| /**************************************************************************** |
| * |
| * ftsdf.c |
| * |
| * Signed Distance Field support for outline fonts (body). |
| * |
| * Copyright (C) 2020-2024 by |
| * David Turner, Robert Wilhelm, and Werner Lemberg. |
| * |
| * Written by Anuj Verma. |
| * |
| * This file is part of the FreeType project, and may only be used, |
| * modified, and distributed under the terms of the FreeType project |
| * license, LICENSE.TXT. By continuing to use, modify, or distribute |
| * this file you indicate that you have read the license and |
| * understand and accept it fully. |
| * |
| */ |
| |
| |
| #include <freetype/internal/ftobjs.h> |
| #include <freetype/internal/ftdebug.h> |
| #include <freetype/ftoutln.h> |
| #include <freetype/fttrigon.h> |
| #include <freetype/ftbitmap.h> |
| #include "ftsdf.h" |
| |
| #include "ftsdferrs.h" |
| |
| |
| /************************************************************************** |
| * |
| * A brief technical overview of how the SDF rasterizer works |
| * ---------------------------------------------------------- |
| * |
| * [Notes]: |
| * * SDF stands for Signed Distance Field everywhere. |
| * |
| * * This renderer generates SDF directly from outlines. There is |
| * another renderer called 'bsdf', which converts bitmaps to SDF; see |
| * file `ftbsdf.c` for more. |
| * |
| * * The basic idea of generating the SDF is taken from Viktor Chlumsky's |
| * research paper. The paper explains both single and multi-channel |
| * SDF, however, this implementation only generates single-channel SDF. |
| * |
| * Chlumsky, Viktor: Shape Decomposition for Multi-channel Distance |
| * Fields. Master's thesis. Czech Technical University in Prague, |
| * Faculty of InformationTechnology, 2015. |
| * |
| * For more information: https://github.com/Chlumsky/msdfgen |
| * |
| * ======================================================================== |
| * |
| * Generating SDF from outlines is pretty straightforward. |
| * |
| * (1) We have a set of contours that make the outline of a shape/glyph. |
| * Each contour comprises of several edges, with three types of edges. |
| * |
| * * line segments |
| * * conic Bezier curves |
| * * cubic Bezier curves |
| * |
| * (2) Apart from the outlines we also have a two-dimensional grid, namely |
| * the bitmap that is used to represent the final SDF data. |
| * |
| * (3) In order to generate SDF, our task is to find shortest signed |
| * distance from each grid point to the outline. The 'signed |
| * distance' means that if the grid point is filled by any contour |
| * then its sign is positive, otherwise it is negative. The pseudo |
| * code is as follows. |
| * |
| * ``` |
| * foreach grid_point (x, y): |
| * { |
| * int min_dist = INT_MAX; |
| * |
| * foreach contour in outline: |
| * { |
| * foreach edge in contour: |
| * { |
| * // get shortest distance from point (x, y) to the edge |
| * d = get_min_dist(x, y, edge); |
| * |
| * if (d < min_dist) |
| * min_dist = d; |
| * } |
| * |
| * bitmap[x, y] = min_dist; |
| * } |
| * } |
| * ``` |
| * |
| * (4) After running this algorithm the bitmap contains information about |
| * the shortest distance from each point to the outline of the shape. |
| * Of course, while this is the most straightforward way of generating |
| * SDF, we use various optimizations in our implementation. See the |
| * `sdf_generate_*' functions in this file for all details. |
| * |
| * The optimization currently used by default is subdivision; see |
| * function `sdf_generate_subdivision` for more. |
| * |
| * Also, to see how we compute the shortest distance from a point to |
| * each type of edge, check out the `get_min_distance_*' functions. |
| * |
| */ |
| |
| |
| /************************************************************************** |
| * |
| * The macro FT_COMPONENT is used in trace mode. It is an implicit |
| * parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log |
| * messages during execution. |
| */ |
| #undef FT_COMPONENT |
| #define FT_COMPONENT sdf |
| |
| |
| /************************************************************************** |
| * |
| * definitions |
| * |
| */ |
| |
| /* |
| * If set to 1, the rasterizer uses Newton-Raphson's method for finding |
| * the shortest distance from a point to a conic curve. |
| * |
| * If set to 0, an analytical method gets used instead, which computes the |
| * roots of a cubic polynomial to find the shortest distance. However, |
| * the analytical method can currently underflow; we thus use Newton's |
| * method by default. |
| */ |
| #ifndef USE_NEWTON_FOR_CONIC |
| #define USE_NEWTON_FOR_CONIC 1 |
| #endif |
| |
| /* |
| * The number of intervals a Bezier curve gets sampled and checked to find |
| * the shortest distance. |
| */ |
| #define MAX_NEWTON_DIVISIONS 4 |
| |
| /* |
| * The number of steps of Newton's iterations in each interval of the |
| * Bezier curve. Basically, we run Newton's approximation |
| * |
| * x -= Q(t) / Q'(t) |
| * |
| * for each division to get the shortest distance. |
| */ |
| #define MAX_NEWTON_STEPS 4 |
| |
| /* |
| * The epsilon distance (in 16.16 fractional units) used for corner |
| * resolving. If the difference of two distances is less than this value |
| * they will be checked for a corner if they are ambiguous. |
| */ |
| #define CORNER_CHECK_EPSILON 32 |
| |
| #if 0 |
| /* |
| * Coarse grid dimension. Will probably be removed in the future because |
| * coarse grid optimization is the slowest algorithm. |
| */ |
| #define CG_DIMEN 8 |
| #endif |
| |
| |
| /************************************************************************** |
| * |
| * macros |
| * |
| */ |
| |
| #define MUL_26D6( a, b ) ( ( ( a ) * ( b ) ) / 64 ) |
| #define VEC_26D6_DOT( p, q ) ( MUL_26D6( p.x, q.x ) + \ |
| MUL_26D6( p.y, q.y ) ) |
| |
| |
| /************************************************************************** |
| * |
| * structures and enums |
| * |
| */ |
| |
| /************************************************************************** |
| * |
| * @Struct: |
| * SDF_TRaster |
| * |
| * @Description: |
| * This struct is used in place of @FT_Raster and is stored within the |
| * internal FreeType renderer struct. While rasterizing it is passed to |
| * the @FT_Raster_RenderFunc function, which then can be used however we |
| * want. |
| * |
| * @Fields: |
| * memory :: |
| * Used internally to allocate intermediate memory while raterizing. |
| * |
| */ |
| typedef struct SDF_TRaster_ |
| { |
| FT_Memory memory; |
| |
| } SDF_TRaster, *SDF_PRaster; |
| |
| |
| /************************************************************************** |
| * |
| * @Enum: |
| * SDF_Edge_Type |
| * |
| * @Description: |
| * Enumeration of all curve types present in fonts. |
| * |
| * @Fields: |
| * SDF_EDGE_UNDEFINED :: |
| * Undefined edge, simply used to initialize and detect errors. |
| * |
| * SDF_EDGE_LINE :: |
| * Line segment with start and end point. |
| * |
| * SDF_EDGE_CONIC :: |
| * A conic/quadratic Bezier curve with start, end, and one control |
| * point. |
| * |
| * SDF_EDGE_CUBIC :: |
| * A cubic Bezier curve with start, end, and two control points. |
| * |
| */ |
| typedef enum SDF_Edge_Type_ |
| { |
| SDF_EDGE_UNDEFINED = 0, |
| SDF_EDGE_LINE = 1, |
| SDF_EDGE_CONIC = 2, |
| SDF_EDGE_CUBIC = 3 |
| |
| } SDF_Edge_Type; |
| |
| |
| /************************************************************************** |
| * |
| * @Enum: |
| * SDF_Contour_Orientation |
| * |
| * @Description: |
| * Enumeration of all orientation values of a contour. We determine the |
| * orientation by calculating the area covered by a contour. Contrary |
| * to values returned by @FT_Outline_Get_Orientation, |
| * `SDF_Contour_Orientation` is independent of the fill rule, which can |
| * be different for different font formats. |
| * |
| * @Fields: |
| * SDF_ORIENTATION_NONE :: |
| * Undefined orientation, used for initialization and error detection. |
| * |
| * SDF_ORIENTATION_CW :: |
| * Clockwise orientation (positive area covered). |
| * |
| * SDF_ORIENTATION_CCW :: |
| * Counter-clockwise orientation (negative area covered). |
| * |
| * @Note: |
| * See @FT_Outline_Get_Orientation for more details. |
| * |
| */ |
| typedef enum SDF_Contour_Orientation_ |
| { |
| SDF_ORIENTATION_NONE = 0, |
| SDF_ORIENTATION_CW = 1, |
| SDF_ORIENTATION_CCW = 2 |
| |
| } SDF_Contour_Orientation; |
| |
| |
| /************************************************************************** |
| * |
| * @Struct: |
| * SDF_Edge |
| * |
| * @Description: |
| * Represent an edge of a contour. |
| * |
| * @Fields: |
| * start_pos :: |
| * Start position of an edge. Valid for all types of edges. |
| * |
| * end_pos :: |
| * Etart position of an edge. Valid for all types of edges. |
| * |
| * control_a :: |
| * A control point of the edge. Valid only for `SDF_EDGE_CONIC` |
| * and `SDF_EDGE_CUBIC`. |
| * |
| * control_b :: |
| * Another control point of the edge. Valid only for |
| * `SDF_EDGE_CONIC`. |
| * |
| * edge_type :: |
| * Type of the edge, see @SDF_Edge_Type for all possible edge types. |
| * |
| * next :: |
| * Used to create a singly linked list, which can be interpreted |
| * as a contour. |
| * |
| */ |
| typedef struct SDF_Edge_ |
| { |
| FT_26D6_Vec start_pos; |
| FT_26D6_Vec end_pos; |
| FT_26D6_Vec control_a; |
| FT_26D6_Vec control_b; |
| |
| SDF_Edge_Type edge_type; |
| |
| struct SDF_Edge_* next; |
| |
| } SDF_Edge; |
| |
| |
| /************************************************************************** |
| * |
| * @Struct: |
| * SDF_Contour |
| * |
| * @Description: |
| * Represent a complete contour, which contains a list of edges. |
| * |
| * @Fields: |
| * last_pos :: |
| * Contains the value of `end_pos' of the last edge in the list of |
| * edges. Useful while decomposing the outline with |
| * @FT_Outline_Decompose. |
| * |
| * edges :: |
| * Linked list of all the edges that make the contour. |
| * |
| * next :: |
| * Used to create a singly linked list, which can be interpreted as a |
| * complete shape or @FT_Outline. |
| * |
| */ |
| typedef struct SDF_Contour_ |
| { |
| FT_26D6_Vec last_pos; |
| SDF_Edge* edges; |
| |
| struct SDF_Contour_* next; |
| |
| } SDF_Contour; |
| |
| |
| /************************************************************************** |
| * |
| * @Struct: |
| * SDF_Shape |
| * |
| * @Description: |
| * Represent a complete shape, which is the decomposition of |
| * @FT_Outline. |
| * |
| * @Fields: |
| * memory :: |
| * Used internally to allocate memory. |
| * |
| * contours :: |
| * Linked list of all the contours that make the shape. |
| * |
| */ |
| typedef struct SDF_Shape_ |
| { |
| FT_Memory memory; |
| SDF_Contour* contours; |
| |
| } SDF_Shape; |
| |
| |
| /************************************************************************** |
| * |
| * @Struct: |
| * SDF_Signed_Distance |
| * |
| * @Description: |
| * Represent signed distance of a point, i.e., the distance of the edge |
| * nearest to the point. |
| * |
| * @Fields: |
| * distance :: |
| * Distance of the point from the nearest edge. Can be squared or |
| * absolute depending on the `USE_SQUARED_DISTANCES` macro defined in |
| * file `ftsdfcommon.h`. |
| * |
| * cross :: |
| * Cross product of the shortest distance vector (i.e., the vector |
| * from the point to the nearest edge) and the direction of the edge |
| * at the nearest point. This is used to resolve ambiguities of |
| * `sign`. |
| * |
| * sign :: |
| * A value used to indicate whether the distance vector is outside or |
| * inside the contour corresponding to the edge. |
| * |
| * @Note: |
| * `sign` may or may not be correct, therefore it must be checked |
| * properly in case there is an ambiguity. |
| * |
| */ |
| typedef struct SDF_Signed_Distance_ |
| { |
| FT_16D16 distance; |
| FT_16D16 cross; |
| FT_Char sign; |
| |
| } SDF_Signed_Distance; |
| |
| |
| /************************************************************************** |
| * |
| * @Struct: |
| * SDF_Params |
| * |
| * @Description: |
| * Yet another internal parameters required by the rasterizer. |
| * |
| * @Fields: |
| * orientation :: |
| * This is not the @SDF_Contour_Orientation value but @FT_Orientation, |
| * which determines whether clockwise-oriented outlines are to be |
| * filled or counter-clockwise-oriented ones. |
| * |
| * flip_sign :: |
| * If set to true, flip the sign. By default the points filled by the |
| * outline are positive. |
| * |
| * flip_y :: |
| * If set to true the output bitmap is upside-down. Can be useful |
| * because OpenGL and DirectX use different coordinate systems for |
| * textures. |
| * |
| * overload_sign :: |
| * In the subdivision and bounding box optimization, the default |
| * outside sign is taken as -1. This parameter can be used to modify |
| * that behaviour. For example, while generating SDF for a single |
| * counter-clockwise contour, the outside sign should be 1. |
| * |
| */ |
| typedef struct SDF_Params_ |
| { |
| FT_Orientation orientation; |
| FT_Bool flip_sign; |
| FT_Bool flip_y; |
| |
| FT_Int overload_sign; |
| |
| } SDF_Params; |
| |
| |
| /************************************************************************** |
| * |
| * constants, initializer, and destructor |
| * |
| */ |
| |
| static |
| const FT_Vector zero_vector = { 0, 0 }; |
| |
| static |
| const SDF_Edge null_edge = { { 0, 0 }, { 0, 0 }, |
| { 0, 0 }, { 0, 0 }, |
| SDF_EDGE_UNDEFINED, NULL }; |
| |
| static |
| const SDF_Contour null_contour = { { 0, 0 }, NULL, NULL }; |
| |
| static |
| const SDF_Shape null_shape = { NULL, NULL }; |
| |
| static |
| const SDF_Signed_Distance max_sdf = { INT_MAX, 0, 0 }; |
| |
| |
| /* Create a new @SDF_Edge on the heap and assigns the `edge` */ |
| /* pointer to the newly allocated memory. */ |
| static FT_Error |
| sdf_edge_new( FT_Memory memory, |
| SDF_Edge** edge ) |
| { |
| FT_Error error = FT_Err_Ok; |
| SDF_Edge* ptr = NULL; |
| |
| |
| if ( !memory || !edge ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( !FT_QNEW( ptr ) ) |
| { |
| *ptr = null_edge; |
| *edge = ptr; |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* Free the allocated `edge` variable. */ |
| static void |
| sdf_edge_done( FT_Memory memory, |
| SDF_Edge** edge ) |
| { |
| if ( !memory || !edge || !*edge ) |
| return; |
| |
| FT_FREE( *edge ); |
| } |
| |
| |
| /* Create a new @SDF_Contour on the heap and assign */ |
| /* the `contour` pointer to the newly allocated memory. */ |
| static FT_Error |
| sdf_contour_new( FT_Memory memory, |
| SDF_Contour** contour ) |
| { |
| FT_Error error = FT_Err_Ok; |
| SDF_Contour* ptr = NULL; |
| |
| |
| if ( !memory || !contour ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( !FT_QNEW( ptr ) ) |
| { |
| *ptr = null_contour; |
| *contour = ptr; |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* Free the allocated `contour` variable. */ |
| /* Also free the list of edges. */ |
| static void |
| sdf_contour_done( FT_Memory memory, |
| SDF_Contour** contour ) |
| { |
| SDF_Edge* edges; |
| SDF_Edge* temp; |
| |
| |
| if ( !memory || !contour || !*contour ) |
| return; |
| |
| edges = (*contour)->edges; |
| |
| /* release all edges */ |
| while ( edges ) |
| { |
| temp = edges; |
| edges = edges->next; |
| |
| sdf_edge_done( memory, &temp ); |
| } |
| |
| FT_FREE( *contour ); |
| } |
| |
| |
| /* Create a new @SDF_Shape on the heap and assign */ |
| /* the `shape` pointer to the newly allocated memory. */ |
| static FT_Error |
| sdf_shape_new( FT_Memory memory, |
| SDF_Shape** shape ) |
| { |
| FT_Error error = FT_Err_Ok; |
| SDF_Shape* ptr = NULL; |
| |
| |
| if ( !memory || !shape ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( !FT_QNEW( ptr ) ) |
| { |
| *ptr = null_shape; |
| ptr->memory = memory; |
| *shape = ptr; |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* Free the allocated `shape` variable. */ |
| /* Also free the list of contours. */ |
| static void |
| sdf_shape_done( SDF_Shape** shape ) |
| { |
| FT_Memory memory; |
| SDF_Contour* contours; |
| SDF_Contour* temp; |
| |
| |
| if ( !shape || !*shape ) |
| return; |
| |
| memory = (*shape)->memory; |
| contours = (*shape)->contours; |
| |
| if ( !memory ) |
| return; |
| |
| /* release all contours */ |
| while ( contours ) |
| { |
| temp = contours; |
| contours = contours->next; |
| |
| sdf_contour_done( memory, &temp ); |
| } |
| |
| /* release the allocated shape struct */ |
| FT_FREE( *shape ); |
| } |
| |
| |
| /************************************************************************** |
| * |
| * shape decomposition functions |
| * |
| */ |
| |
| /* This function is called when starting a new contour at `to`, */ |
| /* which gets added to the shape's list. */ |
| static FT_Error |
| sdf_move_to( const FT_26D6_Vec* to, |
| void* user ) |
| { |
| SDF_Shape* shape = ( SDF_Shape* )user; |
| SDF_Contour* contour = NULL; |
| |
| FT_Error error = FT_Err_Ok; |
| FT_Memory memory = shape->memory; |
| |
| |
| if ( !to || !user ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| FT_CALL( sdf_contour_new( memory, &contour ) ); |
| |
| contour->last_pos = *to; |
| contour->next = shape->contours; |
| shape->contours = contour; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* This function is called when there is a line in the */ |
| /* contour. The line starts at the previous edge point and */ |
| /* stops at `to`. */ |
| static FT_Error |
| sdf_line_to( const FT_26D6_Vec* to, |
| void* user ) |
| { |
| SDF_Shape* shape = ( SDF_Shape* )user; |
| SDF_Edge* edge = NULL; |
| SDF_Contour* contour = NULL; |
| |
| FT_Error error = FT_Err_Ok; |
| FT_Memory memory = shape->memory; |
| |
| |
| if ( !to || !user ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| contour = shape->contours; |
| |
| if ( contour->last_pos.x == to->x && |
| contour->last_pos.y == to->y ) |
| goto Exit; |
| |
| FT_CALL( sdf_edge_new( memory, &edge ) ); |
| |
| edge->edge_type = SDF_EDGE_LINE; |
| edge->start_pos = contour->last_pos; |
| edge->end_pos = *to; |
| |
| edge->next = contour->edges; |
| contour->edges = edge; |
| contour->last_pos = *to; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* This function is called when there is a conic Bezier curve */ |
| /* in the contour. The curve starts at the previous edge point */ |
| /* and stops at `to`, with control point `control_1`. */ |
| static FT_Error |
| sdf_conic_to( const FT_26D6_Vec* control_1, |
| const FT_26D6_Vec* to, |
| void* user ) |
| { |
| SDF_Shape* shape = ( SDF_Shape* )user; |
| SDF_Edge* edge = NULL; |
| SDF_Contour* contour = NULL; |
| |
| FT_Error error = FT_Err_Ok; |
| FT_Memory memory = shape->memory; |
| |
| |
| if ( !control_1 || !to || !user ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| contour = shape->contours; |
| |
| /* If the control point coincides with any of the end points */ |
| /* then it is a line and should be treated as one to avoid */ |
| /* unnecessary complexity later in the algorithm. */ |
| if ( ( contour->last_pos.x == control_1->x && |
| contour->last_pos.y == control_1->y ) || |
| ( control_1->x == to->x && |
| control_1->y == to->y ) ) |
| { |
| sdf_line_to( to, user ); |
| goto Exit; |
| } |
| |
| FT_CALL( sdf_edge_new( memory, &edge ) ); |
| |
| edge->edge_type = SDF_EDGE_CONIC; |
| edge->start_pos = contour->last_pos; |
| edge->control_a = *control_1; |
| edge->end_pos = *to; |
| |
| edge->next = contour->edges; |
| contour->edges = edge; |
| contour->last_pos = *to; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* This function is called when there is a cubic Bezier curve */ |
| /* in the contour. The curve starts at the previous edge point */ |
| /* and stops at `to`, with two control points `control_1` and */ |
| /* `control_2`. */ |
| static FT_Error |
| sdf_cubic_to( const FT_26D6_Vec* control_1, |
| const FT_26D6_Vec* control_2, |
| const FT_26D6_Vec* to, |
| void* user ) |
| { |
| SDF_Shape* shape = ( SDF_Shape* )user; |
| SDF_Edge* edge = NULL; |
| SDF_Contour* contour = NULL; |
| |
| FT_Error error = FT_Err_Ok; |
| FT_Memory memory = shape->memory; |
| |
| |
| if ( !control_2 || !control_1 || !to || !user ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| contour = shape->contours; |
| |
| FT_CALL( sdf_edge_new( memory, &edge ) ); |
| |
| edge->edge_type = SDF_EDGE_CUBIC; |
| edge->start_pos = contour->last_pos; |
| edge->control_a = *control_1; |
| edge->control_b = *control_2; |
| edge->end_pos = *to; |
| |
| edge->next = contour->edges; |
| contour->edges = edge; |
| contour->last_pos = *to; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* Construct the structure to hold all four outline */ |
| /* decomposition functions. */ |
| FT_DEFINE_OUTLINE_FUNCS( |
| sdf_decompose_funcs, |
| |
| (FT_Outline_MoveTo_Func) sdf_move_to, /* move_to */ |
| (FT_Outline_LineTo_Func) sdf_line_to, /* line_to */ |
| (FT_Outline_ConicTo_Func)sdf_conic_to, /* conic_to */ |
| (FT_Outline_CubicTo_Func)sdf_cubic_to, /* cubic_to */ |
| |
| 0, /* shift */ |
| 0 /* delta */ |
| ) |
| |
| |
| /* Decompose `outline` and put it into the `shape` structure. */ |
| static FT_Error |
| sdf_outline_decompose( FT_Outline* outline, |
| SDF_Shape* shape ) |
| { |
| FT_Error error = FT_Err_Ok; |
| |
| |
| if ( !outline || !shape ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| error = FT_Outline_Decompose( outline, |
| &sdf_decompose_funcs, |
| (void*)shape ); |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * utility functions |
| * |
| */ |
| |
| /* Return the control box of an edge. The control box is a rectangle */ |
| /* in which all the control points can fit tightly. */ |
| static FT_CBox |
| get_control_box( SDF_Edge edge ) |
| { |
| FT_CBox cbox = { 0, 0, 0, 0 }; |
| FT_Bool is_set = 0; |
| |
| |
| switch ( edge.edge_type ) |
| { |
| case SDF_EDGE_CUBIC: |
| cbox.xMin = edge.control_b.x; |
| cbox.xMax = edge.control_b.x; |
| cbox.yMin = edge.control_b.y; |
| cbox.yMax = edge.control_b.y; |
| |
| is_set = 1; |
| FALL_THROUGH; |
| |
| case SDF_EDGE_CONIC: |
| if ( is_set ) |
| { |
| cbox.xMin = edge.control_a.x < cbox.xMin |
| ? edge.control_a.x |
| : cbox.xMin; |
| cbox.xMax = edge.control_a.x > cbox.xMax |
| ? edge.control_a.x |
| : cbox.xMax; |
| |
| cbox.yMin = edge.control_a.y < cbox.yMin |
| ? edge.control_a.y |
| : cbox.yMin; |
| cbox.yMax = edge.control_a.y > cbox.yMax |
| ? edge.control_a.y |
| : cbox.yMax; |
| } |
| else |
| { |
| cbox.xMin = edge.control_a.x; |
| cbox.xMax = edge.control_a.x; |
| cbox.yMin = edge.control_a.y; |
| cbox.yMax = edge.control_a.y; |
| |
| is_set = 1; |
| } |
| FALL_THROUGH; |
| |
| case SDF_EDGE_LINE: |
| if ( is_set ) |
| { |
| cbox.xMin = edge.start_pos.x < cbox.xMin |
| ? edge.start_pos.x |
| : cbox.xMin; |
| cbox.xMax = edge.start_pos.x > cbox.xMax |
| ? edge.start_pos.x |
| : cbox.xMax; |
| |
| cbox.yMin = edge.start_pos.y < cbox.yMin |
| ? edge.start_pos.y |
| : cbox.yMin; |
| cbox.yMax = edge.start_pos.y > cbox.yMax |
| ? edge.start_pos.y |
| : cbox.yMax; |
| } |
| else |
| { |
| cbox.xMin = edge.start_pos.x; |
| cbox.xMax = edge.start_pos.x; |
| cbox.yMin = edge.start_pos.y; |
| cbox.yMax = edge.start_pos.y; |
| } |
| |
| cbox.xMin = edge.end_pos.x < cbox.xMin |
| ? edge.end_pos.x |
| : cbox.xMin; |
| cbox.xMax = edge.end_pos.x > cbox.xMax |
| ? edge.end_pos.x |
| : cbox.xMax; |
| |
| cbox.yMin = edge.end_pos.y < cbox.yMin |
| ? edge.end_pos.y |
| : cbox.yMin; |
| cbox.yMax = edge.end_pos.y > cbox.yMax |
| ? edge.end_pos.y |
| : cbox.yMax; |
| |
| break; |
| |
| default: |
| break; |
| } |
| |
| return cbox; |
| } |
| |
| |
| /* Return orientation of a single contour. */ |
| /* Note that the orientation is independent of the fill rule! */ |
| /* So, for TTF a clockwise-oriented contour has to be filled */ |
| /* and the opposite for OTF fonts. */ |
| static SDF_Contour_Orientation |
| get_contour_orientation ( SDF_Contour* contour ) |
| { |
| SDF_Edge* head = NULL; |
| FT_26D6 area = 0; |
| |
| |
| /* return none if invalid parameters */ |
| if ( !contour || !contour->edges ) |
| return SDF_ORIENTATION_NONE; |
| |
| head = contour->edges; |
| |
| /* Calculate the area of the control box for all edges. */ |
| while ( head ) |
| { |
| switch ( head->edge_type ) |
| { |
| case SDF_EDGE_LINE: |
| area += MUL_26D6( ( head->end_pos.x - head->start_pos.x ), |
| ( head->end_pos.y + head->start_pos.y ) ); |
| break; |
| |
| case SDF_EDGE_CONIC: |
| area += MUL_26D6( head->control_a.x - head->start_pos.x, |
| head->control_a.y + head->start_pos.y ); |
| area += MUL_26D6( head->end_pos.x - head->control_a.x, |
| head->end_pos.y + head->control_a.y ); |
| break; |
| |
| case SDF_EDGE_CUBIC: |
| area += MUL_26D6( head->control_a.x - head->start_pos.x, |
| head->control_a.y + head->start_pos.y ); |
| area += MUL_26D6( head->control_b.x - head->control_a.x, |
| head->control_b.y + head->control_a.y ); |
| area += MUL_26D6( head->end_pos.x - head->control_b.x, |
| head->end_pos.y + head->control_b.y ); |
| break; |
| |
| default: |
| return SDF_ORIENTATION_NONE; |
| } |
| |
| head = head->next; |
| } |
| |
| /* Clockwise contours cover a positive area, and counter-clockwise */ |
| /* contours cover a negative area. */ |
| if ( area > 0 ) |
| return SDF_ORIENTATION_CW; |
| else |
| return SDF_ORIENTATION_CCW; |
| } |
| |
| |
| /* This function is exactly the same as the one */ |
| /* in the smooth renderer. It splits a conic */ |
| /* into two conics exactly half way at t = 0.5. */ |
| static void |
| split_conic( FT_26D6_Vec* base ) |
| { |
| FT_26D6 a, b; |
| |
| |
| base[4].x = base[2].x; |
| a = base[0].x + base[1].x; |
| b = base[1].x + base[2].x; |
| base[3].x = b / 2; |
| base[2].x = ( a + b ) / 4; |
| base[1].x = a / 2; |
| |
| base[4].y = base[2].y; |
| a = base[0].y + base[1].y; |
| b = base[1].y + base[2].y; |
| base[3].y = b / 2; |
| base[2].y = ( a + b ) / 4; |
| base[1].y = a / 2; |
| } |
| |
| |
| /* This function is exactly the same as the one */ |
| /* in the smooth renderer. It splits a cubic */ |
| /* into two cubics exactly half way at t = 0.5. */ |
| static void |
| split_cubic( FT_26D6_Vec* base ) |
| { |
| FT_26D6 a, b, c; |
| |
| |
| base[6].x = base[3].x; |
| a = base[0].x + base[1].x; |
| b = base[1].x + base[2].x; |
| c = base[2].x + base[3].x; |
| base[5].x = c / 2; |
| c += b; |
| base[4].x = c / 4; |
| base[1].x = a / 2; |
| a += b; |
| base[2].x = a / 4; |
| base[3].x = ( a + c ) / 8; |
| |
| base[6].y = base[3].y; |
| a = base[0].y + base[1].y; |
| b = base[1].y + base[2].y; |
| c = base[2].y + base[3].y; |
| base[5].y = c / 2; |
| c += b; |
| base[4].y = c / 4; |
| base[1].y = a / 2; |
| a += b; |
| base[2].y = a / 4; |
| base[3].y = ( a + c ) / 8; |
| } |
| |
| |
| /* Split a conic Bezier curve into a number of lines */ |
| /* and add them to `out'. */ |
| /* */ |
| /* This function uses recursion; we thus need */ |
| /* parameter `max_splits' for stopping. */ |
| static FT_Error |
| split_sdf_conic( FT_Memory memory, |
| FT_26D6_Vec* control_points, |
| FT_UInt max_splits, |
| SDF_Edge** out ) |
| { |
| FT_Error error = FT_Err_Ok; |
| FT_26D6_Vec cpos[5]; |
| SDF_Edge* left,* right; |
| |
| |
| if ( !memory || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| /* split conic outline */ |
| cpos[0] = control_points[0]; |
| cpos[1] = control_points[1]; |
| cpos[2] = control_points[2]; |
| |
| split_conic( cpos ); |
| |
| /* If max number of splits is done */ |
| /* then stop and add the lines to */ |
| /* the list. */ |
| if ( max_splits <= 2 ) |
| goto Append; |
| |
| /* Otherwise keep splitting. */ |
| FT_CALL( split_sdf_conic( memory, &cpos[0], max_splits / 2, out ) ); |
| FT_CALL( split_sdf_conic( memory, &cpos[2], max_splits / 2, out ) ); |
| |
| /* [NOTE]: This is not an efficient way of */ |
| /* splitting the curve. Check the deviation */ |
| /* instead and stop if the deviation is less */ |
| /* than a pixel. */ |
| |
| goto Exit; |
| |
| Append: |
| /* Do allocation and add the lines to the list. */ |
| |
| FT_CALL( sdf_edge_new( memory, &left ) ); |
| FT_CALL( sdf_edge_new( memory, &right ) ); |
| |
| left->start_pos = cpos[0]; |
| left->end_pos = cpos[2]; |
| left->edge_type = SDF_EDGE_LINE; |
| |
| right->start_pos = cpos[2]; |
| right->end_pos = cpos[4]; |
| right->edge_type = SDF_EDGE_LINE; |
| |
| left->next = right; |
| right->next = (*out); |
| *out = left; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* Split a cubic Bezier curve into a number of lines */ |
| /* and add them to `out`. */ |
| /* */ |
| /* This function uses recursion; we thus need */ |
| /* parameter `max_splits' for stopping. */ |
| static FT_Error |
| split_sdf_cubic( FT_Memory memory, |
| FT_26D6_Vec* control_points, |
| FT_UInt max_splits, |
| SDF_Edge** out ) |
| { |
| FT_Error error = FT_Err_Ok; |
| FT_26D6_Vec cpos[7]; |
| SDF_Edge* left, *right; |
| const FT_26D6 threshold = ONE_PIXEL / 4; |
| |
| |
| if ( !memory || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| /* split the cubic */ |
| cpos[0] = control_points[0]; |
| cpos[1] = control_points[1]; |
| cpos[2] = control_points[2]; |
| cpos[3] = control_points[3]; |
| |
| /* If the segment is flat enough we won't get any benefit by */ |
| /* splitting it further, so we can just stop splitting. */ |
| /* */ |
| /* Check the deviation of the Bezier curve and stop if it is */ |
| /* smaller than the pre-defined `threshold` value. */ |
| if ( FT_ABS( 2 * cpos[0].x - 3 * cpos[1].x + cpos[3].x ) < threshold && |
| FT_ABS( 2 * cpos[0].y - 3 * cpos[1].y + cpos[3].y ) < threshold && |
| FT_ABS( cpos[0].x - 3 * cpos[2].x + 2 * cpos[3].x ) < threshold && |
| FT_ABS( cpos[0].y - 3 * cpos[2].y + 2 * cpos[3].y ) < threshold ) |
| { |
| split_cubic( cpos ); |
| goto Append; |
| } |
| |
| split_cubic( cpos ); |
| |
| /* If max number of splits is done */ |
| /* then stop and add the lines to */ |
| /* the list. */ |
| if ( max_splits <= 2 ) |
| goto Append; |
| |
| /* Otherwise keep splitting. */ |
| FT_CALL( split_sdf_cubic( memory, &cpos[0], max_splits / 2, out ) ); |
| FT_CALL( split_sdf_cubic( memory, &cpos[3], max_splits / 2, out ) ); |
| |
| /* [NOTE]: This is not an efficient way of */ |
| /* splitting the curve. Check the deviation */ |
| /* instead and stop if the deviation is less */ |
| /* than a pixel. */ |
| |
| goto Exit; |
| |
| Append: |
| /* Do allocation and add the lines to the list. */ |
| |
| FT_CALL( sdf_edge_new( memory, &left) ); |
| FT_CALL( sdf_edge_new( memory, &right) ); |
| |
| left->start_pos = cpos[0]; |
| left->end_pos = cpos[3]; |
| left->edge_type = SDF_EDGE_LINE; |
| |
| right->start_pos = cpos[3]; |
| right->end_pos = cpos[6]; |
| right->edge_type = SDF_EDGE_LINE; |
| |
| left->next = right; |
| right->next = (*out); |
| *out = left; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* Subdivide an entire shape into line segments */ |
| /* such that it doesn't look visually different */ |
| /* from the original curve. */ |
| static FT_Error |
| split_sdf_shape( SDF_Shape* shape ) |
| { |
| FT_Error error = FT_Err_Ok; |
| FT_Memory memory; |
| |
| SDF_Contour* contours; |
| SDF_Contour* new_contours = NULL; |
| |
| |
| if ( !shape || !shape->memory ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| contours = shape->contours; |
| memory = shape->memory; |
| |
| /* for each contour */ |
| while ( contours ) |
| { |
| SDF_Edge* edges = contours->edges; |
| SDF_Edge* new_edges = NULL; |
| |
| SDF_Contour* tempc; |
| |
| |
| /* for each edge */ |
| while ( edges ) |
| { |
| SDF_Edge* edge = edges; |
| SDF_Edge* temp; |
| |
| switch ( edge->edge_type ) |
| { |
| case SDF_EDGE_LINE: |
| /* Just create a duplicate edge in case */ |
| /* it is a line. We can use the same edge. */ |
| FT_CALL( sdf_edge_new( memory, &temp ) ); |
| |
| ft_memcpy( temp, edge, sizeof ( *edge ) ); |
| |
| temp->next = new_edges; |
| new_edges = temp; |
| break; |
| |
| case SDF_EDGE_CONIC: |
| /* Subdivide the curve and add it to the list. */ |
| { |
| FT_26D6_Vec ctrls[3]; |
| FT_26D6 dx, dy; |
| FT_UInt num_splits; |
| |
| |
| ctrls[0] = edge->start_pos; |
| ctrls[1] = edge->control_a; |
| ctrls[2] = edge->end_pos; |
| |
| dx = FT_ABS( ctrls[2].x + ctrls[0].x - 2 * ctrls[1].x ); |
| dy = FT_ABS( ctrls[2].y + ctrls[0].y - 2 * ctrls[1].y ); |
| if ( dx < dy ) |
| dx = dy; |
| |
| /* Calculate the number of necessary bisections. Each */ |
| /* bisection causes a four-fold reduction of the deviation, */ |
| /* hence we bisect the Bezier curve until the deviation */ |
| /* becomes less than 1/8 of a pixel. For more details */ |
| /* check file `ftgrays.c`. */ |
| num_splits = 1; |
| while ( dx > ONE_PIXEL / 8 ) |
| { |
| dx >>= 2; |
| num_splits <<= 1; |
| } |
| |
| error = split_sdf_conic( memory, ctrls, num_splits, &new_edges ); |
| } |
| break; |
| |
| case SDF_EDGE_CUBIC: |
| /* Subdivide the curve and add it to the list. */ |
| { |
| FT_26D6_Vec ctrls[4]; |
| |
| |
| ctrls[0] = edge->start_pos; |
| ctrls[1] = edge->control_a; |
| ctrls[2] = edge->control_b; |
| ctrls[3] = edge->end_pos; |
| |
| error = split_sdf_cubic( memory, ctrls, 32, &new_edges ); |
| } |
| break; |
| |
| default: |
| error = FT_THROW( Invalid_Argument ); |
| } |
| |
| if ( error != FT_Err_Ok ) |
| goto Exit; |
| |
| edges = edges->next; |
| } |
| |
| /* add to the contours list */ |
| FT_CALL( sdf_contour_new( memory, &tempc ) ); |
| |
| tempc->next = new_contours; |
| tempc->edges = new_edges; |
| new_contours = tempc; |
| new_edges = NULL; |
| |
| /* deallocate the contour */ |
| tempc = contours; |
| contours = contours->next; |
| |
| sdf_contour_done( memory, &tempc ); |
| } |
| |
| shape->contours = new_contours; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * for debugging |
| * |
| */ |
| |
| #ifdef FT_DEBUG_LEVEL_TRACE |
| |
| static void |
| sdf_shape_dump( SDF_Shape* shape ) |
| { |
| FT_UInt num_contours = 0; |
| |
| FT_UInt total_edges = 0; |
| FT_UInt total_lines = 0; |
| FT_UInt total_conic = 0; |
| FT_UInt total_cubic = 0; |
| |
| SDF_Contour* contour_list; |
| |
| |
| if ( !shape ) |
| { |
| FT_TRACE5(( "sdf_shape_dump: null shape\n" )); |
| return; |
| } |
| |
| contour_list = shape->contours; |
| |
| FT_TRACE5(( "sdf_shape_dump (values are in 26.6 format):\n" )); |
| |
| while ( contour_list ) |
| { |
| FT_UInt num_edges = 0; |
| SDF_Edge* edge_list; |
| SDF_Contour* contour = contour_list; |
| |
| |
| FT_TRACE5(( " Contour %d\n", num_contours )); |
| |
| edge_list = contour->edges; |
| |
| while ( edge_list ) |
| { |
| SDF_Edge* edge = edge_list; |
| |
| |
| FT_TRACE5(( " %3d: ", num_edges )); |
| |
| switch ( edge->edge_type ) |
| { |
| case SDF_EDGE_LINE: |
| FT_TRACE5(( "Line: (%ld, %ld) -- (%ld, %ld)\n", |
| edge->start_pos.x, edge->start_pos.y, |
| edge->end_pos.x, edge->end_pos.y )); |
| total_lines++; |
| break; |
| |
| case SDF_EDGE_CONIC: |
| FT_TRACE5(( "Conic: (%ld, %ld) .. (%ld, %ld) .. (%ld, %ld)\n", |
| edge->start_pos.x, edge->start_pos.y, |
| edge->control_a.x, edge->control_a.y, |
| edge->end_pos.x, edge->end_pos.y )); |
| total_conic++; |
| break; |
| |
| case SDF_EDGE_CUBIC: |
| FT_TRACE5(( "Cubic: (%ld, %ld) .. (%ld, %ld)" |
| " .. (%ld, %ld) .. (%ld %ld)\n", |
| edge->start_pos.x, edge->start_pos.y, |
| edge->control_a.x, edge->control_a.y, |
| edge->control_b.x, edge->control_b.y, |
| edge->end_pos.x, edge->end_pos.y )); |
| total_cubic++; |
| break; |
| |
| default: |
| break; |
| } |
| |
| num_edges++; |
| total_edges++; |
| edge_list = edge_list->next; |
| } |
| |
| num_contours++; |
| contour_list = contour_list->next; |
| } |
| |
| FT_TRACE5(( "\n" )); |
| FT_TRACE5(( " total number of contours = %d\n", num_contours )); |
| FT_TRACE5(( " total number of edges = %d\n", total_edges )); |
| FT_TRACE5(( " |__lines = %d\n", total_lines )); |
| FT_TRACE5(( " |__conic = %d\n", total_conic )); |
| FT_TRACE5(( " |__cubic = %d\n", total_cubic )); |
| } |
| |
| #endif /* FT_DEBUG_LEVEL_TRACE */ |
| |
| |
| /************************************************************************** |
| * |
| * math functions |
| * |
| */ |
| |
| #if !USE_NEWTON_FOR_CONIC |
| |
| /* [NOTE]: All the functions below down until rasterizer */ |
| /* can be avoided if we decide to subdivide the */ |
| /* curve into lines. */ |
| |
| /* This function uses Newton's iteration to find */ |
| /* the cube root of a fixed-point integer. */ |
| static FT_16D16 |
| cube_root( FT_16D16 val ) |
| { |
| /* [IMPORTANT]: This function is not good as it may */ |
| /* not break, so use a lookup table instead. Or we */ |
| /* can use an algorithm similar to `square_root`. */ |
| |
| FT_Int v, g, c; |
| |
| |
| if ( val == 0 || |
| val == -FT_INT_16D16( 1 ) || |
| val == FT_INT_16D16( 1 ) ) |
| return val; |
| |
| v = val < 0 ? -val : val; |
| g = square_root( v ); |
| c = 0; |
| |
| while ( 1 ) |
| { |
| c = FT_MulFix( FT_MulFix( g, g ), g ) - v; |
| c = FT_DivFix( c, 3 * FT_MulFix( g, g ) ); |
| |
| g -= c; |
| |
| if ( ( c < 0 ? -c : c ) < 30 ) |
| break; |
| } |
| |
| return val < 0 ? -g : g; |
| } |
| |
| |
| /* Calculate the perpendicular by using '1 - base^2'. */ |
| /* Then use arctan to compute the angle. */ |
| static FT_16D16 |
| arc_cos( FT_16D16 val ) |
| { |
| FT_16D16 p; |
| FT_16D16 b = val; |
| FT_16D16 one = FT_INT_16D16( 1 ); |
| |
| |
| if ( b > one ) |
| b = one; |
| if ( b < -one ) |
| b = -one; |
| |
| p = one - FT_MulFix( b, b ); |
| p = square_root( p ); |
| |
| return FT_Atan2( b, p ); |
| } |
| |
| |
| /* Compute roots of a quadratic polynomial, assign them to `out`, */ |
| /* and return number of real roots. */ |
| /* */ |
| /* The procedure can be found at */ |
| /* */ |
| /* https://mathworld.wolfram.com/QuadraticFormula.html */ |
| static FT_UShort |
| solve_quadratic_equation( FT_26D6 a, |
| FT_26D6 b, |
| FT_26D6 c, |
| FT_16D16 out[2] ) |
| { |
| FT_16D16 discriminant = 0; |
| |
| |
| a = FT_26D6_16D16( a ); |
| b = FT_26D6_16D16( b ); |
| c = FT_26D6_16D16( c ); |
| |
| if ( a == 0 ) |
| { |
| if ( b == 0 ) |
| return 0; |
| else |
| { |
| out[0] = FT_DivFix( -c, b ); |
| |
| return 1; |
| } |
| } |
| |
| discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c ); |
| |
| if ( discriminant < 0 ) |
| return 0; |
| else if ( discriminant == 0 ) |
| { |
| out[0] = FT_DivFix( -b, 2 * a ); |
| |
| return 1; |
| } |
| else |
| { |
| discriminant = square_root( discriminant ); |
| |
| out[0] = FT_DivFix( -b + discriminant, 2 * a ); |
| out[1] = FT_DivFix( -b - discriminant, 2 * a ); |
| |
| return 2; |
| } |
| } |
| |
| |
| /* Compute roots of a cubic polynomial, assign them to `out`, */ |
| /* and return number of real roots. */ |
| /* */ |
| /* The procedure can be found at */ |
| /* */ |
| /* https://mathworld.wolfram.com/CubicFormula.html */ |
| static FT_UShort |
| solve_cubic_equation( FT_26D6 a, |
| FT_26D6 b, |
| FT_26D6 c, |
| FT_26D6 d, |
| FT_16D16 out[3] ) |
| { |
| FT_16D16 q = 0; /* intermediate */ |
| FT_16D16 r = 0; /* intermediate */ |
| |
| FT_16D16 a2 = b; /* x^2 coefficients */ |
| FT_16D16 a1 = c; /* x coefficients */ |
| FT_16D16 a0 = d; /* constant */ |
| |
| FT_16D16 q3 = 0; |
| FT_16D16 r2 = 0; |
| FT_16D16 a23 = 0; |
| FT_16D16 a22 = 0; |
| FT_16D16 a1x2 = 0; |
| |
| |
| /* cutoff value for `a` to be a cubic, otherwise solve quadratic */ |
| if ( a == 0 || FT_ABS( a ) < 16 ) |
| return solve_quadratic_equation( b, c, d, out ); |
| |
| if ( d == 0 ) |
| { |
| out[0] = 0; |
| |
| return solve_quadratic_equation( a, b, c, out + 1 ) + 1; |
| } |
| |
| /* normalize the coefficients; this also makes them 16.16 */ |
| a2 = FT_DivFix( a2, a ); |
| a1 = FT_DivFix( a1, a ); |
| a0 = FT_DivFix( a0, a ); |
| |
| /* compute intermediates */ |
| a1x2 = FT_MulFix( a1, a2 ); |
| a22 = FT_MulFix( a2, a2 ); |
| a23 = FT_MulFix( a22, a2 ); |
| |
| q = ( 3 * a1 - a22 ) / 9; |
| r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54; |
| |
| /* [BUG]: `q3` and `r2` still cause underflow. */ |
| |
| q3 = FT_MulFix( q, q ); |
| q3 = FT_MulFix( q3, q ); |
| |
| r2 = FT_MulFix( r, r ); |
| |
| if ( q3 < 0 && r2 < -q3 ) |
| { |
| FT_16D16 t = 0; |
| |
| |
| q3 = square_root( -q3 ); |
| t = FT_DivFix( r, q3 ); |
| |
| if ( t > ( 1 << 16 ) ) |
| t = ( 1 << 16 ); |
| if ( t < -( 1 << 16 ) ) |
| t = -( 1 << 16 ); |
| |
| t = arc_cos( t ); |
| a2 /= 3; |
| q = 2 * square_root( -q ); |
| |
| out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2; |
| out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2; |
| out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2; |
| |
| return 3; |
| } |
| |
| else if ( r2 == -q3 ) |
| { |
| FT_16D16 s = 0; |
| |
| |
| s = cube_root( r ); |
| a2 /= -3; |
| |
| out[0] = a2 + ( 2 * s ); |
| out[1] = a2 - s; |
| |
| return 2; |
| } |
| |
| else |
| { |
| FT_16D16 s = 0; |
| FT_16D16 t = 0; |
| FT_16D16 dis = 0; |
| |
| |
| if ( q3 == 0 ) |
| dis = FT_ABS( r ); |
| else |
| dis = square_root( q3 + r2 ); |
| |
| s = cube_root( r + dis ); |
| t = cube_root( r - dis ); |
| a2 /= -3; |
| out[0] = ( a2 + ( s + t ) ); |
| |
| return 1; |
| } |
| } |
| |
| #endif /* !USE_NEWTON_FOR_CONIC */ |
| |
| |
| /*************************************************************************/ |
| /*************************************************************************/ |
| /** **/ |
| /** RASTERIZER **/ |
| /** **/ |
| /*************************************************************************/ |
| /*************************************************************************/ |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * resolve_corner |
| * |
| * @Description: |
| * At some places on the grid two edges can give opposite directions; |
| * this happens when the closest point is on one of the endpoint. In |
| * that case we need to check the proper sign. |
| * |
| * This can be visualized by an example: |
| * |
| * ``` |
| * x |
| * |
| * o |
| * ^ \ |
| * / \ |
| * / \ |
| * (a) / \ (b) |
| * / \ |
| * / \ |
| * / v |
| * ``` |
| * |
| * Suppose `x` is the point whose shortest distance from an arbitrary |
| * contour we want to find out. It is clear that `o` is the nearest |
| * point on the contour. Now to determine the sign we do a cross |
| * product of the shortest distance vector and the edge direction, i.e., |
| * |
| * ``` |
| * => sign = cross(x - o, direction(a)) |
| * ``` |
| * |
| * Using the right hand thumb rule we can see that the sign will be |
| * positive. |
| * |
| * If we use `b', however, we have |
| * |
| * ``` |
| * => sign = cross(x - o, direction(b)) |
| * ``` |
| * |
| * In this case the sign will be negative. To determine the correct |
| * sign we thus divide the plane in two halves and check which plane the |
| * point lies in. |
| * |
| * ``` |
| * | |
| * x | |
| * | |
| * o |
| * ^|\ |
| * / | \ |
| * / | \ |
| * (a) / | \ (b) |
| * / | \ |
| * / \ |
| * / v |
| * ``` |
| * |
| * We can see that `x` lies in the plane of `a`, so we take the sign |
| * determined by `a`. This test can be easily done by calculating the |
| * orthogonality and taking the greater one. |
| * |
| * The orthogonality is simply the sinus of the two vectors (i.e., |
| * x - o) and the corresponding direction. We efficiently pre-compute |
| * the orthogonality with the corresponding `get_min_distance_*` |
| * functions. |
| * |
| * @Input: |
| * sdf1 :: |
| * First signed distance (can be any of `a` or `b`). |
| * |
| * sdf1 :: |
| * Second signed distance (can be any of `a` or `b`). |
| * |
| * @Return: |
| * The correct signed distance, which is computed by using the above |
| * algorithm. |
| * |
| * @Note: |
| * The function does not care about the actual distance, it simply |
| * returns the signed distance which has a larger cross product. As a |
| * consequence, this function should not be used if the two distances |
| * are fairly apart. In that case simply use the signed distance with |
| * a shorter absolute distance. |
| * |
| */ |
| static SDF_Signed_Distance |
| resolve_corner( SDF_Signed_Distance sdf1, |
| SDF_Signed_Distance sdf2 ) |
| { |
| return FT_ABS( sdf1.cross ) > FT_ABS( sdf2.cross ) ? sdf1 : sdf2; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * get_min_distance_line |
| * |
| * @Description: |
| * Find the shortest distance from the `line` segment to a given `point` |
| * and assign it to `out`. Use it for line segments only. |
| * |
| * @Input: |
| * line :: |
| * The line segment to which the shortest distance is to be computed. |
| * |
| * point :: |
| * Point from which the shortest distance is to be computed. |
| * |
| * @Output: |
| * out :: |
| * Signed distance from `point` to `line`. |
| * |
| * @Return: |
| * FreeType error, 0 means success. |
| * |
| * @Note: |
| * The `line' parameter must have an edge type of `SDF_EDGE_LINE`. |
| * |
| */ |
| static FT_Error |
| get_min_distance_line( SDF_Edge* line, |
| FT_26D6_Vec point, |
| SDF_Signed_Distance* out ) |
| { |
| /* |
| * In order to calculate the shortest distance from a point to |
| * a line segment, we do the following. Let's assume that |
| * |
| * ``` |
| * a = start point of the line segment |
| * b = end point of the line segment |
| * p = point from which shortest distance is to be calculated |
| * ``` |
| * |
| * (1) Write the parametric equation of the line. |
| * |
| * ``` |
| * point_on_line = a + (b - a) * t (t is the factor) |
| * ``` |
| * |
| * (2) Find the projection of point `p` on the line. The projection |
| * will be perpendicular to the line, which allows us to get the |
| * solution by making the dot product zero. |
| * |
| * ``` |
| * (point_on_line - a) . (p - point_on_line) = 0 |
| * |
| * (point_on_line) |
| * (a) x-------o----------------x (b) |
| * |_| |
| * | |
| * | |
| * (p) |
| * ``` |
| * |
| * (3) Simplification of the above equation yields the factor of |
| * `point_on_line`: |
| * |
| * ``` |
| * t = ((p - a) . (b - a)) / |b - a|^2 |
| * ``` |
| * |
| * (4) We clamp factor `t` between [0.0f, 1.0f] because `point_on_line` |
| * can be outside of the line segment: |
| * |
| * ``` |
| * (point_on_line) |
| * (a) x------------------------x (b) -----o--- |
| * |_| |
| * | |
| * | |
| * (p) |
| * ``` |
| * |
| * (5) Finally, the distance we are interested in is |
| * |
| * ``` |
| * |point_on_line - p| |
| * ``` |
| */ |
| |
| FT_Error error = FT_Err_Ok; |
| |
| FT_Vector a; /* start position */ |
| FT_Vector b; /* end position */ |
| FT_Vector p; /* current point */ |
| |
| FT_26D6_Vec line_segment; /* `b` - `a` */ |
| FT_26D6_Vec p_sub_a; /* `p` - `a` */ |
| |
| FT_26D6 sq_line_length; /* squared length of `line_segment` */ |
| FT_16D16 factor; /* factor of the nearest point */ |
| FT_26D6 cross; /* used to determine sign */ |
| |
| FT_16D16_Vec nearest_point; /* `point_on_line` */ |
| FT_16D16_Vec nearest_vector; /* `p` - `nearest_point` */ |
| |
| |
| if ( !line || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( line->edge_type != SDF_EDGE_LINE ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| a = line->start_pos; |
| b = line->end_pos; |
| p = point; |
| |
| line_segment.x = b.x - a.x; |
| line_segment.y = b.y - a.y; |
| |
| p_sub_a.x = p.x - a.x; |
| p_sub_a.y = p.y - a.y; |
| |
| sq_line_length = ( line_segment.x * line_segment.x ) / 64 + |
| ( line_segment.y * line_segment.y ) / 64; |
| |
| /* currently factor is 26.6 */ |
| factor = ( p_sub_a.x * line_segment.x ) / 64 + |
| ( p_sub_a.y * line_segment.y ) / 64; |
| |
| /* now factor is 16.16 */ |
| factor = FT_DivFix( factor, sq_line_length ); |
| |
| /* clamp the factor between 0.0 and 1.0 in fixed-point */ |
| if ( factor > FT_INT_16D16( 1 ) ) |
| factor = FT_INT_16D16( 1 ); |
| if ( factor < 0 ) |
| factor = 0; |
| |
| nearest_point.x = FT_MulFix( FT_26D6_16D16( line_segment.x ), |
| factor ); |
| nearest_point.y = FT_MulFix( FT_26D6_16D16( line_segment.y ), |
| factor ); |
| |
| nearest_point.x = FT_26D6_16D16( a.x ) + nearest_point.x; |
| nearest_point.y = FT_26D6_16D16( a.y ) + nearest_point.y; |
| |
| nearest_vector.x = nearest_point.x - FT_26D6_16D16( p.x ); |
| nearest_vector.y = nearest_point.y - FT_26D6_16D16( p.y ); |
| |
| cross = FT_MulFix( nearest_vector.x, line_segment.y ) - |
| FT_MulFix( nearest_vector.y, line_segment.x ); |
| |
| /* assign the output */ |
| out->sign = cross < 0 ? 1 : -1; |
| out->distance = VECTOR_LENGTH_16D16( nearest_vector ); |
| |
| /* Instead of finding `cross` for checking corner we */ |
| /* directly set it here. This is more efficient */ |
| /* because if the distance is perpendicular we can */ |
| /* directly set it to 1. */ |
| if ( factor != 0 && factor != FT_INT_16D16( 1 ) ) |
| out->cross = FT_INT_16D16( 1 ); |
| else |
| { |
| /* [OPTIMIZATION]: Pre-compute this direction. */ |
| /* If not perpendicular then compute `cross`. */ |
| FT_Vector_NormLen( &line_segment ); |
| FT_Vector_NormLen( &nearest_vector ); |
| |
| out->cross = FT_MulFix( line_segment.x, nearest_vector.y ) - |
| FT_MulFix( line_segment.y, nearest_vector.x ); |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * get_min_distance_conic |
| * |
| * @Description: |
| * Find the shortest distance from the `conic` Bezier curve to a given |
| * `point` and assign it to `out`. Use it for conic/quadratic curves |
| * only. |
| * |
| * @Input: |
| * conic :: |
| * The conic Bezier curve to which the shortest distance is to be |
| * computed. |
| * |
| * point :: |
| * Point from which the shortest distance is to be computed. |
| * |
| * @Output: |
| * out :: |
| * Signed distance from `point` to `conic`. |
| * |
| * @Return: |
| * FreeType error, 0 means success. |
| * |
| * @Note: |
| * The `conic` parameter must have an edge type of `SDF_EDGE_CONIC`. |
| * |
| */ |
| |
| #if !USE_NEWTON_FOR_CONIC |
| |
| /* |
| * The function uses an analytical method to find the shortest distance |
| * which is faster than the Newton-Raphson method, but has underflows at |
| * the moment. Use Newton's method if you can see artifacts in the SDF. |
| */ |
| static FT_Error |
| get_min_distance_conic( SDF_Edge* conic, |
| FT_26D6_Vec point, |
| SDF_Signed_Distance* out ) |
| { |
| /* |
| * The procedure to find the shortest distance from a point to a |
| * quadratic Bezier curve is similar to the line segment algorithm. The |
| * shortest distance is perpendicular to the Bezier curve; the only |
| * difference from line is that there can be more than one |
| * perpendicular, and we also have to check the endpoints, because the |
| * perpendicular may not be the shortest. |
| * |
| * Let's assume that |
| * ``` |
| * p0 = first endpoint |
| * p1 = control point |
| * p2 = second endpoint |
| * p = point from which shortest distance is to be calculated |
| * ``` |
| * |
| * (1) The equation of a quadratic Bezier curve can be written as |
| * |
| * ``` |
| * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 |
| * ``` |
| * |
| * with `t` a factor in the range [0.0f, 1.0f]. This equation can |
| * be rewritten as |
| * |
| * ``` |
| * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 |
| * ``` |
| * |
| * With |
| * |
| * ``` |
| * A = p0 - 2p1 + p2 |
| * B = p1 - p0 |
| * ``` |
| * |
| * we have |
| * |
| * ``` |
| * B(t) = t^2 * A + 2t * B + p0 |
| * ``` |
| * |
| * (2) The derivative of the last equation above is |
| * |
| * ``` |
| * B'(t) = 2 *(tA + B) |
| * ``` |
| * |
| * (3) To find the shortest distance from `p` to `B(t)` we find the |
| * point on the curve at which the shortest distance vector (i.e., |
| * `B(t) - p`) and the direction (i.e., `B'(t)`) make 90 degrees. |
| * In other words, we make the dot product zero. |
| * |
| * ``` |
| * (B(t) - p) . (B'(t)) = 0 |
| * (t^2 * A + 2t * B + p0 - p) . (2 * (tA + B)) = 0 |
| * ``` |
| * |
| * After simplifying we get a cubic equation |
| * |
| * ``` |
| * at^3 + bt^2 + ct + d = 0 |
| * ``` |
| * |
| * with |
| * |
| * ``` |
| * a = A.A |
| * b = 3A.B |
| * c = 2B.B + A.p0 - A.p |
| * d = p0.B - p.B |
| * ``` |
| * |
| * (4) Now the roots of the equation can be computed using 'Cardano's |
| * Cubic formula'; we clamp the roots in the range [0.0f, 1.0f]. |
| * |
| * [note]: `B` and `B(t)` are different in the above equations. |
| */ |
| |
| FT_Error error = FT_Err_Ok; |
| |
| FT_26D6_Vec aA, bB; /* A, B in the above comment */ |
| FT_26D6_Vec nearest_point = { 0, 0 }; |
| /* point on curve nearest to `point` */ |
| FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ |
| |
| FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ |
| FT_26D6_Vec p; /* `point` to which shortest distance */ |
| |
| FT_26D6 a, b, c, d; /* cubic coefficients */ |
| |
| FT_16D16 roots[3] = { 0, 0, 0 }; /* real roots of the cubic eq. */ |
| FT_16D16 min_factor; /* factor at `nearest_point` */ |
| FT_16D16 cross; /* to determine the sign */ |
| FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ |
| |
| FT_UShort num_roots; /* number of real roots of cubic */ |
| FT_UShort i; |
| |
| |
| if ( !conic || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( conic->edge_type != SDF_EDGE_CONIC ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| p0 = conic->start_pos; |
| p1 = conic->control_a; |
| p2 = conic->end_pos; |
| p = point; |
| |
| /* compute substitution coefficients */ |
| aA.x = p0.x - 2 * p1.x + p2.x; |
| aA.y = p0.y - 2 * p1.y + p2.y; |
| |
| bB.x = p1.x - p0.x; |
| bB.y = p1.y - p0.y; |
| |
| /* compute cubic coefficients */ |
| a = VEC_26D6_DOT( aA, aA ); |
| |
| b = 3 * VEC_26D6_DOT( aA, bB ); |
| |
| c = 2 * VEC_26D6_DOT( bB, bB ) + |
| VEC_26D6_DOT( aA, p0 ) - |
| VEC_26D6_DOT( aA, p ); |
| |
| d = VEC_26D6_DOT( p0, bB ) - |
| VEC_26D6_DOT( p, bB ); |
| |
| /* find the roots */ |
| num_roots = solve_cubic_equation( a, b, c, d, roots ); |
| |
| if ( num_roots == 0 ) |
| { |
| roots[0] = 0; |
| roots[1] = FT_INT_16D16( 1 ); |
| num_roots = 2; |
| } |
| |
| /* [OPTIMIZATION]: Check the roots, clamp them and discard */ |
| /* duplicate roots. */ |
| |
| /* convert these values to 16.16 for further computation */ |
| aA.x = FT_26D6_16D16( aA.x ); |
| aA.y = FT_26D6_16D16( aA.y ); |
| |
| bB.x = FT_26D6_16D16( bB.x ); |
| bB.y = FT_26D6_16D16( bB.y ); |
| |
| p0.x = FT_26D6_16D16( p0.x ); |
| p0.y = FT_26D6_16D16( p0.y ); |
| |
| p.x = FT_26D6_16D16( p.x ); |
| p.y = FT_26D6_16D16( p.y ); |
| |
| for ( i = 0; i < num_roots; i++ ) |
| { |
| FT_16D16 t = roots[i]; |
| FT_16D16 t2 = 0; |
| FT_16D16 dist = 0; |
| |
| FT_16D16_Vec curve_point; |
| FT_16D16_Vec dist_vector; |
| |
| /* |
| * Ideally we should discard the roots which are outside the range |
| * [0.0, 1.0] and check the endpoints of the Bezier curve, but Behdad |
| * Esfahbod proved the following lemma. |
| * |
| * Lemma: |
| * |
| * (1) If the closest point on the curve [0, 1] is to the endpoint at |
| * `t` = 1 and the cubic has no real roots at `t` = 1 then the |
| * cubic must have a real root at some `t` > 1. |
| * |
| * (2) Similarly, if the closest point on the curve [0, 1] is to the |
| * endpoint at `t` = 0 and the cubic has no real roots at `t` = 0 |
| * then the cubic must have a real root at some `t` < 0. |
| * |
| * Now because of this lemma we only need to clamp the roots and that |
| * will take care of the endpoints. |
| * |
| * For more details see |
| * |
| * https://lists.nongnu.org/archive/html/freetype-devel/2020-06/msg00147.html |
| */ |
| |
| if ( t < 0 ) |
| t = 0; |
| if ( t > FT_INT_16D16( 1 ) ) |
| t = FT_INT_16D16( 1 ); |
| |
| t2 = FT_MulFix( t, t ); |
| |
| /* B(t) = t^2 * A + 2t * B + p0 - p */ |
| curve_point.x = FT_MulFix( aA.x, t2 ) + |
| 2 * FT_MulFix( bB.x, t ) + p0.x; |
| curve_point.y = FT_MulFix( aA.y, t2 ) + |
| 2 * FT_MulFix( bB.y, t ) + p0.y; |
| |
| /* `curve_point` - `p` */ |
| dist_vector.x = curve_point.x - p.x; |
| dist_vector.y = curve_point.y - p.y; |
| |
| dist = VECTOR_LENGTH_16D16( dist_vector ); |
| |
| if ( dist < min ) |
| { |
| min = dist; |
| nearest_point = curve_point; |
| min_factor = t; |
| } |
| } |
| |
| /* B'(t) = 2 * (tA + B) */ |
| direction.x = 2 * FT_MulFix( aA.x, min_factor ) + 2 * bB.x; |
| direction.y = 2 * FT_MulFix( aA.y, min_factor ) + 2 * bB.y; |
| |
| /* determine the sign */ |
| cross = FT_MulFix( nearest_point.x - p.x, direction.y ) - |
| FT_MulFix( nearest_point.y - p.y, direction.x ); |
| |
| /* assign the values */ |
| out->distance = min; |
| out->sign = cross < 0 ? 1 : -1; |
| |
| if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) |
| out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ |
| else |
| { |
| /* convert to nearest vector */ |
| nearest_point.x -= FT_26D6_16D16( p.x ); |
| nearest_point.y -= FT_26D6_16D16( p.y ); |
| |
| /* compute `cross` if not perpendicular */ |
| FT_Vector_NormLen( &direction ); |
| FT_Vector_NormLen( &nearest_point ); |
| |
| out->cross = FT_MulFix( direction.x, nearest_point.y ) - |
| FT_MulFix( direction.y, nearest_point.x ); |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| #else /* USE_NEWTON_FOR_CONIC */ |
| |
| /* |
| * The function uses Newton's approximation to find the shortest distance, |
| * which is a bit slower than the analytical method but doesn't cause |
| * underflow. |
| */ |
| static FT_Error |
| get_min_distance_conic( SDF_Edge* conic, |
| FT_26D6_Vec point, |
| SDF_Signed_Distance* out ) |
| { |
| /* |
| * This method uses Newton-Raphson's approximation to find the shortest |
| * distance from a point to a conic curve. It does not involve solving |
| * any cubic equation, that is why there is no risk of underflow. |
| * |
| * Let's assume that |
| * |
| * ``` |
| * p0 = first endpoint |
| * p1 = control point |
| * p3 = second endpoint |
| * p = point from which shortest distance is to be calculated |
| * ``` |
| * |
| * (1) The equation of a quadratic Bezier curve can be written as |
| * |
| * ``` |
| * B(t) = (1 - t)^2 * p0 + 2(1 - t)t * p1 + t^2 * p2 |
| * ``` |
| * |
| * with `t` the factor in the range [0.0f, 1.0f]. The above |
| * equation can be rewritten as |
| * |
| * ``` |
| * B(t) = t^2 * (p0 - 2p1 + p2) + 2t * (p1 - p0) + p0 |
| * ``` |
| * |
| * With |
| * |
| * ``` |
| * A = p0 - 2p1 + p2 |
| * B = 2 * (p1 - p0) |
| * ``` |
| * |
| * we have |
| * |
| * ``` |
| * B(t) = t^2 * A + t * B + p0 |
| * ``` |
| * |
| * (2) The derivative of the above equation is |
| * |
| * ``` |
| * B'(t) = 2t * A + B |
| * ``` |
| * |
| * (3) The second derivative of the above equation is |
| * |
| * ``` |
| * B''(t) = 2A |
| * ``` |
| * |
| * (4) The equation `P(t)` of the distance from point `p` to the curve |
| * can be written as |
| * |
| * ``` |
| * P(t) = t^2 * A + t^2 * B + p0 - p |
| * ``` |
| * |
| * With |
| * |
| * ``` |
| * C = p0 - p |
| * ``` |
| * |
| * we have |
| * |
| * ``` |
| * P(t) = t^2 * A + t * B + C |
| * ``` |
| * |
| * (5) Finally, the equation of the angle between `B(t)` and `P(t)` can |
| * be written as |
| * |
| * ``` |
| * Q(t) = P(t) . B'(t) |
| * ``` |
| * |
| * (6) Our task is to find a value of `t` such that the above equation |
| * `Q(t)` becomes zero, that is, the point-to-curve vector makes |
| * 90~degrees with the curve. We solve this with the Newton-Raphson |
| * method. |
| * |
| * (7) We first assume an arbitrary value of factor `t`, which we then |
| * improve. |
| * |
| * ``` |
| * t := Q(t) / Q'(t) |
| * ``` |
| * |
| * Putting the value of `Q(t)` from the above equation gives |
| * |
| * ``` |
| * t := P(t) . B'(t) / derivative(P(t) . B'(t)) |
| * t := P(t) . B'(t) / |
| * (P'(t) . B'(t) + P(t) . B''(t)) |
| * ``` |
| * |
| * Note that `P'(t)` is the same as `B'(t)` because the constant is |
| * gone due to the derivative. |
| * |
| * (8) Finally we get the equation to improve the factor as |
| * |
| * ``` |
| * t := P(t) . B'(t) / |
| * (B'(t) . B'(t) + P(t) . B''(t)) |
| * ``` |
| * |
| * [note]: `B` and `B(t)` are different in the above equations. |
| */ |
| |
| FT_Error error = FT_Err_Ok; |
| |
| FT_26D6_Vec aA, bB, cC; /* A, B, C in the above comment */ |
| FT_26D6_Vec nearest_point = { 0, 0 }; |
| /* point on curve nearest to `point` */ |
| FT_26D6_Vec direction; /* direction of curve at `nearest_point` */ |
| |
| FT_26D6_Vec p0, p1, p2; /* control points of a conic curve */ |
| FT_26D6_Vec p; /* `point` to which shortest distance */ |
| |
| FT_16D16 min_factor = 0; /* factor at `nearest_point' */ |
| FT_16D16 cross; /* to determine the sign */ |
| FT_16D16 min = FT_INT_MAX; /* shortest squared distance */ |
| |
| FT_UShort iterations; |
| FT_UShort steps; |
| |
| |
| if ( !conic || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( conic->edge_type != SDF_EDGE_CONIC ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| p0 = conic->start_pos; |
| p1 = conic->control_a; |
| p2 = conic->end_pos; |
| p = point; |
| |
| /* compute substitution coefficients */ |
| aA.x = p0.x - 2 * p1.x + p2.x; |
| aA.y = p0.y - 2 * p1.y + p2.y; |
| |
| bB.x = 2 * ( p1.x - p0.x ); |
| bB.y = 2 * ( p1.y - p0.y ); |
| |
| cC.x = p0.x; |
| cC.y = p0.y; |
| |
| /* do Newton's iterations */ |
| for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) |
| { |
| FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; |
| FT_16D16 factor2; |
| FT_16D16 length; |
| |
| FT_16D16_Vec curve_point; /* point on the curve */ |
| FT_16D16_Vec dist_vector; /* `curve_point` - `p` */ |
| |
| FT_26D6_Vec d1; /* first derivative */ |
| FT_26D6_Vec d2; /* second derivative */ |
| |
| FT_16D16 temp1; |
| FT_16D16 temp2; |
| |
| |
| for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) |
| { |
| factor2 = FT_MulFix( factor, factor ); |
| |
| /* B(t) = t^2 * A + t * B + p0 */ |
| curve_point.x = FT_MulFix( aA.x, factor2 ) + |
| FT_MulFix( bB.x, factor ) + cC.x; |
| curve_point.y = FT_MulFix( aA.y, factor2 ) + |
| FT_MulFix( bB.y, factor ) + cC.y; |
| |
| /* convert to 16.16 */ |
| curve_point.x = FT_26D6_16D16( curve_point.x ); |
| curve_point.y = FT_26D6_16D16( curve_point.y ); |
| |
| /* P(t) in the comment */ |
| dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); |
| dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); |
| |
| length = VECTOR_LENGTH_16D16( dist_vector ); |
| |
| if ( length < min ) |
| { |
| min = length; |
| min_factor = factor; |
| nearest_point = curve_point; |
| } |
| |
| /* This is Newton's approximation. */ |
| /* */ |
| /* t := P(t) . B'(t) / */ |
| /* (B'(t) . B'(t) + P(t) . B''(t)) */ |
| |
| /* B'(t) = 2tA + B */ |
| d1.x = FT_MulFix( aA.x, 2 * factor ) + bB.x; |
| d1.y = FT_MulFix( aA.y, 2 * factor ) + bB.y; |
| |
| /* B''(t) = 2A */ |
| d2.x = 2 * aA.x; |
| d2.y = 2 * aA.y; |
| |
| dist_vector.x /= 1024; |
| dist_vector.y /= 1024; |
| |
| /* temp1 = P(t) . B'(t) */ |
| temp1 = VEC_26D6_DOT( dist_vector, d1 ); |
| |
| /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ |
| temp2 = VEC_26D6_DOT( d1, d1 ) + |
| VEC_26D6_DOT( dist_vector, d2 ); |
| |
| factor -= FT_DivFix( temp1, temp2 ); |
| |
| if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) |
| break; |
| } |
| } |
| |
| /* B'(t) = 2t * A + B */ |
| direction.x = 2 * FT_MulFix( aA.x, min_factor ) + bB.x; |
| direction.y = 2 * FT_MulFix( aA.y, min_factor ) + bB.y; |
| |
| /* determine the sign */ |
| cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), |
| direction.y ) - |
| FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), |
| direction.x ); |
| |
| /* assign the values */ |
| out->distance = min; |
| out->sign = cross < 0 ? 1 : -1; |
| |
| if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) |
| out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ |
| else |
| { |
| /* convert to nearest vector */ |
| nearest_point.x -= FT_26D6_16D16( p.x ); |
| nearest_point.y -= FT_26D6_16D16( p.y ); |
| |
| /* compute `cross` if not perpendicular */ |
| FT_Vector_NormLen( &direction ); |
| FT_Vector_NormLen( &nearest_point ); |
| |
| out->cross = FT_MulFix( direction.x, nearest_point.y ) - |
| FT_MulFix( direction.y, nearest_point.x ); |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| #endif /* USE_NEWTON_FOR_CONIC */ |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * get_min_distance_cubic |
| * |
| * @Description: |
| * Find the shortest distance from the `cubic` Bezier curve to a given |
| * `point` and assigns it to `out`. Use it for cubic curves only. |
| * |
| * @Input: |
| * cubic :: |
| * The cubic Bezier curve to which the shortest distance is to be |
| * computed. |
| * |
| * point :: |
| * Point from which the shortest distance is to be computed. |
| * |
| * @Output: |
| * out :: |
| * Signed distance from `point` to `cubic`. |
| * |
| * @Return: |
| * FreeType error, 0 means success. |
| * |
| * @Note: |
| * The function uses Newton's approximation to find the shortest |
| * distance. Another way would be to divide the cubic into conic or |
| * subdivide the curve into lines, but that is not implemented. |
| * |
| * The `cubic` parameter must have an edge type of `SDF_EDGE_CUBIC`. |
| * |
| */ |
| static FT_Error |
| get_min_distance_cubic( SDF_Edge* cubic, |
| FT_26D6_Vec point, |
| SDF_Signed_Distance* out ) |
| { |
| /* |
| * The procedure to find the shortest distance from a point to a cubic |
| * Bezier curve is similar to quadratic curve algorithm. The only |
| * difference is that while calculating factor `t`, instead of a cubic |
| * polynomial equation we have to find the roots of a 5th degree |
| * polynomial equation. Solving this would require a significant amount |
| * of time, and still the results may not be accurate. We are thus |
| * going to directly approximate the value of `t` using the Newton-Raphson |
| * method. |
| * |
| * Let's assume that |
| * |
| * ``` |
| * p0 = first endpoint |
| * p1 = first control point |
| * p2 = second control point |
| * p3 = second endpoint |
| * p = point from which shortest distance is to be calculated |
| * ``` |
| * |
| * (1) The equation of a cubic Bezier curve can be written as |
| * |
| * ``` |
| * B(t) = (1 - t)^3 * p0 + 3(1 - t)^2 t * p1 + |
| * 3(1 - t)t^2 * p2 + t^3 * p3 |
| * ``` |
| * |
| * The equation can be expanded and written as |
| * |
| * ``` |
| * B(t) = t^3 * (-p0 + 3p1 - 3p2 + p3) + |
| * 3t^2 * (p0 - 2p1 + p2) + 3t * (-p0 + p1) + p0 |
| * ``` |
| * |
| * With |
| * |
| * ``` |
| * A = -p0 + 3p1 - 3p2 + p3 |
| * B = 3(p0 - 2p1 + p2) |
| * C = 3(-p0 + p1) |
| * ``` |
| * |
| * we have |
| * |
| * ``` |
| * B(t) = t^3 * A + t^2 * B + t * C + p0 |
| * ``` |
| * |
| * (2) The derivative of the above equation is |
| * |
| * ``` |
| * B'(t) = 3t^2 * A + 2t * B + C |
| * ``` |
| * |
| * (3) The second derivative of the above equation is |
| * |
| * ``` |
| * B''(t) = 6t * A + 2B |
| * ``` |
| * |
| * (4) The equation `P(t)` of the distance from point `p` to the curve |
| * can be written as |
| * |
| * ``` |
| * P(t) = t^3 * A + t^2 * B + t * C + p0 - p |
| * ``` |
| * |
| * With |
| * |
| * ``` |
| * D = p0 - p |
| * ``` |
| * |
| * we have |
| * |
| * ``` |
| * P(t) = t^3 * A + t^2 * B + t * C + D |
| * ``` |
| * |
| * (5) Finally the equation of the angle between `B(t)` and `P(t)` can |
| * be written as |
| * |
| * ``` |
| * Q(t) = P(t) . B'(t) |
| * ``` |
| * |
| * (6) Our task is to find a value of `t` such that the above equation |
| * `Q(t)` becomes zero, that is, the point-to-curve vector makes |
| * 90~degree with curve. We solve this with the Newton-Raphson |
| * method. |
| * |
| * (7) We first assume an arbitrary value of factor `t`, which we then |
| * improve. |
| * |
| * ``` |
| * t := Q(t) / Q'(t) |
| * ``` |
| * |
| * Putting the value of `Q(t)` from the above equation gives |
| * |
| * ``` |
| * t := P(t) . B'(t) / derivative(P(t) . B'(t)) |
| * t := P(t) . B'(t) / |
| * (P'(t) . B'(t) + P(t) . B''(t)) |
| * ``` |
| * |
| * Note that `P'(t)` is the same as `B'(t)` because the constant is |
| * gone due to the derivative. |
| * |
| * (8) Finally we get the equation to improve the factor as |
| * |
| * ``` |
| * t := P(t) . B'(t) / |
| * (B'(t) . B'( t ) + P(t) . B''(t)) |
| * ``` |
| * |
| * [note]: `B` and `B(t)` are different in the above equations. |
| */ |
| |
| FT_Error error = FT_Err_Ok; |
| |
| FT_26D6_Vec aA, bB, cC, dD; /* A, B, C, D in the above comment */ |
| FT_16D16_Vec nearest_point = { 0, 0 }; |
| /* point on curve nearest to `point` */ |
| FT_16D16_Vec direction; /* direction of curve at `nearest_point` */ |
| |
| FT_26D6_Vec p0, p1, p2, p3; /* control points of a cubic curve */ |
| FT_26D6_Vec p; /* `point` to which shortest distance */ |
| |
| FT_16D16 min_factor = 0; /* factor at shortest distance */ |
| FT_16D16 min_factor_sq = 0; /* factor at shortest distance */ |
| FT_16D16 cross; /* to determine the sign */ |
| FT_16D16 min = FT_INT_MAX; /* shortest distance */ |
| |
| FT_UShort iterations; |
| FT_UShort steps; |
| |
| |
| if ( !cubic || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( cubic->edge_type != SDF_EDGE_CUBIC ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| p0 = cubic->start_pos; |
| p1 = cubic->control_a; |
| p2 = cubic->control_b; |
| p3 = cubic->end_pos; |
| p = point; |
| |
| /* compute substitution coefficients */ |
| aA.x = -p0.x + 3 * ( p1.x - p2.x ) + p3.x; |
| aA.y = -p0.y + 3 * ( p1.y - p2.y ) + p3.y; |
| |
| bB.x = 3 * ( p0.x - 2 * p1.x + p2.x ); |
| bB.y = 3 * ( p0.y - 2 * p1.y + p2.y ); |
| |
| cC.x = 3 * ( p1.x - p0.x ); |
| cC.y = 3 * ( p1.y - p0.y ); |
| |
| dD.x = p0.x; |
| dD.y = p0.y; |
| |
| for ( iterations = 0; iterations <= MAX_NEWTON_DIVISIONS; iterations++ ) |
| { |
| FT_16D16 factor = FT_INT_16D16( iterations ) / MAX_NEWTON_DIVISIONS; |
| |
| FT_16D16 factor2; /* factor^2 */ |
| FT_16D16 factor3; /* factor^3 */ |
| FT_16D16 length; |
| |
| FT_16D16_Vec curve_point; /* point on the curve */ |
| FT_16D16_Vec dist_vector; /* `curve_point' - `p' */ |
| |
| FT_26D6_Vec d1; /* first derivative */ |
| FT_26D6_Vec d2; /* second derivative */ |
| |
| FT_16D16 temp1; |
| FT_16D16 temp2; |
| |
| |
| for ( steps = 0; steps < MAX_NEWTON_STEPS; steps++ ) |
| { |
| factor2 = FT_MulFix( factor, factor ); |
| factor3 = FT_MulFix( factor2, factor ); |
| |
| /* B(t) = t^3 * A + t^2 * B + t * C + D */ |
| curve_point.x = FT_MulFix( aA.x, factor3 ) + |
| FT_MulFix( bB.x, factor2 ) + |
| FT_MulFix( cC.x, factor ) + dD.x; |
| curve_point.y = FT_MulFix( aA.y, factor3 ) + |
| FT_MulFix( bB.y, factor2 ) + |
| FT_MulFix( cC.y, factor ) + dD.y; |
| |
| /* convert to 16.16 */ |
| curve_point.x = FT_26D6_16D16( curve_point.x ); |
| curve_point.y = FT_26D6_16D16( curve_point.y ); |
| |
| /* P(t) in the comment */ |
| dist_vector.x = curve_point.x - FT_26D6_16D16( p.x ); |
| dist_vector.y = curve_point.y - FT_26D6_16D16( p.y ); |
| |
| length = VECTOR_LENGTH_16D16( dist_vector ); |
| |
| if ( length < min ) |
| { |
| min = length; |
| min_factor = factor; |
| min_factor_sq = factor2; |
| nearest_point = curve_point; |
| } |
| |
| /* This the Newton's approximation. */ |
| /* */ |
| /* t := P(t) . B'(t) / */ |
| /* (B'(t) . B'(t) + P(t) . B''(t)) */ |
| |
| /* B'(t) = 3t^2 * A + 2t * B + C */ |
| d1.x = FT_MulFix( aA.x, 3 * factor2 ) + |
| FT_MulFix( bB.x, 2 * factor ) + cC.x; |
| d1.y = FT_MulFix( aA.y, 3 * factor2 ) + |
| FT_MulFix( bB.y, 2 * factor ) + cC.y; |
| |
| /* B''(t) = 6t * A + 2B */ |
| d2.x = FT_MulFix( aA.x, 6 * factor ) + 2 * bB.x; |
| d2.y = FT_MulFix( aA.y, 6 * factor ) + 2 * bB.y; |
| |
| dist_vector.x /= 1024; |
| dist_vector.y /= 1024; |
| |
| /* temp1 = P(t) . B'(t) */ |
| temp1 = VEC_26D6_DOT( dist_vector, d1 ); |
| |
| /* temp2 = B'(t) . B'(t) + P(t) . B''(t) */ |
| temp2 = VEC_26D6_DOT( d1, d1 ) + |
| VEC_26D6_DOT( dist_vector, d2 ); |
| |
| factor -= FT_DivFix( temp1, temp2 ); |
| |
| if ( factor < 0 || factor > FT_INT_16D16( 1 ) ) |
| break; |
| } |
| } |
| |
| /* B'(t) = 3t^2 * A + 2t * B + C */ |
| direction.x = FT_MulFix( aA.x, 3 * min_factor_sq ) + |
| FT_MulFix( bB.x, 2 * min_factor ) + cC.x; |
| direction.y = FT_MulFix( aA.y, 3 * min_factor_sq ) + |
| FT_MulFix( bB.y, 2 * min_factor ) + cC.y; |
| |
| /* determine the sign */ |
| cross = FT_MulFix( nearest_point.x - FT_26D6_16D16( p.x ), |
| direction.y ) - |
| FT_MulFix( nearest_point.y - FT_26D6_16D16( p.y ), |
| direction.x ); |
| |
| /* assign the values */ |
| out->distance = min; |
| out->sign = cross < 0 ? 1 : -1; |
| |
| if ( min_factor != 0 && min_factor != FT_INT_16D16( 1 ) ) |
| out->cross = FT_INT_16D16( 1 ); /* the two are perpendicular */ |
| else |
| { |
| /* convert to nearest vector */ |
| nearest_point.x -= FT_26D6_16D16( p.x ); |
| nearest_point.y -= FT_26D6_16D16( p.y ); |
| |
| /* compute `cross` if not perpendicular */ |
| FT_Vector_NormLen( &direction ); |
| FT_Vector_NormLen( &nearest_point ); |
| |
| out->cross = FT_MulFix( direction.x, nearest_point.y ) - |
| FT_MulFix( direction.y, nearest_point.x ); |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * sdf_edge_get_min_distance |
| * |
| * @Description: |
| * Find shortest distance from `point` to any type of `edge`. It checks |
| * the edge type and then calls the relevant `get_min_distance_*` |
| * function. |
| * |
| * @Input: |
| * edge :: |
| * An edge to which the shortest distance is to be computed. |
| * |
| * point :: |
| * Point from which the shortest distance is to be computed. |
| * |
| * @Output: |
| * out :: |
| * Signed distance from `point` to `edge`. |
| * |
| * @Return: |
| * FreeType error, 0 means success. |
| * |
| */ |
| static FT_Error |
| sdf_edge_get_min_distance( SDF_Edge* edge, |
| FT_26D6_Vec point, |
| SDF_Signed_Distance* out ) |
| { |
| FT_Error error = FT_Err_Ok; |
| |
| |
| if ( !edge || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| /* edge-specific distance calculation */ |
| switch ( edge->edge_type ) |
| { |
| case SDF_EDGE_LINE: |
| get_min_distance_line( edge, point, out ); |
| break; |
| |
| case SDF_EDGE_CONIC: |
| get_min_distance_conic( edge, point, out ); |
| break; |
| |
| case SDF_EDGE_CUBIC: |
| get_min_distance_cubic( edge, point, out ); |
| break; |
| |
| default: |
| error = FT_THROW( Invalid_Argument ); |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /* `sdf_generate' is not used at the moment */ |
| #if 0 |
| |
| #error "DO NOT USE THIS!" |
| #error "The function still outputs 16-bit data, which might cause memory" |
| #error "corruption. If required I will add this later." |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * sdf_contour_get_min_distance |
| * |
| * @Description: |
| * Iterate over all edges that make up the contour, find the shortest |
| * distance from a point to this contour, and assigns result to `out`. |
| * |
| * @Input: |
| * contour :: |
| * A contour to which the shortest distance is to be computed. |
| * |
| * point :: |
| * Point from which the shortest distance is to be computed. |
| * |
| * @Output: |
| * out :: |
| * Signed distance from the `point' to the `contour'. |
| * |
| * @Return: |
| * FreeType error, 0 means success. |
| * |
| * @Note: |
| * The function does not return a signed distance for each edge which |
| * makes up the contour, it simply returns the shortest of all the |
| * edges. |
| * |
| */ |
| static FT_Error |
| sdf_contour_get_min_distance( SDF_Contour* contour, |
| FT_26D6_Vec point, |
| SDF_Signed_Distance* out ) |
| { |
| FT_Error error = FT_Err_Ok; |
| SDF_Signed_Distance min_dist = max_sdf; |
| SDF_Edge* edge_list; |
| |
| |
| if ( !contour || !out ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| edge_list = contour->edges; |
| |
| /* iterate over all the edges manually */ |
| while ( edge_list ) |
| { |
| SDF_Signed_Distance current_dist = max_sdf; |
| FT_16D16 diff; |
| |
| |
| FT_CALL( sdf_edge_get_min_distance( edge_list, |
| point, |
| ¤t_dist ) ); |
| |
| if ( current_dist.distance >= 0 ) |
| { |
| diff = current_dist.distance - min_dist.distance; |
| |
| |
| if ( FT_ABS( diff ) < CORNER_CHECK_EPSILON ) |
| min_dist = resolve_corner( min_dist, current_dist ); |
| else if ( diff < 0 ) |
| min_dist = current_dist; |
| } |
| else |
| FT_TRACE0(( "sdf_contour_get_min_distance: Overflow.\n" )); |
| |
| edge_list = edge_list->next; |
| } |
| |
| *out = min_dist; |
| |
| Exit: |
| return error; |
| } |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * sdf_generate |
| * |
| * @Description: |
| * This is the main function that is responsible for generating signed |
| * distance fields. The function does not align or compute the size of |
| * `bitmap`; therefore the calling application must set up `bitmap` |
| * properly and transform the `shape' appropriately in advance. |
| * |
| * Currently we check all pixels against all contours and all edges. |
| * |
| * @Input: |
| * internal_params :: |
| * Internal parameters and properties required by the rasterizer. See |
| * @SDF_Params for more. |
| * |
| * shape :: |
| * A complete shape which is used to generate SDF. |
| * |
| * spread :: |
| * Maximum distances to be allowed in the output bitmap. |
| * |
| * @Output: |
| * bitmap :: |
| * The output bitmap which will contain the SDF information. |
| * |
| * @Return: |
| * FreeType error, 0 means success. |
| * |
| */ |
| static FT_Error |
| sdf_generate( const SDF_Params internal_params, |
| const SDF_Shape* shape, |
| FT_UInt spread, |
| const FT_Bitmap* bitmap ) |
| { |
| FT_Error error = FT_Err_Ok; |
| |
| FT_UInt width = 0; |
| FT_UInt rows = 0; |
| FT_UInt x = 0; /* used to loop in x direction, i.e., width */ |
| FT_UInt y = 0; /* used to loop in y direction, i.e., rows */ |
| FT_UInt sp_sq = 0; /* `spread` [* `spread`] as a 16.16 fixed value */ |
| |
| FT_Short* buffer; |
| |
| |
| if ( !shape || !bitmap ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( spread < MIN_SPREAD || spread > MAX_SPREAD ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| width = bitmap->width; |
| rows = bitmap->rows; |
| buffer = (FT_Short*)bitmap->buffer; |
| |
| if ( USE_SQUARED_DISTANCES ) |
| sp_sq = FT_INT_16D16( spread * spread ); |
| else |
| sp_sq = FT_INT_16D16( spread ); |
| |
| if ( width == 0 || rows == 0 ) |
| { |
| FT_TRACE0(( "sdf_generate:" |
| " Cannot render glyph with width/height == 0\n" )); |
| FT_TRACE0(( " " |
| " (width, height provided [%d, %d])\n", |
| width, rows )); |
| |
| error = FT_THROW( Cannot_Render_Glyph ); |
| goto Exit; |
| } |
| |
| /* loop over all rows */ |
| for ( y = 0; y < rows; y++ ) |
| { |
| /* loop over all pixels of a row */ |
| for ( x = 0; x < width; x++ ) |
| { |
| /* `grid_point` is the current pixel position; */ |
| /* our task is to find the shortest distance */ |
| /* from this point to the entire shape. */ |
| FT_26D6_Vec grid_point = zero_vector; |
| SDF_Signed_Distance min_dist = max_sdf; |
| SDF_Contour* contour_list; |
| |
| FT_UInt index; |
| FT_Short value; |
| |
| |
| grid_point.x = FT_INT_26D6( x ); |
| grid_point.y = FT_INT_26D6( y ); |
| |
| /* This `grid_point' is at the corner, but we */ |
| /* use the center of the pixel. */ |
| grid_point.x += FT_INT_26D6( 1 ) / 2; |
| grid_point.y += FT_INT_26D6( 1 ) / 2; |
| |
| contour_list = shape->contours; |
| |
| /* iterate over all contours manually */ |
| while ( contour_list ) |
| { |
| SDF_Signed_Distance current_dist = max_sdf; |
| |
| |
| FT_CALL( sdf_contour_get_min_distance( contour_list, |
| grid_point, |
| ¤t_dist ) ); |
| |
| if ( current_dist.distance < min_dist.distance ) |
| min_dist = current_dist; |
| |
| contour_list = contour_list->next; |
| } |
| |
| /* [OPTIMIZATION]: if (min_dist > sp_sq) then simply clamp */ |
| /* the value to spread to avoid square_root */ |
| |
| /* clamp the values to spread */ |
| if ( min_dist.distance > sp_sq ) |
| min_dist.distance = sp_sq; |
| |
| /* square_root the values and fit in a 6.10 fixed-point */ |
| if ( USE_SQUARED_DISTANCES ) |
| min_dist.distance = square_root( min_dist.distance ); |
| |
| if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT ) |
| min_dist.sign = -min_dist.sign; |
| if ( internal_params.flip_sign ) |
| min_dist.sign = -min_dist.sign; |
| |
| min_dist.distance /= 64; /* convert from 16.16 to 22.10 */ |
| |
| value = min_dist.distance & 0x0000FFFF; /* truncate to 6.10 */ |
| value *= min_dist.sign; |
| |
| if ( internal_params.flip_y ) |
| index = y * width + x; |
| else |
| index = ( rows - y - 1 ) * width + x; |
| |
| buffer[index] = value; |
| } |
| } |
| |
| Exit: |
| return error; |
| } |
| |
| #endif /* 0 */ |
| |
| |
| /************************************************************************** |
| * |
| * @Function: |
| * sdf_generate_bounding_box |
| * |
| * @Description: |
| * This function does basically the same thing as `sdf_generate` above |
| * but more efficiently. |
| * |
| * Instead of checking all pixels against all edges, we loop over all |
| * edges and only check pixels around the control box of the edge; the |
| * control box is increased by the spread in all directions. Anything |
| * outside of the control box that exceeds `spread` doesn't need to be |
| * computed. |
| * |
| * Lastly, to determine the sign of unchecked pixels, we do a single |
| * pass of all rows starting with a '+' sign and flipping when we come |
| * across a '-' sign and continue. This also eliminates the possibility |
| * of overflow because we only check the proximity of the curve. |
| * Therefore we can use squared distanced safely. |
| * |
| * @Input: |
| * internal_params :: |
| * Internal parameters and properties required by the rasterizer. |
| * See @SDF_Params for more. |
| * |
| * shape :: |
| * A complete shape which is used to generate SDF. |
| * |
| * spread :: |
| * Maximum distances to be allowed in the output bitmap. |
| * |
| * @Output: |
| * bitmap :: |
| * The output bitmap which will contain the SDF information. |
| * |
| * @Return: |
| * FreeType error, 0 means success. |
| * |
| */ |
| static FT_Error |
| sdf_generate_bounding_box( const SDF_Params internal_params, |
| const SDF_Shape* shape, |
| FT_UInt spread, |
| const FT_Bitmap* bitmap ) |
| { |
| FT_Error error = FT_Err_Ok; |
| FT_Memory memory = NULL; |
| |
| FT_Int width, rows, i, j; |
| FT_Int sp_sq; /* max value to check */ |
| |
| SDF_Contour* contours; /* list of all contours */ |
| FT_SDFFormat* buffer; /* the bitmap buffer */ |
| |
| /* This buffer has the same size in indices as the */ |
| /* bitmap buffer. When we check a pixel position for */ |
| /* a shortest distance we keep it in this buffer. */ |
| /* This way we can find out which pixel is set, */ |
| /* and also determine the signs properly. */ |
| SDF_Signed_Distance* dists = NULL; |
| |
| const FT_16D16 fixed_spread = (FT_16D16)FT_INT_16D16( spread ); |
| |
| |
| if ( !shape || !bitmap ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( spread < MIN_SPREAD || spread > MAX_SPREAD ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| memory = shape->memory; |
| if ( !memory ) |
| { |
| error = FT_THROW( Invalid_Argument ); |
| goto Exit; |
| } |
| |
| if ( FT_ALLOC( dists, |
| bitmap->width * bitmap->rows * sizeof ( *dists ) ) ) |
| goto Exit; |
| |
| contours = shape->contours; |
| width = (FT_Int)bitmap->width; |
| rows = (FT_Int)bitmap->rows; |
| buffer = (FT_SDFFormat*)bitmap->buffer; |
| |
| if ( USE_SQUARED_DISTANCES ) |
| sp_sq = FT_INT_16D16( (FT_Int)( spread * spread ) ); |
| else |
| sp_sq = fixed_spread; |
| |
| if ( width == 0 || rows == 0 ) |
| { |
| FT_TRACE0(( "sdf_generate:" |
| " Cannot render glyph with width/height == 0\n" )); |
| FT_TRACE0(( " " |
| " (width, height provided [%d, %d])", width, rows )); |
| |
| error = FT_THROW( Cannot_Render_Glyph ); |
| goto Exit; |
| } |
| |
| /* loop over all contours */ |
| while ( contours ) |
| { |
| SDF_Edge* edges = contours->edges; |
| |
| |
| /* loop over all edges */ |
| while ( edges ) |
| { |
| FT_CBox cbox; |
| FT_Int x, y; |
| |
| |
| /* get the control box and increase it by `spread' */ |
| cbox = get_control_box( *edges ); |
| |
| cbox.xMin = ( cbox.xMin - 63 ) / 64 - ( FT_Pos )spread; |
| cbox.xMax = ( cbox.xMax + 63 ) / 64 + ( FT_Pos )spread; |
| cbox.yMin = ( cbox.yMin - 63 ) / 64 - ( FT_Pos )spread; |
| cbox.yMax = ( cbox.yMax + 63 ) / 64 + ( FT_Pos )spread; |
| |
| /* now loop over the pixels in the control box. */ |
| for ( y = cbox.yMin; y < cbox.yMax; y++ ) |
| { |
| for ( x = cbox.xMin; x < cbox.xMax; x++ ) |
| { |
| FT_26D6_Vec grid_point = zero_vector; |
| SDF_Signed_Distance dist = max_sdf; |
| FT_UInt index = 0; |
| FT_16D16 diff = 0; |
| |
| |
| if ( x < 0 || x >= width ) |
| continue; |
| if ( y < 0 || y >= rows ) |
| continue; |
| |
| grid_point.x = FT_INT_26D6( x ); |
| grid_point.y = FT_INT_26D6( y ); |
| |
| /* This `grid_point` is at the corner, but we */ |
| /* use the center of the pixel. */ |
| grid_point.x += FT_INT_26D6( 1 ) / 2; |
| grid_point.y += FT_INT_26D6( 1 ) / 2; |
| |
| FT_CALL( sdf_edge_get_min_distance( edges, |
| grid_point, |
| &dist ) ); |
| |
| if ( internal_params.orientation == FT_ORIENTATION_FILL_LEFT ) |
| dist.sign = -dist.sign; |
| |
| /* ignore if the distance is greater than spread; */ |
| /* otherwise it creates artifacts due to the wrong sign */ |
| if ( dist.distance > sp_sq ) |
| continue; |
| |
| /* take the square root of the distance if required */ |
| if ( USE_SQUARED_DISTANCES ) |
| dist.distance = square_root( dist.distance ); |
| |
| if ( internal_params.flip_y ) |
| index = (FT_UInt)( y * width + x ); |
| else |
| index = (FT_UInt)( ( rows - y - 1 ) * width + x ); |
| |
| /* check whether the pixel is set or not */ |
| if ( dists[index].sign == 0 ) |
| dists[index] = dist; |
| else |
| { |
| diff = FT_ABS( dists[index].distance - dist.distance ); |
| |
| if ( diff <= CORNER_CHECK_EPSILON ) |
| dists[index] = resolve_corner( dists[index], dist ); |
| else if ( dists[index].distance > dist.distance ) |
| dists[index] = dist; |
| } |
| } |
| } |
| |
| edges = edges->next; |
| } |
| |
| contours = contours->next; |
| } |
| |
| /* final pass */ |
| for ( j = 0; j < rows; j++ ) |
| { |
| /* We assume the starting pixel of each row is outside. */ |
| FT_Char current_sign = -1; |
| FT_UInt index; |
| |
| |
| if ( internal_params.overload_sign != 0 ) |
| current_sign = internal_params.overload_sign < 0 ? -1 : 1; |
| |
| for ( i = 0; i < width; i++ ) |
| { |
| index = (FT_UInt)( j * width + i ); |
| |
| /* if the pixel is not set */ |
| /* its shortest distance is more than `spread` */ |
| if ( dists[index].sign == 0 ) |
| dists[index].distance = fixed_spread; |
| else |
| current_sign = dists[index].sign; |
| |
| /* clamp the values */ |
| if ( dists[index].distance > fixed_spread ) |
|
|