap(vectorB);
EXPECT_EQ(2u, vectorA.size());
EXPECT_EQ(2, vectorA.at(0).get());
EXPECT_EQ(3, vectorA.at(1).get());
EXPECT_EQ(1u, vectorB.size());
EXPECT_EQ(1, vectorB.at(0).get());
vectorA.push_back(WrappedInt(4));
EXPECT_GT(vectorA.size(), inlineCapacity);
vectorA.swap(vectorB);
EXPECT_EQ(1u, vectorA.size());
EXPECT_EQ(1, vectorA.at(0).get());
EXPECT_EQ(3u, vectorB.size());
EXPECT_EQ(2, vectorB.at(0).get());
EXPECT_EQ(3, vectorB.at(1).get());
EXPECT_EQ(4, vectorB.at(2).get());
vectorB.swap(vectorA);
}
#if defined(ANNOTATE_CONTIGUOUS_CONTAINER)
TEST(VectorTest, ContainerAnnotations) {
Vector<int> vectorA;
vectorA.push_back(10);
vectorA.reserveCapacity(32);
volatile int* intPointerA = vectorA.data();
EXPECT_DEATH(intPointerA[1] = 11, "container-overflow");
vectorA.push_back(11);
intPointerA[1] = 11;
EXPECT_DEATH(intPointerA[2] = 12, "container-overflow");
EXPECT_DEATH((void)intPointerA[2], "container-overflow");
vectorA.shrinkToFit();
vectorA.reserveCapacity(16);
intPointerA = vectorA.data();
EXPECT_DEATH((void)intPointerA[2], "container-overflow");
Vector<int> vectorB(vectorA);
vectorB.reserveCapacity(16);
volatile int* intPointerB = vectorB.data();
EXPECT_DEATH((void)intPointerB[2], "container-overflow");
Vector<int> vectorC((Vector<int>(vectorA)));
volatile int* intPointerC = vectorC.data();
EXPECT_DEATH((void)intPointerC[2], "container-overflow");
vectorC.push_back(13);
vectorC.swap(vectorB);
volatile int* intPointerB2 = vectorB.data();
volatile int* intPointerC2 = vectorC.data();
intPointerB2[2] = 13;
EXPECT_DEATH((void)intPointerB2[3], "container-overflow");
EXPECT_DEATH((void)intPointerC2[2], "container-overflow");
vectorB = vectorC;
volatile int* intPointerB3 = vectorB.data();
EXPECT_DEATH((void)intPointerB3[2], "container-overflow");
}
#endif // defined(ANNOTATE_CONTIGUOUS_CONTAINER)
class Comparable {};
bool operator==(const Comparable& a, const Comparable& b) {
return true;
}
template <typename T>
void compare() {
EXPECT_TRUE(Vector<T>() == Vector<T>());
EXPECT_FALSE(Vector<T>(1) == Vector<T>(0));
EXPECT_FALSE(Vector<T>() == Vector<T>(1));
EXPECT_TRUE(Vector<T>(1) == Vector<T>(1));
Vector<T, 1> vectorWithInlineCapacity;
EXPECT_TRUE(vectorWithInlineCapacity == Vector<T>());
EXPECT_FALSE(vectorWithInlineCapacity == Vector<T>(1));
}
TEST(VectorTest, Compare) {
compare<int>();
compare<Comparable>();
compare<WTF::String>();
}
TEST(VectorTest, AppendFirst) {
Vector<WTF::String> vector;
vector.push_back("string");
// Test passes if it does not crash (reallocation did not make
// the input reference stale).
size_t limit = vector.capacity() + 1;
for (size_t i = 0; i < limit; i++)
vector.push_back(vector.front());
limit = vector.capacity() + 1;
for (size_t i = 0; i < limit; i++)
vector.push_back(const_cast<const WTF::String&>(vector.front()));
}
// The test below is for the following issue:
//
// https://bugs.chromium.org/p/chromium/issues/detail?id=592767
//
// where deleted copy assignment operator made canMoveWithMemcpy true because
// of the implementation of IsTriviallyMoveAssignable<T>.
class MojoMoveOnlyType final {
public:
MojoMoveOnlyType();
MojoMoveOnlyType(MojoMoveOnlyType&&);
MojoMoveOnlyType& operator=(MojoMoveOnlyType&&);
~MojoMoveOnlyType();
private:
MojoMoveOnlyType(const MojoMoveOnlyType&) = delete;
void operator=(const MojoMoveOnlyType&) = delete;
};
static_assert(!IsTriviallyMoveAssignable<MojoMoveOnlyType>::value,
"MojoMoveOnlyType isn't trivially move assignable.");
static_assert(!IsTriviallyCopyAssignable<MojoMoveOnlyType>::value,
"MojoMoveOnlyType isn't trivially copy assignable.");
static_assert(!VectorTraits<MojoMoveOnlyType>::canMoveWithMemcpy,
"MojoMoveOnlyType can't be moved with memcpy.");
static_assert(!VectorTraits<MojoMoveOnlyType>::canCopyWithMemcpy,
"MojoMoveOnlyType can't be copied with memcpy.");
class LivenessCounter {
public:
void ref() { s_live++; }
void deref() { s_live--; }
static unsigned s_live;
};
unsigned LivenessCounter::s_live = 0;
class VectorWithDifferingInlineCapacityTest
: public ::testing::TestWithParam<size_t> {};
template <size_t inlineCapacity>
void testDestructorAndConstructorCallsWhenSwappingWithInlineCapacity() {
LivenessCounter::s_live = 0;
LivenessCounter counter;
EXPECT_EQ(0u, LivenessCounter::s_live);
Vector<RefPtr<LivenessCounter>, inlineCapacity> vector;
Vector<RefPtr<LivenessCounter>, inlineCapacity> vector2;
vector.push_back(&counter);
vector2.push_back(&counter);
EXPECT_EQ(2u, LivenessCounter::s_live);
for (unsigned i = 0; i < 13; i++) {
for (unsigned j = 0; j < 13; j++) {
vector.clear();
vector2.clear();
EXPECT_EQ(0u, LivenessCounter::s_live);
for (unsigned k = 0; k < j; k++)
vector.push_back(&counter);
EXPECT_EQ(j, LivenessCounter::s_live);
EXPECT_EQ(j, vector.size());
for (unsigned k = 0; k < i; k++)
vector2.push_back(&counter);
EXPECT_EQ(i + j, LivenessCounter::s_live);
EXPECT_EQ(i, vector2.size());
vector.swap(vector2);
EXPECT_EQ(i + j, LivenessCounter::s_live);
EXPECT_EQ(i, vector.size());
EXPECT_EQ(j, vector2.size());
unsigned size = vector.size();
unsigned size2 = vector2.size();
for (unsigned k = 0; k < 5; k++) {
vector.swap(vector2);
std::swap(size, size2);
EXPECT_EQ(i + j, LivenessCounter::s_live);
EXPECT_EQ(size, vector.size());
EXPECT_EQ(size2, vector2.size());
vector2.push_back(&counter);
vector2.remove(0);
}
}
}
}
TEST(VectorTest, SwapWithConstructorsAndDestructors) {
testDestructorAndConstructorCallsWhenSwappingWithInlineCapacity<0>();
testDestructorAndConstructorCallsWhenSwappingWithInlineCapacity<2>();
testDestructorAndConstructorCallsWhenSwappingWithInlineCapacity<10>();
}
template <size_t inlineCapacity>
void testValuesMovedAndSwappedWithInlineCapacity() {
Vector<unsigned, inlineCapacity> vector;
Vector<unsigned, inlineCapacity> vector2;
for (unsigned size = 0; size < 13; size++) {
for (unsigned size2 = 0; size2 < 13; size2++) {
vector.clear();
vector2.clear();
for (unsigned i = 0; i < size; i++)
vector.push_back(i);
for (unsigned i = 0; i < size2; i++)
vector2.push_back(i + 42);
EXPECT_EQ(size, vector.size());
EXPECT_EQ(size2, vector2.size());
vector.swap(vector2);
for (unsigned i = 0; i < size; i++)
EXPECT_EQ(i, vector2[i]);
for (unsigned i = 0; i < size2; i++)
EXPECT_EQ(i + 42, vector[i]);
}
}
}
TEST(VectorTest, ValuesMovedAndSwappedWithInlineCapacity) {
testValuesMovedAndSwappedWithInlineCapacity<0>();
testValuesMovedAndSwappedWithInlineCapacity<2>();
testValuesMovedAndSwappedWithInlineCapacity<10>();
}
TEST(VectorTest, UniquePtr) {
using Pointer = std::unique_ptr<int>;
Vector<Pointer> vector;
vector.push_back(Pointer(new int(1)));
vector.reserveCapacity(2);
vector.uncheckedAppend(Pointer(new int(2)));
vector.insert(2, Pointer(new int(3)));
vector.push_front(Pointer(new int(0)));
ASSERT_EQ(4u, vector.size());
EXPECT_EQ(0, *vector[0]);
EXPECT_EQ(1, *vector[1]);
EXPECT_EQ(2, *vector[2]);
EXPECT_EQ(3, *vector[3]);
vector.shrink(3);
EXPECT_EQ(3u, vector.size());
vector.grow(4);
ASSERT_EQ(4u, vector.size());
EXPECT_TRUE(!vector[3]);
vector.remove(3);
vector[0] = Pointer(new int(-1));
ASSERT_EQ(3u, vector.size());
EXPECT_EQ(-1, *vector[0]);
}
bool isOneTwoThree(const Vector<int>& vector) {
return vector.size() == 3 && vector[0] == 1 && vector[1] == 2 &&
vector[2] == 3;
}
Vector<int> returnOneTwoThree() {
return {1, 2, 3};
}
TEST(VectorTest, InitializerList) {
Vector<int> empty({});
EXPECT_TRUE(empty.isEmpty());
Vector<int> one({1});
ASSERT_EQ(1u, one.size());
EXPECT_EQ(1, one[0]);
Vector<int> oneTwoThree({1, 2, 3});
ASSERT_EQ(3u, oneTwoThree.size());
EXPECT_EQ(1, oneTwoThree[0]);
EXPECT_EQ(2, oneTwoThree[1]);
EXPECT_EQ(3, oneTwoThree[2]);
// Put some jank so we can check if the assignments later can clear them.
empty.push_back(9999);
one.push_back(9999);
oneTwoThree.push_back(9999);
empty = {};
EXPECT_TRUE(empty.isEmpty());
one = {1};
ASSERT_EQ(1u, one.size());
EXPECT_EQ(1, one[0]);
oneTwoThree = {1, 2, 3};
ASSERT_EQ(3u, oneTwoThree.size());
EXPECT_EQ(1, oneTwoThree[0]);
EXPECT_EQ(2, oneTwoThree[1]);
EXPECT_EQ(3, oneTwoThree[2]);
// Other ways of construction: as a function parameter and in a return
// statement.
EXPECT_TRUE(isOneTwoThree({1, 2, 3}));
EXPECT_TRUE(isOneTwoThree(returnOneTwoThree()));
// The tests below correspond to the cases in the "if" branch in
// operator=(std::initializer_list<T>).
// Shrinking.
Vector<int, 1> vector1(3); // capacity = 3.
vector1 = {1, 2};
ASSERT_EQ(2u, vector1.size());
EXPECT_EQ(1, vector1[0]);
EXPECT_EQ(2, vector1[1]);
// Expanding.
Vector<int, 1> vector2(3);
vector2 = {1, 2, 3, 4};
ASSERT_EQ(4u, vector2.size());
EXPECT_EQ(1, vector2[0]);
EXPECT_EQ(2, vector2[1]);
EXPECT_EQ(3, vector2[2]);
EXPECT_EQ(4, vector2[3]);
// Exact match.
Vector<int, 1> vector3(3);
vector3 = {1, 2, 3};
ASSERT_EQ(3u, vector3.size());
EXPECT_EQ(1, vector3[0]);
EXPECT_EQ(2, vector3[1]);
EXPECT_EQ(3, vector3[2]);
}
TEST(VectorTest, Optional) {
Optional<Vector<int>> vector;
EXPECT_FALSE(vector);
vector.emplace(3);
EXPECT_TRUE(vector);
EXPECT_EQ(3u, vector->size());
}
TEST(VectorTest, emplace_back) {
struct Item {
Item() = default;
explicit Item(int value1) : value1(value1), value2() {}
Item(int value1, int value2) : value1(value1), value2(value2) {}
int value1;
int value2;
};
Vector<Item> vector;
vector.emplace_back(1, 2);
vector.emplace_back(3, 4);
vector.emplace_back(5);
vector.emplace_back();
EXPECT_EQ(4u, vector.size());
EXPECT_EQ(1, vector[0].value1);
EXPECT_EQ(2, vector[0].value2);
EXPECT_EQ(3, vector[1].value1);
EXPECT_EQ(4, vector[1].value2);
EXPECT_EQ(5, vector[2].value1);
EXPECT_EQ(0, vector[2].value2);
EXPECT_EQ(0, vector[3].value1);
EXPECT_EQ(0, vector[3].value2);
// Test returned value.
Item& item = vector.emplace_back(6, 7);
EXPECT_EQ(6, item.value1);
EXPECT_EQ(7, item.value2);
}
static_assert(VectorTraits<int>::canCopyWithMemcpy,
"int should be copied with memcopy.");
static_assert(VectorTraits<char>::canCopyWithMemcpy,
"char should be copied with memcpy.");
static_assert(VectorTraits<LChar>::canCopyWithMemcpy,
"LChar should be copied with memcpy.");
static_assert(VectorTraits<UChar>::canCopyWithMemcpy,
"UChar should be copied with memcpy.");
class UnknownType;
static_assert(VectorTraits<UnknownType*>::canCopyWithMemcpy,
"Pointers should be copied with memcpy.");
} // anonymous namespace
} // namespace WTF