blob: 7f384a7dbed77ce47abfa2ee0edcbe7269bd61fb [file] [log] [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ipcz/node_link.h"
#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <limits>
#include <utility>
#include "ipcz/box.h"
#include "ipcz/fragment_ref.h"
#include "ipcz/ipcz.h"
#include "ipcz/link_side.h"
#include "ipcz/link_type.h"
#include "ipcz/message.h"
#include "ipcz/node.h"
#include "ipcz/node_connector.h"
#include "ipcz/node_link_memory.h"
#include "ipcz/node_messages.h"
#include "ipcz/parcel.h"
#include "ipcz/portal.h"
#include "ipcz/remote_router_link.h"
#include "ipcz/router.h"
#include "ipcz/router_link.h"
#include "ipcz/router_link_state.h"
#include "ipcz/sublink_id.h"
#include "third_party/abseil-cpp/absl/base/macros.h"
#include "util/log.h"
#include "util/ref_counted.h"
#include "util/safe_math.h"
namespace ipcz {
namespace {
template <typename T>
FragmentRef<T> MaybeAdoptFragmentRef(NodeLinkMemory& memory,
const FragmentDescriptor& descriptor) {
if (descriptor.is_null() || descriptor.size() < sizeof(T)) {
return {};
}
return memory.AdoptFragmentRef<T>(memory.GetFragment(descriptor));
}
} // namespace
// static
Ref<NodeLink> NodeLink::CreateActive(Ref<Node> node,
LinkSide link_side,
const NodeName& local_node_name,
const NodeName& remote_node_name,
Node::Type remote_node_type,
uint32_t remote_protocol_version,
Ref<DriverTransport> transport,
Ref<NodeLinkMemory> memory) {
return AdoptRef(new NodeLink(std::move(node), link_side, local_node_name,
remote_node_name, remote_node_type,
remote_protocol_version, std::move(transport),
std::move(memory), kActive));
}
// static
Ref<NodeLink> NodeLink::CreateInactive(Ref<Node> node,
LinkSide link_side,
const NodeName& local_node_name,
const NodeName& remote_node_name,
Node::Type remote_node_type,
uint32_t remote_protocol_version,
Ref<DriverTransport> transport,
Ref<NodeLinkMemory> memory) {
return AdoptRef(new NodeLink(std::move(node), link_side, local_node_name,
remote_node_name, remote_node_type,
remote_protocol_version, std::move(transport),
std::move(memory), kNeverActivated));
}
NodeLink::NodeLink(Ref<Node> node,
LinkSide link_side,
const NodeName& local_node_name,
const NodeName& remote_node_name,
Node::Type remote_node_type,
uint32_t remote_protocol_version,
Ref<DriverTransport> transport,
Ref<NodeLinkMemory> memory,
ActivationState initial_activation_state)
: node_(std::move(node)),
link_side_(link_side),
local_node_name_(local_node_name),
remote_node_name_(remote_node_name),
remote_node_type_(remote_node_type),
remote_protocol_version_(remote_protocol_version),
transport_(std::move(transport)),
memory_(std::move(memory)),
activation_state_(initial_activation_state) {
if (initial_activation_state == kActive) {
transport_->set_listener(WrapRefCounted(this));
memory_->SetNodeLink(WrapRefCounted(this));
}
}
NodeLink::~NodeLink() {
absl::MutexLock lock(&mutex_);
ABSL_HARDENING_ASSERT(activation_state_ != kActive);
}
void NodeLink::Activate() {
transport_->set_listener(WrapRefCounted(this));
memory_->SetNodeLink(WrapRefCounted(this));
{
absl::MutexLock lock(&mutex_);
ABSL_ASSERT(activation_state_ == kNeverActivated);
activation_state_ = kActive;
}
transport_->Activate();
}
Ref<RemoteRouterLink> NodeLink::AddRemoteRouterLink(
SublinkId sublink,
FragmentRef<RouterLinkState> link_state,
LinkType type,
LinkSide side,
Ref<Router> router) {
auto link = RemoteRouterLink::Create(WrapRefCounted(this), sublink,
std::move(link_state), type, side);
absl::MutexLock lock(&mutex_);
if (activation_state_ == kDeactivated) {
// We don't bind new RemoteRouterLinks once we've been deactivated, lest we
// incur leaky NodeLink references.
return nullptr;
}
auto [it, added] = sublinks_.try_emplace(
sublink, Sublink(std::move(link), std::move(router)));
if (!added) {
// The SublinkId provided here may have been received from another node and
// may already be in use if the node is misbehaving.
return nullptr;
}
return it->second.router_link;
}
void NodeLink::RemoveRemoteRouterLink(SublinkId sublink) {
absl::MutexLock lock(&mutex_);
sublinks_.erase(sublink);
}
absl::optional<NodeLink::Sublink> NodeLink::GetSublink(SublinkId sublink) {
absl::MutexLock lock(&mutex_);
auto it = sublinks_.find(sublink);
if (it == sublinks_.end()) {
return absl::nullopt;
}
return it->second;
}
Ref<Router> NodeLink::GetRouter(SublinkId sublink) {
absl::MutexLock lock(&mutex_);
auto it = sublinks_.find(sublink);
if (it == sublinks_.end()) {
return nullptr;
}
return it->second.receiver;
}
void NodeLink::AddBlockBuffer(BufferId id,
uint32_t block_size,
DriverMemory memory) {
msg::AddBlockBuffer add;
add.params().id = id;
add.params().block_size = block_size;
add.params().buffer = add.AppendDriverObject(memory.TakeDriverObject());
Transmit(add);
}
void NodeLink::RequestIntroduction(const NodeName& name) {
ABSL_ASSERT(remote_node_type_ == Node::Type::kBroker);
msg::RequestIntroduction request;
request.params().name = name;
Transmit(request);
}
void NodeLink::AcceptIntroduction(const NodeName& name,
LinkSide side,
Node::Type remote_node_type,
uint32_t remote_protocol_version,
Ref<DriverTransport> transport,
DriverMemory memory) {
ABSL_ASSERT(node_->type() == Node::Type::kBroker);
msg::AcceptIntroduction accept;
accept.params().name = name;
accept.params().link_side = side;
accept.params().remote_node_type = remote_node_type;
accept.params().remote_protocol_version = remote_protocol_version;
accept.params().transport =
accept.AppendDriverObject(transport->TakeDriverObject());
accept.params().memory = accept.AppendDriverObject(memory.TakeDriverObject());
Transmit(accept);
}
void NodeLink::RejectIntroduction(const NodeName& name) {
ABSL_ASSERT(node_->type() == Node::Type::kBroker);
msg::RejectIntroduction reject;
reject.params().name = name;
Transmit(reject);
}
void NodeLink::ReferNonBroker(Ref<DriverTransport> transport,
uint32_t num_initial_portals,
ReferralCallback callback) {
ABSL_ASSERT(node_->type() == Node::Type::kNormal &&
remote_node_type_ == Node::Type::kBroker);
uint64_t referral_id;
{
absl::MutexLock lock(&mutex_);
for (;;) {
referral_id = next_referral_id_++;
auto [it, inserted] =
pending_referrals_.try_emplace(referral_id, std::move(callback));
if (inserted) {
break;
}
}
}
msg::ReferNonBroker refer;
refer.params().referral_id = referral_id;
refer.params().num_initial_portals = num_initial_portals;
refer.params().transport =
refer.AppendDriverObject(transport->TakeDriverObject());
Transmit(refer);
}
void NodeLink::AcceptBypassLink(
const NodeName& current_peer_node,
SublinkId current_peer_sublink,
SequenceNumber inbound_sequence_length_from_bypassed_link,
SublinkId new_sublink,
FragmentRef<RouterLinkState> link_state) {
msg::AcceptBypassLink accept;
accept.params().current_peer_node = current_peer_node;
accept.params().current_peer_sublink = current_peer_sublink;
accept.params().inbound_sequence_length_from_bypassed_link =
inbound_sequence_length_from_bypassed_link;
accept.params().new_sublink = new_sublink;
accept.params().new_link_state_fragment = link_state.release().descriptor();
Transmit(accept);
}
void NodeLink::RequestMemory(size_t size, RequestMemoryCallback callback) {
const uint32_t size32 = checked_cast<uint32_t>(size);
{
absl::MutexLock lock(&mutex_);
pending_memory_requests_[size32].push_back(std::move(callback));
}
msg::RequestMemory request;
request.params().size = size32;
Transmit(request);
}
void NodeLink::RelayMessage(const NodeName& to_node, Message& message) {
ABSL_ASSERT(remote_node_type_ == Node::Type::kBroker);
msg::RelayMessage relay;
relay.params().destination = to_node;
relay.params().data =
relay.AllocateArray<uint8_t>(message.data_view().size());
memcpy(relay.GetArrayData(relay.params().data), message.data_view().data(),
message.data_view().size());
relay.params().driver_objects =
relay.AppendDriverObjects(message.driver_objects());
Transmit(relay);
}
bool NodeLink::DispatchRelayedMessage(msg::AcceptRelayedMessage& accept) {
// We only allow a limited subset of messages to be relayed through a broker.
// Namely, any message which might carry driver objects between two
// non-brokers needs to be relayable.
//
// If an unknown or unsupported message type is relayed it's silently
// discarded, rather than being rejected as a validation failure. This leaves
// open the possibility for newer versions of a message to introduce driver
// objects and support relaying.
absl::Span<uint8_t> data = accept.GetArrayView<uint8_t>(accept.params().data);
absl::Span<DriverObject> objects = accept.driver_objects();
if (data.size() < sizeof(internal::MessageHeaderV0)) {
return false;
}
const uint8_t message_id =
reinterpret_cast<internal::MessageHeaderV0*>(data.data())->message_id;
switch (message_id) {
case msg::AcceptParcelDriverObjects::kId: {
msg::AcceptParcelDriverObjects accept_parcel;
return accept_parcel.DeserializeRelayed(data, objects) &&
OnAcceptParcelDriverObjects(accept_parcel);
}
case msg::AddBlockBuffer::kId: {
msg::AddBlockBuffer add;
return add.DeserializeRelayed(data, objects) && OnAddBlockBuffer(add);
}
default:
DVLOG(4) << "Ignoring relayed message with ID "
<< static_cast<int>(message_id);
return true;
}
}
void NodeLink::Deactivate() {
{
absl::MutexLock lock(&mutex_);
if (activation_state_ != kActive) {
return;
}
activation_state_ = kDeactivated;
}
OnTransportError();
transport_->Deactivate();
memory_->SetNodeLink(nullptr);
}
void NodeLink::Transmit(Message& message) {
if (!message.CanTransmitOn(*transport_)) {
// The driver has indicated that it can't transmit this message through our
// transport, so the message must instead be relayed through a broker.
auto broker = node_->GetBrokerLink();
if (!broker) {
DLOG(ERROR) << "Cannot relay message without a broker link";
return;
}
broker->RelayMessage(remote_node_name_, message);
return;
}
message.header().sequence_number = GenerateOutgoingSequenceNumber();
transport_->Transmit(message);
}
SequenceNumber NodeLink::GenerateOutgoingSequenceNumber() {
return SequenceNumber(next_outgoing_sequence_number_generator_.fetch_add(
1, std::memory_order_relaxed));
}
bool NodeLink::OnReferNonBroker(msg::ReferNonBroker& refer) {
if (remote_node_type_ != Node::Type::kNormal ||
node()->type() != Node::Type::kBroker) {
return false;
}
DriverObject transport = refer.TakeDriverObject(refer.params().transport);
if (!transport.is_valid()) {
return false;
}
return NodeConnector::HandleNonBrokerReferral(
node(), refer.params().referral_id, refer.params().num_initial_portals,
WrapRefCounted(this),
MakeRefCounted<DriverTransport>(std::move(transport)));
}
bool NodeLink::OnNonBrokerReferralAccepted(
msg::NonBrokerReferralAccepted& accepted) {
if (remote_node_type_ != Node::Type::kBroker) {
return false;
}
ReferralCallback callback;
{
absl::MutexLock lock(&mutex_);
auto it = pending_referrals_.find(accepted.params().referral_id);
if (it == pending_referrals_.end()) {
return false;
}
callback = std::move(it->second);
pending_referrals_.erase(it);
}
const uint32_t protocol_version =
std::min(msg::kProtocolVersion, accepted.params().protocol_version);
auto transport = MakeRefCounted<DriverTransport>(
accepted.TakeDriverObject(accepted.params().transport));
DriverMemory buffer(accepted.TakeDriverObject(accepted.params().buffer));
if (!transport->driver_object().is_valid() || !buffer.is_valid()) {
// Not quite a validation failure if the broker simply failed to allocate
// resources for this link. Treat it like a connection failure.
callback(/*link=*/nullptr, /*num_initial_portals=*/0);
return true;
}
Ref<NodeLink> link_to_referree = NodeLink::CreateInactive(
node_, LinkSide::kA, local_node_name_, accepted.params().name,
Node::Type::kNormal, protocol_version, std::move(transport),
NodeLinkMemory::Create(node_, buffer.Map()));
callback(link_to_referree, accepted.params().num_initial_portals);
link_to_referree->Activate();
return true;
}
bool NodeLink::OnNonBrokerReferralRejected(
msg::NonBrokerReferralRejected& rejected) {
if (remote_node_type_ != Node::Type::kBroker) {
return false;
}
ReferralCallback callback;
{
absl::MutexLock lock(&mutex_);
auto it = pending_referrals_.find(rejected.params().referral_id);
if (it == pending_referrals_.end()) {
return false;
}
callback = std::move(it->second);
pending_referrals_.erase(it);
}
callback(/*link=*/nullptr, /*num_initial_portals=*/0);
return true;
}
bool NodeLink::OnRequestIntroduction(msg::RequestIntroduction& request) {
// TODO: Support broker-to-broker introduction requests.
if (remote_node_type_ != Node::Type::kNormal ||
node()->type() != Node::Type::kBroker) {
return false;
}
node()->HandleIntroductionRequest(*this, request.params().name);
return true;
}
bool NodeLink::OnAcceptIntroduction(msg::AcceptIntroduction& accept) {
if (remote_node_type_ != Node::Type::kBroker) {
return false;
}
if (node()->type() != Node::Type::kNormal) {
// TODO: Support broker-to-broker introductions.
return false;
}
auto memory = DriverMemory(accept.TakeDriverObject(accept.params().memory));
if (!memory.is_valid()) {
return false;
}
auto mapping = memory.Map();
if (!mapping.is_valid()) {
return false;
}
auto transport = MakeRefCounted<DriverTransport>(
accept.TakeDriverObject(accept.params().transport));
node()->AcceptIntroduction(
*this, accept.params().name, accept.params().link_side,
accept.params().remote_node_type, accept.params().remote_protocol_version,
std::move(transport), NodeLinkMemory::Create(node(), std::move(mapping)));
return true;
}
bool NodeLink::OnRejectIntroduction(msg::RejectIntroduction& reject) {
if (remote_node_type_ != Node::Type::kBroker) {
return false;
}
if (node()->type() != Node::Type::kNormal) {
// TODO: Support broker-to-broker introductions.
return false;
}
return node()->CancelIntroduction(reject.params().name);
}
bool NodeLink::OnAddBlockBuffer(msg::AddBlockBuffer& add) {
DriverMemory buffer(add.TakeDriverObject(add.params().buffer));
if (!buffer.is_valid()) {
return false;
}
return memory().AddBlockBuffer(add.params().id, add.params().block_size,
buffer.Map());
}
bool NodeLink::OnAcceptParcel(msg::AcceptParcel& accept) {
absl::Span<const uint8_t> parcel_data =
accept.GetArrayView<uint8_t>(accept.params().parcel_data);
absl::Span<const HandleType> handle_types =
accept.GetArrayView<HandleType>(accept.params().handle_types);
absl::Span<const RouterDescriptor> new_routers =
accept.GetArrayView<RouterDescriptor>(accept.params().new_routers);
auto driver_objects = accept.driver_objects();
// Note that on any validation failure below, we defer rejection at least
// until any deserialized objects are stored in a new Parcel object. This
// ensures that they're properly cleaned up before we return.
bool parcel_valid = true;
bool is_split_parcel = false;
std::vector<Ref<APIObject>> objects(handle_types.size());
for (size_t i = 0; i < handle_types.size(); ++i) {
switch (handle_types[i]) {
case HandleType::kPortal: {
if (new_routers.empty()) {
parcel_valid = false;
continue;
}
Ref<Router> new_router = Router::Deserialize(new_routers[0], *this);
if (!new_router) {
parcel_valid = false;
continue;
}
objects[i] = MakeRefCounted<Portal>(node_, std::move(new_router));
new_routers.remove_prefix(1);
break;
}
case HandleType::kBox: {
if (driver_objects.empty()) {
return false;
}
objects[i] = MakeRefCounted<Box>(std::move(driver_objects[0]));
driver_objects.remove_prefix(1);
break;
}
case HandleType::kRelayedBox: {
is_split_parcel = true;
break;
}
default:
parcel_valid = false;
break;
}
}
if (!new_routers.empty() || !driver_objects.empty()) {
// There should be no unclaimed routers. If there are, it's a validation
// failure.
parcel_valid = false;
}
const SublinkId for_sublink = accept.params().sublink;
Parcel parcel(accept.params().sequence_number);
parcel.SetObjects(std::move(objects));
if (!parcel_valid) {
return false;
}
const FragmentDescriptor descriptor = accept.params().parcel_fragment;
if (!descriptor.is_null()) {
// The parcel's data resides in a shared memory fragment.
const Fragment fragment = memory().GetFragment(descriptor);
if (fragment.is_pending()) {
// We don't have this buffer yet, but we expect to receive it ASAP. Defer
// acceptance until then.
WaitForParcelFragmentToResolve(for_sublink, parcel, descriptor,
is_split_parcel);
return true;
}
if (!parcel.AdoptDataFragment(WrapRefCounted(&memory()), fragment)) {
return false;
}
} else {
// The parcel's data was inlined within the AcceptParcel message.
parcel.SetInlinedData(
std::vector<uint8_t>(parcel_data.begin(), parcel_data.end()));
}
if (is_split_parcel) {
return AcceptParcelWithoutDriverObjects(for_sublink, parcel);
}
return AcceptCompleteParcel(for_sublink, parcel);
}
bool NodeLink::OnAcceptParcelDriverObjects(
msg::AcceptParcelDriverObjects& accept) {
Parcel parcel(accept.params().sequence_number);
std::vector<Ref<APIObject>> objects;
objects.reserve(accept.driver_objects().size());
for (auto& object : accept.driver_objects()) {
objects.push_back(MakeRefCounted<Box>(std::move(object)));
}
parcel.SetObjects(std::move(objects));
return AcceptParcelDriverObjects(accept.params().sublink, parcel);
}
bool NodeLink::OnRouteClosed(msg::RouteClosed& route_closed) {
absl::optional<Sublink> sublink = GetSublink(route_closed.params().sublink);
if (!sublink) {
// The sublink may have already been removed, for example if the application
// has already closed the associated router. It is therefore not considered
// an error to receive a RouteClosed message for an unknown sublink.
return true;
}
return sublink->receiver->AcceptRouteClosureFrom(
sublink->router_link->GetType(), route_closed.params().sequence_length);
}
bool NodeLink::OnRouteDisconnected(msg::RouteDisconnected& route_closed) {
absl::optional<Sublink> sublink = GetSublink(route_closed.params().sublink);
if (!sublink) {
return true;
}
DVLOG(4) << "Accepting RouteDisconnected at "
<< sublink->router_link->Describe();
return sublink->receiver->AcceptRouteDisconnectedFrom(
sublink->router_link->GetType());
}
bool NodeLink::OnSnapshotPeerQueueState(msg::SnapshotPeerQueueState& snapshot) {
if (Ref<Router> router = GetRouter(snapshot.params().sublink)) {
router->SnapshotPeerQueueState();
}
return true;
}
bool NodeLink::OnBypassPeer(msg::BypassPeer& bypass) {
absl::optional<Sublink> sublink = GetSublink(bypass.params().sublink);
if (!sublink) {
return true;
}
// NOTE: This request is authenticated by the receiving Router, within
// BypassPeer().
return sublink->receiver->BypassPeer(*sublink->router_link,
bypass.params().bypass_target_node,
bypass.params().bypass_target_sublink);
}
bool NodeLink::OnAcceptBypassLink(msg::AcceptBypassLink& accept) {
Ref<NodeLink> node_link_to_peer =
node_->GetLink(accept.params().current_peer_node);
if (!node_link_to_peer) {
// If the link to the peer has been severed for whatever reason, the
// relevant route will be torn down anyway. It's safe to ignore this
// request in that case.
return true;
}
const Ref<Router> receiver =
node_link_to_peer->GetRouter(accept.params().current_peer_sublink);
if (!receiver) {
// Similar to above, if the targeted Router cannot be resolved from the
// given sublink, this implies that the route has already been at least
// partially torn down. It's safe to ignore this request.
return true;
}
auto link_state = MaybeAdoptFragmentRef<RouterLinkState>(
memory(), accept.params().new_link_state_fragment);
if (link_state.is_null()) {
// Bypass links must always come with a valid fragment for their
// RouterLinkState. If one has not been provided, that's a validation
// failure.
return false;
}
return receiver->AcceptBypassLink(
*this, accept.params().new_sublink, std::move(link_state),
accept.params().inbound_sequence_length_from_bypassed_link);
}
bool NodeLink::OnStopProxying(msg::StopProxying& stop) {
Ref<Router> router = GetRouter(stop.params().sublink);
if (!router) {
return true;
}
return router->StopProxying(stop.params().inbound_sequence_length,
stop.params().outbound_sequence_length);
}
bool NodeLink::OnProxyWillStop(msg::ProxyWillStop& will_stop) {
Ref<Router> router = GetRouter(will_stop.params().sublink);
if (!router) {
return true;
}
return router->NotifyProxyWillStop(
will_stop.params().inbound_sequence_length);
}
bool NodeLink::OnBypassPeerWithLink(msg::BypassPeerWithLink& bypass) {
Ref<Router> router = GetRouter(bypass.params().sublink);
if (!router) {
return true;
}
auto link_state = MaybeAdoptFragmentRef<RouterLinkState>(
memory(), bypass.params().new_link_state_fragment);
if (link_state.is_null()) {
return false;
}
return router->AcceptBypassLink(*this, bypass.params().new_sublink,
std::move(link_state),
bypass.params().inbound_sequence_length);
}
bool NodeLink::OnStopProxyingToLocalPeer(msg::StopProxyingToLocalPeer& stop) {
Ref<Router> router = GetRouter(stop.params().sublink);
if (!router) {
return true;
}
return router->StopProxyingToLocalPeer(
stop.params().outbound_sequence_length);
}
bool NodeLink::OnFlushRouter(msg::FlushRouter& flush) {
if (Ref<Router> router = GetRouter(flush.params().sublink)) {
router->Flush(Router::kForceProxyBypassAttempt);
}
return true;
}
bool NodeLink::OnRequestMemory(msg::RequestMemory& request) {
DriverMemory memory(node_->driver(), request.params().size);
msg::ProvideMemory provide;
provide.params().size = request.params().size;
provide.params().buffer =
provide.AppendDriverObject(memory.TakeDriverObject());
Transmit(provide);
return true;
}
bool NodeLink::OnProvideMemory(msg::ProvideMemory& provide) {
DriverMemory memory(provide.TakeDriverObject(provide.params().buffer));
RequestMemoryCallback callback;
{
absl::MutexLock lock(&mutex_);
auto it = pending_memory_requests_.find(provide.params().size);
if (it == pending_memory_requests_.end()) {
return false;
}
std::list<RequestMemoryCallback>& callbacks = it->second;
ABSL_ASSERT(!callbacks.empty());
callback = std::move(callbacks.front());
callbacks.pop_front();
if (callbacks.empty()) {
pending_memory_requests_.erase(it);
}
}
callback(std::move(memory));
return true;
}
bool NodeLink::OnRelayMessage(msg::RelayMessage& relay) {
if (node_->type() != Node::Type::kBroker) {
return false;
}
return node_->RelayMessage(remote_node_name_, relay);
}
bool NodeLink::OnAcceptRelayedMessage(msg::AcceptRelayedMessage& accept) {
if (remote_node_type_ != Node::Type::kBroker) {
return false;
}
return node_->AcceptRelayedMessage(accept);
}
void NodeLink::OnTransportError() {
SublinkMap sublinks;
{
absl::MutexLock lock(&mutex_);
sublinks.swap(sublinks_);
}
for (auto& [id, sublink] : sublinks) {
DVLOG(4) << "NodeLink disconnection dropping "
<< sublink.router_link->Describe() << " which is bound to router "
<< sublink.receiver.get();
sublink.receiver->NotifyLinkDisconnected(*sublink.router_link);
}
Ref<NodeLink> self = WrapRefCounted(this);
node_->DropConnection(remote_node_name_);
}
void NodeLink::WaitForParcelFragmentToResolve(
SublinkId for_sublink,
Parcel& parcel,
const FragmentDescriptor& descriptor,
bool is_split_parcel) {
// ParcelWrapper wraps a Parcel in a RefCounted object so the reference can
// be captured by a copyable lambda below.
struct ParcelWrapper : public RefCounted {
explicit ParcelWrapper(Parcel parcel) : parcel(std::move(parcel)) {}
Parcel parcel;
};
auto wrapper = MakeRefCounted<ParcelWrapper>(std::move(parcel));
memory().WaitForBufferAsync(
descriptor.buffer_id(), [this_link = WrapRefCounted(this), for_sublink,
is_split_parcel, wrapper, descriptor]() {
Ref<NodeLinkMemory> memory = WrapRefCounted(&this_link->memory());
const Fragment fragment = memory->GetFragment(descriptor);
Parcel& parcel = wrapper->parcel;
if (!fragment.is_addressable() ||
!parcel.AdoptDataFragment(std::move(memory), fragment)) {
// The fragment is out of bounds or had an invalid header. Either way
// it doesn't look good for the remote node.
this_link->OnTransportError();
return;
}
if (is_split_parcel) {
this_link->AcceptParcelWithoutDriverObjects(for_sublink, parcel);
} else {
this_link->AcceptCompleteParcel(for_sublink, parcel);
}
});
}
bool NodeLink::AcceptParcelWithoutDriverObjects(SublinkId for_sublink,
Parcel& parcel) {
const auto key = std::make_tuple(for_sublink, parcel.sequence_number());
Parcel parcel_with_driver_objects;
{
absl::MutexLock lock(&mutex_);
auto [it, inserted] = partial_parcels_.try_emplace(key, std::move(parcel));
if (inserted) {
return true;
}
parcel_with_driver_objects = std::move(it->second);
partial_parcels_.erase(it);
}
return AcceptSplitParcel(for_sublink, parcel, parcel_with_driver_objects);
}
bool NodeLink::AcceptParcelDriverObjects(SublinkId for_sublink,
Parcel& parcel) {
const auto key = std::make_tuple(for_sublink, parcel.sequence_number());
Parcel parcel_without_driver_objects;
{
absl::MutexLock lock(&mutex_);
auto [it, inserted] = partial_parcels_.try_emplace(key, std::move(parcel));
if (inserted) {
return true;
}
parcel_without_driver_objects = std::move(it->second);
partial_parcels_.erase(it);
}
return AcceptSplitParcel(for_sublink, parcel_without_driver_objects, parcel);
}
bool NodeLink::AcceptSplitParcel(SublinkId for_sublink,
Parcel& parcel_without_driver_objects,
Parcel& parcel_with_driver_objects) {
// The parcel with no driver objects should still have an object attachemnt
// slot reserved for every relayed driver object.
if (parcel_without_driver_objects.num_objects() <
parcel_with_driver_objects.num_objects()) {
return false;
}
// Fill in all the object gaps in the data-only parcel with the boxed objects
// from the driver objects parcel.
Parcel& complete_parcel = parcel_without_driver_objects;
auto remaining_driver_objects = parcel_with_driver_objects.objects_view();
for (auto& object : complete_parcel.objects_view()) {
if (object) {
continue;
}
if (remaining_driver_objects.empty()) {
return false;
}
object = std::move(remaining_driver_objects[0]);
remaining_driver_objects.remove_prefix(1);
}
// At least one driver object was unclaimed by the data half of the parcel.
// That's not right.
if (!remaining_driver_objects.empty()) {
return false;
}
return AcceptCompleteParcel(for_sublink, complete_parcel);
}
bool NodeLink::AcceptCompleteParcel(SublinkId for_sublink, Parcel& parcel) {
const absl::optional<Sublink> sublink = GetSublink(for_sublink);
if (!sublink) {
DVLOG(4) << "Dropping " << parcel.Describe() << " at "
<< local_node_name_.ToString() << ", arriving from "
<< remote_node_name_.ToString() << " via unknown sublink "
<< for_sublink;
return true;
}
parcel.set_remote_source(WrapRefCounted(this));
const LinkType link_type = sublink->router_link->GetType();
if (link_type.is_outward()) {
DVLOG(4) << "Accepting inbound " << parcel.Describe() << " at "
<< sublink->router_link->Describe();
return sublink->receiver->AcceptInboundParcel(parcel);
}
ABSL_ASSERT(link_type.is_peripheral_inward());
DVLOG(4) << "Accepting outbound " << parcel.Describe() << " at "
<< sublink->router_link->Describe();
return sublink->receiver->AcceptOutboundParcel(parcel);
}
NodeLink::Sublink::Sublink(Ref<RemoteRouterLink> router_link,
Ref<Router> receiver)
: router_link(std::move(router_link)), receiver(std::move(receiver)) {}
NodeLink::Sublink::Sublink(Sublink&&) = default;
NodeLink::Sublink::Sublink(const Sublink&) = default;
NodeLink::Sublink& NodeLink::Sublink::operator=(Sublink&&) = default;
NodeLink::Sublink& NodeLink::Sublink::operator=(const Sublink&) = default;
NodeLink::Sublink::~Sublink() = default;
} // namespace ipcz