blob: 423f2ff0a1852cd7c2100520854f79f9de923c97 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashMap_h
#define WTF_HashMap_h
#include "wtf/HashTable.h"
#include "wtf/allocator/PartitionAllocator.h"
#include <initializer_list>
namespace WTF {
template <typename KeyTraits, typename MappedTraits>
struct HashMapValueTraits;
struct KeyValuePairKeyExtractor {
STATIC_ONLY(KeyValuePairKeyExtractor);
template <typename T>
static const typename T::KeyType& extract(const T& p) {
return p.key;
}
};
// Note: empty or deleted key values are not allowed, using them may lead to
// undefined behavior. For pointer keys this means that null pointers are not
// allowed unless you supply custom key traits.
template <typename KeyArg,
typename MappedArg,
typename HashArg = typename DefaultHash<KeyArg>::Hash,
typename KeyTraitsArg = HashTraits<KeyArg>,
typename MappedTraitsArg = HashTraits<MappedArg>,
typename Allocator = PartitionAllocator>
class HashMap {
USE_ALLOCATOR(HashMap, Allocator);
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef HashMapValueTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef const typename KeyTraits::PeekInType& KeyPeekInType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
using value_type = ValueType;
private:
typedef typename MappedTraits::PeekOutType MappedPeekType;
typedef HashArg HashFunctions;
typedef HashTable<KeyType,
ValueType,
KeyValuePairKeyExtractor,
HashFunctions,
ValueTraits,
KeyTraits,
Allocator>
HashTableType;
class HashMapKeysProxy;
class HashMapValuesProxy;
public:
HashMap() {
static_assert(Allocator::isGarbageCollected ||
!IsPointerToGarbageCollectedType<KeyArg>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap HashMap. Use HeapHashMap<> instead.");
static_assert(Allocator::isGarbageCollected ||
!IsPointerToGarbageCollectedType<MappedArg>::value,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap HashMap. Use HeapHashMap<> instead.");
}
HashMap(const HashMap&) = default;
HashMap& operator=(const HashMap&) = default;
HashMap(HashMap&&) = default;
HashMap& operator=(HashMap&&) = default;
// For example, HashMap<int, int>({{1, 11}, {2, 22}, {3, 33}}) will give you
// a HashMap containing a mapping {1 -> 11, 2 -> 22, 3 -> 33}.
HashMap(std::initializer_list<ValueType> elements);
HashMap& operator=(std::initializer_list<ValueType> elements);
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType>
const_iterator;
typedef typename HashTableType::AddResult AddResult;
void swap(HashMap& ref) { m_impl.swap(ref.m_impl); }
unsigned size() const;
unsigned capacity() const;
void reserveCapacityForSize(unsigned size) {
m_impl.reserveCapacityForSize(size);
}
bool isEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
HashMapKeysProxy& keys() { return static_cast<HashMapKeysProxy&>(*this); }
const HashMapKeysProxy& keys() const {
return static_cast<const HashMapKeysProxy&>(*this);
}
HashMapValuesProxy& values() {
return static_cast<HashMapValuesProxy&>(*this);
}
const HashMapValuesProxy& values() const {
return static_cast<const HashMapValuesProxy&>(*this);
}
iterator find(KeyPeekInType);
const_iterator find(KeyPeekInType) const;
bool contains(KeyPeekInType) const;
MappedPeekType at(KeyPeekInType) const;
// replaces value but not key if key is already present return value is a
// pair of the iterator to the key location, and a boolean that's true if a
// new value was actually added
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult set(IncomingKeyType&&, IncomingMappedType&&);
// does nothing if key is already present return value is a pair of the
// iterator to the key location, and a boolean that's true if a new value
// was actually added
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult insert(IncomingKeyType&&, IncomingMappedType&&);
// TODO(pilgrim) remove remove() method once all references migrated to
// erase()
// https://crbug.com/662431
void remove(KeyPeekInType);
void erase(KeyPeekInType);
void remove(iterator);
void clear();
template <typename Collection>
void removeAll(const Collection& toBeRemoved) {
WTF::removeAll(*this, toBeRemoved);
}
MappedType take(KeyPeekInType); // efficient combination of get with remove
// An alternate version of find() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type
// conversion. HashTranslator must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
template <typename HashTranslator, typename T>
iterator find(const T&);
template <typename HashTranslator, typename T>
const_iterator find(const T&) const;
template <typename HashTranslator, typename T>
bool contains(const T&) const;
// An alternate version of insert() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type conversion if
// the object is already in the table. HashTranslator must have the
// following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
// static translate(ValueType&, const T&, unsigned hashCode);
template <typename HashTranslator,
typename IncomingKeyType,
typename IncomingMappedType>
AddResult insert(IncomingKeyType&&, IncomingMappedType&&);
static bool isValidKey(KeyPeekInType);
template <typename VisitorDispatcher>
void trace(VisitorDispatcher visitor) {
m_impl.trace(visitor);
}
private:
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult inlineAdd(IncomingKeyType&&, IncomingMappedType&&);
HashTableType m_impl;
};
template <typename KeyArg,
typename MappedArg,
typename HashArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
class HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>::HashMapKeysProxy : private HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator> {
DISALLOW_NEW();
public:
typedef HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>
HashMapType;
typedef typename HashMapType::iterator::KeysIterator iterator;
typedef typename HashMapType::const_iterator::KeysIterator const_iterator;
iterator begin() { return HashMapType::begin().keys(); }
iterator end() { return HashMapType::end().keys(); }
const_iterator begin() const { return HashMapType::begin().keys(); }
const_iterator end() const { return HashMapType::end().keys(); }
private:
friend class HashMap;
// These are intentionally not implemented.
HashMapKeysProxy();
HashMapKeysProxy(const HashMapKeysProxy&);
HashMapKeysProxy& operator=(const HashMapKeysProxy&);
~HashMapKeysProxy();
};
template <typename KeyArg,
typename MappedArg,
typename HashArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
class HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>::HashMapValuesProxy : private HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator> {
DISALLOW_NEW();
public:
typedef HashMap<KeyArg,
MappedArg,
HashArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator>
HashMapType;
typedef typename HashMapType::iterator::ValuesIterator iterator;
typedef typename HashMapType::const_iterator::ValuesIterator const_iterator;
iterator begin() { return HashMapType::begin().values(); }
iterator end() { return HashMapType::end().values(); }
const_iterator begin() const { return HashMapType::begin().values(); }
const_iterator end() const { return HashMapType::end().values(); }
private:
friend class HashMap;
// These are intentionally not implemented.
HashMapValuesProxy();
HashMapValuesProxy(const HashMapValuesProxy&);
HashMapValuesProxy& operator=(const HashMapValuesProxy&);
~HashMapValuesProxy();
};
template <typename KeyTraits, typename MappedTraits>
struct HashMapValueTraits : KeyValuePairHashTraits<KeyTraits, MappedTraits> {
STATIC_ONLY(HashMapValueTraits);
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(
const typename KeyValuePairHashTraits<KeyTraits, MappedTraits>::TraitType&
value) {
return isHashTraitsEmptyValue<KeyTraits>(value.key);
}
};
template <typename ValueTraits, typename HashFunctions>
struct HashMapTranslator {
STATIC_ONLY(HashMapTranslator);
template <typename T>
static unsigned hash(const T& key) {
return HashFunctions::hash(key);
}
template <typename T, typename U>
static bool equal(const T& a, const U& b) {
return HashFunctions::equal(a, b);
}
template <typename T, typename U, typename V>
static void translate(T& location, U&& key, V&& mapped) {
location.key = std::forward<U>(key);
ValueTraits::ValueTraits::store(std::forward<V>(mapped), location.value);
}
};
template <typename ValueTraits, typename Translator>
struct HashMapTranslatorAdapter {
STATIC_ONLY(HashMapTranslatorAdapter);
template <typename T>
static unsigned hash(const T& key) {
return Translator::hash(key);
}
template <typename T, typename U>
static bool equal(const T& a, const U& b) {
return Translator::equal(a, b);
}
template <typename T, typename U, typename V>
static void translate(T& location, U&& key, V&& mapped, unsigned hashCode) {
Translator::translate(location.key, std::forward<U>(key), hashCode);
ValueTraits::ValueTraits::store(std::forward<V>(mapped), location.value);
}
};
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
HashMap<T, U, V, W, X, Y>::HashMap(std::initializer_list<ValueType> elements) {
if (elements.size())
m_impl.reserveCapacityForSize(elements.size());
for (const ValueType& element : elements)
insert(element.key, element.value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
auto HashMap<T, U, V, W, X, Y>::operator=(
std::initializer_list<ValueType> elements) -> HashMap& {
*this = HashMap(std::move(elements));
return *this;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline unsigned HashMap<T, U, V, W, X, Y>::size() const {
return m_impl.size();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline unsigned HashMap<T, U, V, W, X, Y>::capacity() const {
return m_impl.capacity();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline bool HashMap<T, U, V, W, X, Y>::isEmpty() const {
return m_impl.isEmpty();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::begin() {
return m_impl.begin();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::end() {
return m_impl.end();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::begin() const {
return m_impl.begin();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::end() const {
return m_impl.end();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::find(KeyPeekInType key) {
return m_impl.find(key);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::find(KeyPeekInType key) const {
return m_impl.find(key);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline bool HashMap<T, U, V, W, X, Y>::contains(KeyPeekInType key) const {
return m_impl.contains(key);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X, Y>::iterator
HashMap<T, U, V, W, X, Y>::find(const TYPE& value) {
return m_impl
.template find<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(
value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X, Y>::const_iterator
HashMap<T, U, V, W, X, Y>::find(const TYPE& value) const {
return m_impl
.template find<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(
value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename HashTranslator, typename TYPE>
inline bool HashMap<T, U, V, W, X, Y>::contains(const TYPE& value) const {
return m_impl
.template contains<HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(
value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X, Y>::AddResult
HashMap<T, U, V, W, X, Y>::inlineAdd(IncomingKeyType&& key,
IncomingMappedType&& mapped) {
return m_impl.template add<HashMapTranslator<ValueTraits, HashFunctions>>(
std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X, Y>::AddResult HashMap<T, U, V, W, X, Y>::set(
IncomingKeyType&& key,
IncomingMappedType&& mapped) {
AddResult result = inlineAdd(std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
if (!result.isNewEntry) {
// The inlineAdd call above found an existing hash table entry; we need
// to set the mapped value.
//
// It's safe to call std::forward again, because |mapped| isn't moved if
// there's an existing entry.
MappedTraits::store(std::forward<IncomingMappedType>(mapped),
result.storedValue->value);
}
return result;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename HashTranslator,
typename IncomingKeyType,
typename IncomingMappedType>
auto HashMap<T, U, V, W, X, Y>::insert(IncomingKeyType&& key,
IncomingMappedType&& mapped)
-> AddResult {
return m_impl.template addPassingHashCode<
HashMapTranslatorAdapter<ValueTraits, HashTranslator>>(
std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X, Y>::AddResult HashMap<T, U, V, W, X, Y>::insert(
IncomingKeyType&& key,
IncomingMappedType&& mapped) {
return inlineAdd(std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
typename HashMap<T, U, V, W, X, Y>::MappedPeekType
HashMap<T, U, V, W, X, Y>::at(KeyPeekInType key) const {
ValueType* entry = const_cast<HashTableType&>(m_impl).lookup(key);
if (!entry)
return MappedTraits::peek(MappedTraits::emptyValue());
return MappedTraits::peek(entry->value);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline void HashMap<T, U, V, W, X, Y>::remove(iterator it) {
m_impl.remove(it.m_impl);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline void HashMap<T, U, V, W, X, Y>::remove(KeyPeekInType key) {
remove(find(key));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline void HashMap<T, U, V, W, X, Y>::erase(KeyPeekInType key) {
remove(find(key));
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline void HashMap<T, U, V, W, X, Y>::clear() {
m_impl.clear();
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
auto HashMap<T, U, V, W, X, Y>::take(KeyPeekInType key) -> MappedType {
iterator it = find(key);
if (it == end())
return MappedTraits::emptyValue();
MappedType result = std::move(it->value);
remove(it);
return result;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline bool HashMap<T, U, V, W, X, Y>::isValidKey(KeyPeekInType key) {
if (KeyTraits::isDeletedValue(key))
return false;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (key == KeyTraits::emptyValue())
return false;
} else {
if (isHashTraitsEmptyValue<KeyTraits>(key))
return false;
}
return true;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
bool operator==(const HashMap<T, U, V, W, X, Y>& a,
const HashMap<T, U, V, W, X, Y>& b) {
if (a.size() != b.size())
return false;
typedef typename HashMap<T, U, V, W, X, Y>::const_iterator const_iterator;
const_iterator aEnd = a.end();
const_iterator bEnd = b.end();
for (const_iterator it = a.begin(); it != aEnd; ++it) {
const_iterator bPos = b.find(it->key);
if (bPos == bEnd || it->value != bPos->value)
return false;
}
return true;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y>
inline bool operator!=(const HashMap<T, U, V, W, X, Y>& a,
const HashMap<T, U, V, W, X, Y>& b) {
return !(a == b);
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y,
typename Z>
inline void copyKeysToVector(const HashMap<T, U, V, W, X, Y>& collection,
Z& vector) {
typedef
typename HashMap<T, U, V, W, X, Y>::const_iterator::KeysIterator iterator;
vector.resize(collection.size());
iterator it = collection.begin().keys();
iterator end = collection.end().keys();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
template <typename T,
typename U,
typename V,
typename W,
typename X,
typename Y,
typename Z>
inline void copyValuesToVector(const HashMap<T, U, V, W, X, Y>& collection,
Z& vector) {
typedef typename HashMap<T, U, V, W, X, Y>::const_iterator::ValuesIterator
iterator;
vector.resize(collection.size());
iterator it = collection.begin().values();
iterator end = collection.end().values();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
} // namespace WTF
using WTF::HashMap;
#endif // WTF_HashMap_h