blob: d1acc6de0004baf3635ae268f1045d5a80ba1fac [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_LIBARTBASE_BASE_HASH_SET_H_
#define ART_LIBARTBASE_BASE_HASH_SET_H_
#include <stdint.h>
#include <functional>
#include <iterator>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <android-base/logging.h>
#include "base/data_hash.h"
#include "bit_utils.h"
#include "macros.h"
namespace art {
template <class Elem, class HashSetType>
class HashSetIterator {
public:
using iterator_category = std::forward_iterator_tag;
using value_type = Elem;
using difference_type = std::ptrdiff_t;
using pointer = Elem*;
using reference = Elem&;
HashSetIterator(const HashSetIterator&) = default;
HashSetIterator(HashSetIterator&&) noexcept = default;
HashSetIterator(HashSetType* hash_set, size_t index) : index_(index), hash_set_(hash_set) {}
// Conversion from iterator to const_iterator.
template <class OtherElem,
class OtherHashSetType,
typename = std::enable_if_t<
std::is_same_v<Elem, const OtherElem> &&
std::is_same_v<HashSetType, const OtherHashSetType>>>
HashSetIterator(const HashSetIterator<OtherElem, OtherHashSetType>& other)
: index_(other.index_), hash_set_(other.hash_set_) {}
HashSetIterator& operator=(const HashSetIterator&) = default;
HashSetIterator& operator=(HashSetIterator&&) noexcept = default;
bool operator==(const HashSetIterator& other) const {
return hash_set_ == other.hash_set_ && this->index_ == other.index_;
}
bool operator!=(const HashSetIterator& other) const {
return !(*this == other);
}
HashSetIterator operator++() { // Value after modification.
this->index_ = hash_set_->NextNonEmptySlot(index_);
return *this;
}
HashSetIterator operator++(int) {
HashSetIterator temp = *this;
++*this;
return temp;
}
Elem& operator*() const {
DCHECK(!hash_set_->IsFreeSlot(this->index_));
return hash_set_->ElementForIndex(this->index_);
}
Elem* operator->() const {
return &**this;
}
private:
size_t index_;
HashSetType* hash_set_;
template <class Elem1, class HashSetType1, class Elem2, class HashSetType2>
friend bool operator==(const HashSetIterator<Elem1, HashSetType1>& lhs,
const HashSetIterator<Elem2, HashSetType2>& rhs);
template <class T, class EmptyFn, class HashFn, class Pred, class Alloc> friend class HashSet;
template <class OtherElem, class OtherHashSetType> friend class HashSetIterator;
};
template <class Elem1, class HashSetType1, class Elem2, class HashSetType2>
bool operator==(const HashSetIterator<Elem1, HashSetType1>& lhs,
const HashSetIterator<Elem2, HashSetType2>& rhs) {
static_assert(
std::is_convertible_v<HashSetIterator<Elem1, HashSetType1>,
HashSetIterator<Elem2, HashSetType2>> ||
std::is_convertible_v<HashSetIterator<Elem2, HashSetType2>,
HashSetIterator<Elem1, HashSetType1>>, "Bad iterator types.");
DCHECK_EQ(lhs.hash_set_, rhs.hash_set_);
return lhs.index_ == rhs.index_;
}
template <class Elem1, class HashSetType1, class Elem2, class HashSetType2>
bool operator!=(const HashSetIterator<Elem1, HashSetType1>& lhs,
const HashSetIterator<Elem2, HashSetType2>& rhs) {
return !(lhs == rhs);
}
// Returns true if an item is empty.
template <class T>
class DefaultEmptyFn {
public:
void MakeEmpty(T& item) const {
item = T();
}
bool IsEmpty(const T& item) const {
return item == T();
}
};
template <class T>
class DefaultEmptyFn<T*> {
public:
void MakeEmpty(T*& item) const {
item = nullptr;
}
bool IsEmpty(T* const& item) const {
return item == nullptr;
}
};
template <class T>
using DefaultHashFn = std::conditional_t<std::is_same_v<T, std::string>, DataHash, std::hash<T>>;
struct DefaultStringEquals {
// Allow comparison with anything that can be compared to std::string,
// for example std::string_view.
template <typename T>
bool operator()(const std::string& lhs, const T& rhs) const {
return lhs == rhs;
}
};
template <class T>
using DefaultPred =
std::conditional_t<std::is_same_v<T, std::string>, DefaultStringEquals, std::equal_to<T>>;
// Low memory version of a hash set, uses less memory than std::unordered_multiset since elements
// aren't boxed. Uses linear probing to resolve collisions.
// EmptyFn needs to implement two functions MakeEmpty(T& item) and IsEmpty(const T& item).
// TODO: We could get rid of this requirement by using a bitmap, though maybe this would be slower
// and more complicated.
template <class T,
class EmptyFn = DefaultEmptyFn<T>,
class HashFn = DefaultHashFn<T>,
class Pred = DefaultPred<T>,
class Alloc = std::allocator<T>>
class HashSet {
public:
using value_type = T;
using allocator_type = Alloc;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using const_pointer = const T*;
using iterator = HashSetIterator<T, HashSet>;
using const_iterator = HashSetIterator<const T, const HashSet>;
using size_type = size_t;
using difference_type = ptrdiff_t;
static constexpr double kDefaultMinLoadFactor = 0.4;
static constexpr double kDefaultMaxLoadFactor = 0.7;
static constexpr size_t kMinBuckets = 1000;
// If we don't own the data, this will create a new array which owns the data.
void clear() {
DeallocateStorage();
num_elements_ = 0;
elements_until_expand_ = 0;
}
HashSet() : HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor) {}
explicit HashSet(const allocator_type& alloc) noexcept
: HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, alloc) {}
HashSet(double min_load_factor, double max_load_factor) noexcept
: HashSet(min_load_factor, max_load_factor, allocator_type()) {}
HashSet(double min_load_factor, double max_load_factor, const allocator_type& alloc) noexcept
: HashSet(min_load_factor, max_load_factor, HashFn(), Pred(), alloc) {}
HashSet(const HashFn& hashfn,
const Pred& pred) noexcept
: HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, hashfn, pred) {}
HashSet(const HashFn& hashfn,
const Pred& pred,
const allocator_type& alloc) noexcept
: HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, hashfn, pred, alloc) {}
HashSet(double min_load_factor,
double max_load_factor,
const HashFn& hashfn,
const Pred& pred) noexcept
: HashSet(min_load_factor, max_load_factor, hashfn, pred, allocator_type()) {}
HashSet(double min_load_factor,
double max_load_factor,
const HashFn& hashfn,
const Pred& pred,
const allocator_type& alloc) noexcept
: allocfn_(alloc),
hashfn_(hashfn),
emptyfn_(),
pred_(pred),
num_elements_(0u),
num_buckets_(0u),
elements_until_expand_(0u),
owns_data_(false),
data_(nullptr),
min_load_factor_(min_load_factor),
max_load_factor_(max_load_factor) {
DCHECK_GT(min_load_factor, 0.0);
DCHECK_LT(max_load_factor, 1.0);
}
HashSet(const HashSet& other)
: allocfn_(other.allocfn_),
hashfn_(other.hashfn_),
emptyfn_(other.emptyfn_),
pred_(other.pred_),
num_elements_(other.num_elements_),
num_buckets_(0),
elements_until_expand_(other.elements_until_expand_),
owns_data_(false),
data_(nullptr),
min_load_factor_(other.min_load_factor_),
max_load_factor_(other.max_load_factor_) {
AllocateStorage(other.NumBuckets());
for (size_t i = 0; i < num_buckets_; ++i) {
ElementForIndex(i) = other.data_[i];
}
}
// noexcept required so that the move constructor is used instead of copy constructor.
// b/27860101
HashSet(HashSet&& other) noexcept
: allocfn_(std::move(other.allocfn_)),
hashfn_(std::move(other.hashfn_)),
emptyfn_(std::move(other.emptyfn_)),
pred_(std::move(other.pred_)),
num_elements_(other.num_elements_),
num_buckets_(other.num_buckets_),
elements_until_expand_(other.elements_until_expand_),
owns_data_(other.owns_data_),
data_(other.data_),
min_load_factor_(other.min_load_factor_),
max_load_factor_(other.max_load_factor_) {
other.num_elements_ = 0u;
other.num_buckets_ = 0u;
other.elements_until_expand_ = 0u;
other.owns_data_ = false;
other.data_ = nullptr;
}
// Construct with pre-existing buffer, usually stack-allocated,
// to avoid malloc/free overhead for small HashSet<>s.
HashSet(value_type* buffer, size_t buffer_size)
: HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, buffer, buffer_size) {}
HashSet(value_type* buffer, size_t buffer_size, const allocator_type& alloc)
: HashSet(kDefaultMinLoadFactor, kDefaultMaxLoadFactor, buffer, buffer_size, alloc) {}
HashSet(double min_load_factor, double max_load_factor, value_type* buffer, size_t buffer_size)
: HashSet(min_load_factor, max_load_factor, buffer, buffer_size, allocator_type()) {}
HashSet(double min_load_factor,
double max_load_factor,
value_type* buffer,
size_t buffer_size,
const allocator_type& alloc)
: HashSet(min_load_factor, max_load_factor, HashFn(), Pred(), buffer, buffer_size, alloc) {}
HashSet(double min_load_factor,
double max_load_factor,
const HashFn& hashfn,
const Pred& pred,
value_type* buffer,
size_t buffer_size,
const allocator_type& alloc)
: allocfn_(alloc),
hashfn_(hashfn),
pred_(pred),
num_elements_(0u),
num_buckets_(buffer_size),
elements_until_expand_(buffer_size * max_load_factor),
owns_data_(false),
data_(buffer),
min_load_factor_(min_load_factor),
max_load_factor_(max_load_factor) {
DCHECK_GT(min_load_factor, 0.0);
DCHECK_LT(max_load_factor, 1.0);
for (size_t i = 0; i != buffer_size; ++i) {
emptyfn_.MakeEmpty(buffer[i]);
}
}
// Construct from existing data.
// Read from a block of memory, if make_copy_of_data is false, then data_ points to within the
// passed in ptr_.
HashSet(const uint8_t* ptr, bool make_copy_of_data, size_t* read_count) noexcept {
uint64_t temp;
size_t offset = 0;
offset = ReadFromBytes(ptr, offset, &temp);
num_elements_ = static_cast<uint64_t>(temp);
offset = ReadFromBytes(ptr, offset, &temp);
num_buckets_ = static_cast<uint64_t>(temp);
CHECK_LE(num_elements_, num_buckets_);
offset = ReadFromBytes(ptr, offset, &temp);
elements_until_expand_ = static_cast<uint64_t>(temp);
offset = ReadFromBytes(ptr, offset, &min_load_factor_);
offset = ReadFromBytes(ptr, offset, &max_load_factor_);
if (!make_copy_of_data) {
owns_data_ = false;
data_ = const_cast<T*>(reinterpret_cast<const T*>(ptr + offset));
offset += sizeof(*data_) * num_buckets_;
} else {
AllocateStorage(num_buckets_);
// Write elements, not that this may not be safe for cross compilation if the elements are
// pointer sized.
for (size_t i = 0; i < num_buckets_; ++i) {
offset = ReadFromBytes(ptr, offset, &data_[i]);
}
}
// Caller responsible for aligning.
*read_count = offset;
}
// Returns how large the table is after being written. If target is null, then no writing happens
// but the size is still returned. Target must be 8 byte aligned.
size_t WriteToMemory(uint8_t* ptr) const {
size_t offset = 0;
offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_elements_));
offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(num_buckets_));
offset = WriteToBytes(ptr, offset, static_cast<uint64_t>(elements_until_expand_));
offset = WriteToBytes(ptr, offset, min_load_factor_);
offset = WriteToBytes(ptr, offset, max_load_factor_);
// Write elements, not that this may not be safe for cross compilation if the elements are
// pointer sized.
for (size_t i = 0; i < num_buckets_; ++i) {
offset = WriteToBytes(ptr, offset, data_[i]);
}
// Caller responsible for aligning.
return offset;
}
~HashSet() {
DeallocateStorage();
}
HashSet& operator=(HashSet&& other) noexcept {
HashSet(std::move(other)).swap(*this); // NOLINT [runtime/explicit] [5]
return *this;
}
HashSet& operator=(const HashSet& other) {
HashSet(other).swap(*this); // NOLINT(runtime/explicit) - a case of lint gone mad.
return *this;
}
// Lower case for c++11 for each.
iterator begin() {
iterator ret(this, 0);
if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) {
++ret; // Skip all the empty slots.
}
return ret;
}
// Lower case for c++11 for each. const version.
const_iterator begin() const {
const_iterator ret(this, 0);
if (num_buckets_ != 0 && IsFreeSlot(ret.index_)) {
++ret; // Skip all the empty slots.
}
return ret;
}
// Lower case for c++11 for each.
iterator end() {
return iterator(this, NumBuckets());
}
// Lower case for c++11 for each. const version.
const_iterator end() const {
return const_iterator(this, NumBuckets());
}
size_t size() const {
return num_elements_;
}
bool empty() const {
return size() == 0;
}
// Erase algorithm:
// Make an empty slot where the iterator is pointing.
// Scan forwards until we hit another empty slot.
// If an element in between doesn't rehash to the range from the current empty slot to the
// iterator. It must be before the empty slot, in that case we can move it to the empty slot
// and set the empty slot to be the location we just moved from.
// Relies on maintaining the invariant that there's no empty slots from the 'ideal' index of an
// element to its actual location/index.
// Note that since erase shuffles back elements, it may result in the same element being visited
// twice during HashSet iteration. This happens when an element already visited during iteration
// gets shuffled to the end of the bucket array.
iterator erase(iterator it) {
// empty_index is the index that will become empty.
size_t empty_index = it.index_;
DCHECK(!IsFreeSlot(empty_index));
size_t next_index = empty_index;
bool filled = false; // True if we filled the empty index.
while (true) {
next_index = NextIndex(next_index);
T& next_element = ElementForIndex(next_index);
// If the next element is empty, we are done. Make sure to clear the current empty index.
if (emptyfn_.IsEmpty(next_element)) {
emptyfn_.MakeEmpty(ElementForIndex(empty_index));
break;
}
// Otherwise try to see if the next element can fill the current empty index.
const size_t next_hash = hashfn_(next_element);
// Calculate the ideal index, if it is within empty_index + 1 to next_index then there is
// nothing we can do.
size_t next_ideal_index = IndexForHash(next_hash);
// Loop around if needed for our check.
size_t unwrapped_next_index = next_index;
if (unwrapped_next_index < empty_index) {
unwrapped_next_index += NumBuckets();
}
// Loop around if needed for our check.
size_t unwrapped_next_ideal_index = next_ideal_index;
if (unwrapped_next_ideal_index < empty_index) {
unwrapped_next_ideal_index += NumBuckets();
}
if (unwrapped_next_ideal_index <= empty_index ||
unwrapped_next_ideal_index > unwrapped_next_index) {
// If the target index isn't within our current range it must have been probed from before
// the empty index.
ElementForIndex(empty_index) = std::move(next_element);
filled = true; // TODO: Optimize
empty_index = next_index;
}
}
--num_elements_;
// If we didn't fill the slot then we need go to the next non free slot.
if (!filled) {
++it;
}
return it;
}
// Find an element, returns end() if not found.
// Allows custom key (K) types, example of when this is useful:
// Set of Class* indexed by name, want to find a class with a name but can't allocate
// a temporary Class object in the heap for performance solution.
template <typename K>
iterator find(const K& key) {
return FindWithHash(key, hashfn_(key));
}
template <typename K>
const_iterator find(const K& key) const {
return FindWithHash(key, hashfn_(key));
}
template <typename K>
iterator FindWithHash(const K& key, size_t hash) {
return iterator(this, FindIndex(key, hash));
}
template <typename K>
const_iterator FindWithHash(const K& key, size_t hash) const {
return const_iterator(this, FindIndex(key, hash));
}
// Insert an element with hint.
// Note: The hint is not very useful for a HashSet<> unless there are many hash conflicts
// and in that case the use of HashSet<> itself should be reconsidered.
std::pair<iterator, bool> insert(const_iterator hint ATTRIBUTE_UNUSED, const T& element) {
return insert(element);
}
std::pair<iterator, bool> insert(const_iterator hint ATTRIBUTE_UNUSED, T&& element) {
return insert(std::move(element));
}
// Insert an element.
std::pair<iterator, bool> insert(const T& element) {
return InsertWithHash(element, hashfn_(element));
}
std::pair<iterator, bool> insert(T&& element) {
return InsertWithHash(std::move(element), hashfn_(element));
}
template <typename U, typename = std::enable_if_t<std::is_convertible_v<U, T>>>
std::pair<iterator, bool> InsertWithHash(U&& element, size_t hash) {
DCHECK_EQ(hash, hashfn_(element));
if (num_elements_ >= elements_until_expand_) {
Expand();
DCHECK_LT(num_elements_, elements_until_expand_);
}
bool find_failed = false;
auto find_fail_fn = [&](size_t index) ALWAYS_INLINE {
find_failed = true;
return index;
};
size_t index = FindIndexImpl(element, hash, find_fail_fn);
if (find_failed) {
data_[index] = std::forward<U>(element);
++num_elements_;
}
return std::make_pair(iterator(this, index), find_failed);
}
// Insert an element known not to be in the `HashSet<>`.
void Put(const T& element) {
return PutWithHash(element, hashfn_(element));
}
void Put(T&& element) {
return PutWithHash(std::move(element), hashfn_(element));
}
template <typename U, typename = std::enable_if_t<std::is_convertible_v<U, T>>>
void PutWithHash(U&& element, size_t hash) {
DCHECK_EQ(hash, hashfn_(element));
if (num_elements_ >= elements_until_expand_) {
Expand();
DCHECK_LT(num_elements_, elements_until_expand_);
}
auto find_fail_fn = [](size_t index) ALWAYS_INLINE { return index; };
size_t index = FindIndexImpl</*kCanFind=*/ false>(element, hash, find_fail_fn);
data_[index] = std::forward<U>(element);
++num_elements_;
}
void swap(HashSet& other) {
// Use argument-dependent lookup with fall-back to std::swap() for function objects.
using std::swap;
swap(allocfn_, other.allocfn_);
swap(hashfn_, other.hashfn_);
swap(emptyfn_, other.emptyfn_);
swap(pred_, other.pred_);
std::swap(data_, other.data_);
std::swap(num_buckets_, other.num_buckets_);
std::swap(num_elements_, other.num_elements_);
std::swap(elements_until_expand_, other.elements_until_expand_);
std::swap(min_load_factor_, other.min_load_factor_);
std::swap(max_load_factor_, other.max_load_factor_);
std::swap(owns_data_, other.owns_data_);
}
allocator_type get_allocator() const {
return allocfn_;
}
void ShrinkToMaximumLoad() {
Resize(size() / max_load_factor_);
}
// Reserve enough room to insert until Size() == num_elements without requiring to grow the hash
// set. No-op if the hash set is already large enough to do this.
void reserve(size_t num_elements) {
size_t num_buckets = num_elements / max_load_factor_;
// Deal with rounding errors. Add one for rounding.
while (static_cast<size_t>(num_buckets * max_load_factor_) <= num_elements + 1u) {
++num_buckets;
}
if (num_buckets > NumBuckets()) {
Resize(num_buckets);
}
}
// To distance that inserted elements were probed. Used for measuring how good hash functions
// are.
size_t TotalProbeDistance() const {
size_t total = 0;
for (size_t i = 0; i < NumBuckets(); ++i) {
const T& element = ElementForIndex(i);
if (!emptyfn_.IsEmpty(element)) {
size_t ideal_location = IndexForHash(hashfn_(element));
if (ideal_location > i) {
total += i + NumBuckets() - ideal_location;
} else {
total += i - ideal_location;
}
}
}
return total;
}
// Calculate the current load factor and return it.
double CalculateLoadFactor() const {
return static_cast<double>(size()) / static_cast<double>(NumBuckets());
}
// Make sure that everything reinserts in the right spot. Returns the number of errors.
size_t Verify() NO_THREAD_SAFETY_ANALYSIS {
size_t errors = 0;
for (size_t i = 0; i < num_buckets_; ++i) {
T& element = data_[i];
if (!emptyfn_.IsEmpty(element)) {
T temp;
emptyfn_.MakeEmpty(temp);
std::swap(temp, element);
size_t first_slot = FirstAvailableSlot(IndexForHash(hashfn_(temp)));
if (i != first_slot) {
LOG(ERROR) << "Element " << i << " should be in slot " << first_slot;
++errors;
}
std::swap(temp, element);
}
}
return errors;
}
double GetMinLoadFactor() const {
return min_load_factor_;
}
double GetMaxLoadFactor() const {
return max_load_factor_;
}
// Change the load factor of the hash set. If the current load factor is greater than the max
// specified, then we resize the hash table storage.
void SetLoadFactor(double min_load_factor, double max_load_factor) {
DCHECK_LT(min_load_factor, max_load_factor);
DCHECK_GT(min_load_factor, 0.0);
DCHECK_LT(max_load_factor, 1.0);
min_load_factor_ = min_load_factor;
max_load_factor_ = max_load_factor;
elements_until_expand_ = NumBuckets() * max_load_factor_;
// If the current load factor isn't in the range, then resize to the mean of the minimum and
// maximum load factor.
const double load_factor = CalculateLoadFactor();
if (load_factor > max_load_factor_) {
Resize(size() / ((min_load_factor_ + max_load_factor_) * 0.5));
}
}
// The hash set expands when Size() reaches ElementsUntilExpand().
size_t ElementsUntilExpand() const {
return elements_until_expand_;
}
size_t NumBuckets() const {
return num_buckets_;
}
private:
T& ElementForIndex(size_t index) {
DCHECK_LT(index, NumBuckets());
DCHECK(data_ != nullptr);
return data_[index];
}
const T& ElementForIndex(size_t index) const {
DCHECK_LT(index, NumBuckets());
DCHECK(data_ != nullptr);
return data_[index];
}
size_t IndexForHash(size_t hash) const {
// Protect against undefined behavior (division by zero).
if (UNLIKELY(num_buckets_ == 0)) {
return 0;
}
return hash % num_buckets_;
}
size_t NextIndex(size_t index) const {
if (UNLIKELY(++index >= num_buckets_)) {
DCHECK_EQ(index, NumBuckets());
return 0;
}
return index;
}
// Find the hash table slot for an element, or return NumBuckets() if not found.
// This value for not found is important so that iterator(this, FindIndex(...)) == end().
template <typename K>
ALWAYS_INLINE
size_t FindIndex(const K& element, size_t hash) const {
// Guard against failing to get an element for a non-existing index.
if (UNLIKELY(NumBuckets() == 0)) {
return 0;
}
auto fail_fn = [&](size_t index ATTRIBUTE_UNUSED) ALWAYS_INLINE { return NumBuckets(); };
return FindIndexImpl(element, hash, fail_fn);
}
// Find the hash table slot for an element, or return an empty slot index if not found.
template <bool kCanFind = true, typename K, typename FailFn>
ALWAYS_INLINE
size_t FindIndexImpl(const K& element, size_t hash, FailFn fail_fn) const {
DCHECK_NE(NumBuckets(), 0u);
DCHECK_EQ(hashfn_(element), hash);
size_t index = IndexForHash(hash);
while (true) {
const T& slot = ElementForIndex(index);
if (emptyfn_.IsEmpty(slot)) {
return fail_fn(index);
}
if (!kCanFind) {
DCHECK(!pred_(slot, element));
} else if (pred_(slot, element)) {
return index;
}
index = NextIndex(index);
}
}
bool IsFreeSlot(size_t index) const {
return emptyfn_.IsEmpty(ElementForIndex(index));
}
// Allocate a number of buckets.
void AllocateStorage(size_t num_buckets) {
num_buckets_ = num_buckets;
data_ = allocfn_.allocate(num_buckets_);
owns_data_ = true;
for (size_t i = 0; i < num_buckets_; ++i) {
std::allocator_traits<Alloc>::construct(allocfn_, std::addressof(data_[i]));
emptyfn_.MakeEmpty(data_[i]);
}
}
void DeallocateStorage() {
if (owns_data_) {
for (size_t i = 0; i < NumBuckets(); ++i) {
std::allocator_traits<Alloc>::destroy(allocfn_, std::addressof(data_[i]));
}
if (data_ != nullptr) {
allocfn_.deallocate(data_, NumBuckets());
}
owns_data_ = false;
}
data_ = nullptr;
num_buckets_ = 0;
}
// Expand the set based on the load factors.
void Expand() {
size_t min_index = static_cast<size_t>(size() / min_load_factor_);
// Resize based on the minimum load factor.
Resize(min_index);
}
// Expand / shrink the table to the new specified size.
void Resize(size_t new_size) {
if (new_size < kMinBuckets) {
new_size = kMinBuckets;
}
DCHECK_GE(new_size, size());
T* const old_data = data_;
size_t old_num_buckets = num_buckets_;
// Reinsert all of the old elements.
const bool owned_data = owns_data_;
AllocateStorage(new_size);
for (size_t i = 0; i < old_num_buckets; ++i) {
T& element = old_data[i];
if (!emptyfn_.IsEmpty(element)) {
data_[FirstAvailableSlot(IndexForHash(hashfn_(element)))] = std::move(element);
}
if (owned_data) {
std::allocator_traits<Alloc>::destroy(allocfn_, std::addressof(element));
}
}
if (owned_data) {
allocfn_.deallocate(old_data, old_num_buckets);
}
// When we hit elements_until_expand_, we are at the max load factor and must expand again.
elements_until_expand_ = NumBuckets() * max_load_factor_;
}
ALWAYS_INLINE size_t FirstAvailableSlot(size_t index) const {
DCHECK_LT(index, NumBuckets()); // Don't try to get a slot out of range.
size_t non_empty_count = 0;
while (!emptyfn_.IsEmpty(data_[index])) {
index = NextIndex(index);
non_empty_count++;
DCHECK_LE(non_empty_count, NumBuckets()); // Don't loop forever.
}
return index;
}
size_t NextNonEmptySlot(size_t index) const {
const size_t num_buckets = NumBuckets();
DCHECK_LT(index, num_buckets);
do {
++index;
} while (index < num_buckets && IsFreeSlot(index));
return index;
}
// Return new offset.
template <typename Elem>
static size_t WriteToBytes(uint8_t* ptr, size_t offset, Elem n) {
DCHECK_ALIGNED(ptr + offset, sizeof(n));
if (ptr != nullptr) {
*reinterpret_cast<Elem*>(ptr + offset) = n;
}
return offset + sizeof(n);
}
template <typename Elem>
static size_t ReadFromBytes(const uint8_t* ptr, size_t offset, Elem* out) {
DCHECK(ptr != nullptr);
DCHECK_ALIGNED(ptr + offset, sizeof(*out));
*out = *reinterpret_cast<const Elem*>(ptr + offset);
return offset + sizeof(*out);
}
Alloc allocfn_; // Allocator function.
HashFn hashfn_; // Hashing function.
EmptyFn emptyfn_; // IsEmpty/SetEmpty function.
Pred pred_; // Equals function.
size_t num_elements_; // Number of inserted elements.
size_t num_buckets_; // Number of hash table buckets.
size_t elements_until_expand_; // Maximum number of elements until we expand the table.
bool owns_data_; // If we own data_ and are responsible for freeing it.
T* data_; // Backing storage.
double min_load_factor_;
double max_load_factor_;
template <class Elem, class HashSetType>
friend class HashSetIterator;
ART_FRIEND_TEST(InternTableTest, CrossHash);
ART_FRIEND_TEST(HashSetTest, Preallocated);
};
template <class T, class EmptyFn, class HashFn, class Pred, class Alloc>
void swap(HashSet<T, EmptyFn, HashFn, Pred, Alloc>& lhs,
HashSet<T, EmptyFn, HashFn, Pred, Alloc>& rhs) {
lhs.swap(rhs);
}
} // namespace art
#endif // ART_LIBARTBASE_BASE_HASH_SET_H_