blob: a678fd4898e74798f5595d4f66db2d7f3e58af96 [file] [log] [blame]
/* Copyright (c) 2012 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*
* This is a collection of helper utilities for use with the "mount-encrypted"
* utility.
*
*/
#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <math.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/mount.h>
#include <linux/fs.h>
#include <linux/loop.h>
#include <glib.h>
#include <glib/gstdio.h>
#include <openssl/evp.h>
#include "mount-encrypted.h"
#include "mount-helpers.h"
static const gchar * const kRootDir = "/";
static const gchar kLoopTemplate[] = "/dev/loop%d";
static const int kLoopMajor = 7;
static const int kLoopMax = 8;
static const unsigned int kResizeStepSeconds = 2;
static const uint64_t kResizeBlocks = 32768 * 10;
static const uint64_t kBlocksPerGroup = 32768;
static const uint64_t kInodeRatioDefault = 16384;
static const uint64_t kInodeRatioMinimum = 2048;
static const gchar * const kExt4ExtendedOptions = "discard,lazy_itable_init";
int remove_tree(const char *tree)
{
const gchar *rm[] = {
"/bin/rm", "-rf", tree,
NULL
};
return runcmd(rm, NULL);
}
uint64_t blk_size(const char *device)
{
uint64_t bytes;
int fd;
if ((fd = open(device, O_RDONLY | O_NOFOLLOW)) < 0) {
PERROR("open(%s)", device);
return 0;
}
if (ioctl(fd, BLKGETSIZE64, &bytes)) {
PERROR("ioctl(%s, BLKGETSIZE64)", device);
return 0;
}
close(fd);
return bytes;
}
int runcmd(const gchar *argv[], gchar **output)
{
gint rc;
gchar *out = NULL, *errout = NULL;
GError *err = NULL;
g_spawn_sync(kRootDir, (gchar **)argv, NULL, 0, NULL, NULL,
&out, &errout, &rc, &err);
if (err) {
ERROR("%s: %s", argv[0], err->message);
g_error_free(err);
return -1;
}
if (rc)
ERROR("%s failed (%d)\n%s\n%s", argv[0], rc, out, errout);
if (output)
*output = out;
else
g_free(out);
g_free(errout);
return rc;
}
int same_vfs(const char *mnt_a, const char *mnt_b)
{
struct stat stat_a, stat_b;
if (lstat(mnt_a, &stat_a)) {
PERROR("lstat(%s)", mnt_a);
exit(1);
}
if (lstat(mnt_b, &stat_b)) {
PERROR("lstat(%s)", mnt_b);
exit(1);
}
return (stat_a.st_dev == stat_b.st_dev);
}
/* Returns allocated string that holds [length]*2 + 1 characters. */
char *stringify_hex(uint8_t *binary, size_t length)
{
char *string;
size_t i;
string = malloc(length * 2 + 1);
if (!string) {
PERROR("malloc");
return NULL;
}
for (i = 0; i < length; ++i)
sprintf(string + (i * 2), "%02x", binary[i]);
string[length * 2] = '\0';
return string;
}
/* Returns allocated byte array that holds strlen([string])/2 bytes. */
uint8_t *hexify_string(char *string, uint8_t *binary, size_t length)
{
size_t bytes, i;
bytes = strlen(string) / 2;
if (bytes > length) {
ERROR("Hex string too long (%zu) for byte array (%zu)",
bytes, length);
return NULL;
}
for (i = 0; i < bytes; ++i) {
if (sscanf(&string[i * 2], "%2hhx", &binary[i]) != 1) {
ERROR("Invalid hex code at byte %zu.", i);
return NULL;
}
}
return binary;
}
/* Overwrite file contents. Useless on SSD. :( */
void shred(const char *pathname)
{
uint8_t patterns[] = { 0xA5, 0x5A, 0xFF, 0x00 };
FILE *target;
struct stat info;
uint8_t *pattern;
int fd, i;
/* Give up if we can't safely open or stat the target. */
if ((fd = open(pathname, O_WRONLY | O_NOFOLLOW)) < 0) {
PERROR("%s", pathname);
return;
}
if (fstat(fd, &info)) {
close(fd);
PERROR("%s", pathname);
return;
}
if (!(target = fdopen(fd, "w"))) {
close(fd);
PERROR("%s", pathname);
return;
}
/* Ignore errors here, since there's nothing we can really do. */
pattern = malloc(info.st_size);
for (i = 0; i < sizeof(patterns); ++i) {
memset(pattern, patterns[i], info.st_size);
if (fseek(target, 0, SEEK_SET))
PERROR("%s", pathname);
if (fwrite(pattern, info.st_size, 1, target) != 1)
PERROR("%s", pathname);
if (fflush(target))
PERROR("%s", pathname);
if (fdatasync(fd))
PERROR("%s", pathname);
}
free(pattern);
/* fclose() closes the fd too. */
fclose(target);
}
static int is_loop_device(int fd)
{
struct stat info;
return (fstat(fd, &info) == 0 && S_ISBLK(info.st_mode) &&
major(info.st_rdev) == kLoopMajor);
}
static int loop_is_attached(int fd, struct loop_info64 *info)
{
struct loop_info64 local_info;
return ioctl(fd, LOOP_GET_STATUS64, info ? info : &local_info) == 0;
}
/* Returns either the matching loopback name, or next available, if NULL. */
static int loop_locate(gchar **loopback, const char *name)
{
int i, fd, namelen = 0;
if (name) {
namelen = strlen(name);
if (namelen >= LO_NAME_SIZE) {
ERROR("'%s' too long (>= %d)", name, LO_NAME_SIZE);
return -1;
}
}
*loopback = NULL;
for (i = 0; i < kLoopMax; ++i) {
struct loop_info64 info;
int attached;
g_free(*loopback);
*loopback = g_strdup_printf(kLoopTemplate, i);
if (!*loopback) {
PERROR("g_strdup_printf");
return -1;
}
fd = open(*loopback, O_RDONLY | O_NOFOLLOW);
if (fd < 0) {
PERROR("open(%s)", *loopback);
goto failed;
}
if (!is_loop_device(fd)) {
close(fd);
continue;
}
memset(&info, 0, sizeof(info));
attached = loop_is_attached(fd, &info);
close(fd);
if (attached)
DEBUG("Saw %s on %s", info.lo_file_name, *loopback);
if ((attached && name &&
strncmp((char *)info.lo_file_name, name, namelen) == 0) ||
(!attached && !name)) {
DEBUG("Using %s", *loopback);
/* Reopen for working on it. */
fd = open(*loopback, O_RDWR | O_NOFOLLOW);
if (is_loop_device(fd) &&
loop_is_attached(fd, NULL) == attached)
return fd;
}
}
ERROR("Ran out of loopback devices");
failed:
g_free(*loopback);
*loopback = NULL;
return -1;
}
static int loop_detach_fd(int fd)
{
if (ioctl(fd, LOOP_CLR_FD, 0)) {
PERROR("LOOP_CLR_FD");
return 0;
}
return 1;
}
int loop_detach(const gchar *loopback)
{
int fd, rc = 1;
fd = open(loopback, O_RDONLY | O_NOFOLLOW);
if (fd < 0) {
PERROR("open(%s)", loopback);
return 0;
}
if (!is_loop_device(fd) || !loop_is_attached(fd, NULL) ||
!loop_detach_fd(fd))
rc = 0;
close (fd);
return rc;
}
int loop_detach_name(const char *name)
{
gchar *loopback = NULL;
int loopfd, rc;
loopfd = loop_locate(&loopback, name);
if (loopfd < 0)
return 0;
rc = loop_detach_fd(loopfd);
close(loopfd);
g_free(loopback);
return rc;
}
/* Closes fd, returns name of loopback device pathname. */
gchar *loop_attach(int fd, const char *name)
{
gchar *loopback = NULL;
int loopfd;
struct loop_info64 info;
loopfd = loop_locate(&loopback, NULL);
if (loopfd < 0)
return NULL;
if (ioctl(loopfd, LOOP_SET_FD, fd) < 0) {
PERROR("LOOP_SET_FD");
goto failed;
}
memset(&info, 0, sizeof(info));
strncpy((char*)info.lo_file_name, name, LO_NAME_SIZE);
if (ioctl(loopfd, LOOP_SET_STATUS64, &info)) {
PERROR("LOOP_SET_STATUS64");
goto failed;
}
close(loopfd);
close(fd);
return loopback;
failed:
close(loopfd);
close(fd);
g_free(loopback);
return 0;
}
int dm_setup(uint64_t sectors, const gchar *encryption_key, const char *name,
const gchar *device, const char *path, int discard)
{
/* Mount loopback device with dm-crypt using the encryption key. */
gchar *table = g_strdup_printf("0 %" PRIu64 " crypt " \
"aes-cbc-essiv:sha256 %s " \
"0 %s 0%s",
sectors,
encryption_key,
device,
discard ? " 1 allow_discards" : "");
if (!table) {
PERROR("g_strdup_printf");
return 0;
}
const gchar *argv[] = {
"/sbin/dmsetup",
"create", name,
"--noudevrules", "--noudevsync",
"--table", table,
NULL
};
/* TODO(keescook): replace with call to libdevmapper. */
if (runcmd(argv, NULL) != 0) {
g_free(table);
return 0;
}
g_free(table);
/* Make sure the dm-crypt device showed up. */
if (access(path, R_OK)) {
ERROR("%s does not exist", path);
return 0;
}
return 1;
}
int dm_teardown(const gchar *device)
{
const char *argv[] = {
"/sbin/dmsetup",
"remove", device,
"--noudevrules", "--noudevsync",
NULL
};
/* TODO(keescook): replace with call to libdevmapper. */
if (runcmd(argv, NULL) != 0)
return 0;
return 1;
}
char *dm_get_key(const gchar *device)
{
gchar *output = NULL;
char *key;
int i;
const char *argv[] = {
"/sbin/dmsetup",
"table", "--showkeys",
device,
NULL
};
/* TODO(keescook): replace with call to libdevmapper. */
if (runcmd(argv, &output) != 0)
return NULL;
/* Key is 4th field in the output. */
for (i = 0, key = strtok(output, " ");
i < 4 && key;
++i, key = strtok(NULL, " ")) { }
/* Create a copy of the key and free the output buffer. */
if (key) {
key = strdup(key);
g_free(output);
}
return key;
}
int sparse_create(const char *path, uint64_t bytes)
{
int sparsefd;
sparsefd = open(path, O_RDWR | O_CREAT | O_EXCL | O_NOFOLLOW,
S_IRUSR | S_IWUSR);
if (sparsefd < 0)
goto out;
if (ftruncate(sparsefd, bytes)) {
int saved_errno = errno;
close(sparsefd);
unlink(path);
errno = saved_errno;
sparsefd = -1;
}
out:
return sparsefd;
}
/* When creating a filesystem that will grow, the inode ratio is calculated
* using the starting size not the hinted "resize" size, which means the
* number of inodes can be highly constrained on tiny starting filesystems.
* Instead, calculate what the correct inode ratio should be for a given
* filesystem based on its expected starting and ending sizes.
*
* inode-ratio_mkfs =
*
* ceil(blocks_max / group-ratio) * size_mkfs
* ------------------------------------------------------------------
* ceil(size_max / inode-ratio_max) * ceil(blocks_mkfs / group-ratio)
*/
static uint64_t get_inode_ratio(uint64_t block_bytes_in,
uint64_t blocks_mkfs_in,
uint64_t blocks_max_in)
{
double block_bytes = (double)block_bytes_in;
double blocks_mkfs = (double)blocks_mkfs_in;
double blocks_max = (double)blocks_max_in;
double size_max, size_mkfs, groups_max, groups_mkfs, inodes_max;
double denom, inode_ratio_mkfs;
size_max = block_bytes * blocks_max;
size_mkfs = block_bytes * blocks_mkfs;
groups_max = ceil(blocks_max / kBlocksPerGroup);
groups_mkfs = ceil(blocks_mkfs / kBlocksPerGroup);
inodes_max = ceil(size_max / kInodeRatioDefault);
denom = inodes_max * groups_mkfs;
/* Make sure we never trigger divide-by-zero. */
if (denom == 0.0)
goto failure;
inode_ratio_mkfs = (groups_max * size_mkfs) / denom;
/* Make sure we never calculate anything totally huge. */
if (inode_ratio_mkfs > blocks_mkfs)
goto failure;
/* Make sure we never calculate anything totally tiny. */
if (inode_ratio_mkfs < kInodeRatioMinimum)
goto failure;
return (uint64_t)inode_ratio_mkfs;
failure:
return kInodeRatioDefault;
}
/* Creates an ext4 filesystem.
* device: path to block device to create filesystem on.
* block_bytes: bytes per block to use for filesystem.
* blocks_min: starting number of blocks on filesystem.
* blocks_max: largest expected size in blocks of filesystem, for growth hints.
*
* Returns 1 on success, 0 on failure.
*/
int filesystem_build(const char *device, uint64_t block_bytes,
uint64_t blocks_min, uint64_t blocks_max)
{
int rc = 0;
uint64_t inode_ratio;
gchar *blocksize = g_strdup_printf("%" PRIu64, block_bytes);
if (!blocksize) {
PERROR("g_strdup_printf");
goto out;
}
gchar *blocks_str;
blocks_str = g_strdup_printf("%" PRIu64, blocks_min);
if (!blocks_str) {
PERROR("g_strdup_printf");
goto free_blocksize;
}
gchar *extended;
if (blocks_min < blocks_max) {
extended = g_strdup_printf("%s,resize=%" PRIu64,
kExt4ExtendedOptions, blocks_max);
} else {
extended = g_strdup_printf("%s", kExt4ExtendedOptions);
}
if (!extended) {
PERROR("g_strdup_printf");
goto free_blocks_str;
}
inode_ratio = get_inode_ratio(block_bytes, blocks_min, blocks_max);
gchar *inode_ratio_str = g_strdup_printf("%" PRIu64, inode_ratio);
if (!inode_ratio_str) {
PERROR("g_strdup_printf");
goto free_extended;
}
const gchar *mkfs[] = {
"/sbin/mkfs.ext4",
"-T", "default",
"-b", blocksize,
"-m", "0",
"-O", "^huge_file,^flex_bg",
"-i", inode_ratio_str,
"-E", extended,
device,
blocks_str,
NULL
};
rc = (runcmd(mkfs, NULL) == 0);
if (!rc)
goto free_inode_ratio_str;
const gchar *tune2fs[] = {
"/sbin/tune2fs",
"-c", "0",
"-i", "0",
device,
NULL
};
rc = (runcmd(tune2fs, NULL) == 0);
free_inode_ratio_str:
g_free(inode_ratio_str);
free_extended:
g_free(extended);
free_blocks_str:
g_free(blocks_str);
free_blocksize:
g_free(blocksize);
out:
return rc;
}
/* Spawns a filesystem resizing process. */
int filesystem_resize(const char *device, uint64_t blocks, uint64_t blocks_max)
{
/* Ignore resizing if we know the filesystem was built to max size. */
if (blocks >= blocks_max) {
INFO("Resizing aborted. blocks:%" PRIu64 " >= blocks_max:%" PRIu64,
blocks, blocks_max);
return 1;
}
/* TODO(keescook): Read superblock to find out the current size of
* the filesystem (since statvfs does not report the correct value).
* For now, instead of doing multi-step resizing, just resize to the
* full size of the block device in one step.
*/
blocks = blocks_max;
INFO("Resizing started in %d second steps.", kResizeStepSeconds);
do {
gchar *blocks_str;
sleep(kResizeStepSeconds);
blocks += kResizeBlocks;
if (blocks > blocks_max)
blocks = blocks_max;
blocks_str = g_strdup_printf("%" PRIu64, blocks);
if (!blocks_str) {
PERROR("g_strdup_printf");
return 0;
}
const gchar *resize[] = {
"/sbin/resize2fs",
"-f",
device,
blocks_str,
NULL
};
INFO("Resizing filesystem on %s to %" PRIu64 ".", device, blocks);
if (runcmd(resize, NULL)) {
ERROR("resize2fs failed");
return 0;
}
g_free(blocks_str);
} while (blocks < blocks_max);
INFO("Resizing finished.");
return 1;
}
char *keyfile_read(const char *keyfile, uint8_t *system_key)
{
char *key = NULL;
unsigned char *cipher = NULL;
gsize length;
uint8_t *plain = NULL;
int plain_length, final_len;
GError *error = NULL;
EVP_CIPHER_CTX ctx;
const EVP_CIPHER *algo = EVP_aes_256_cbc();
DEBUG("Reading keyfile %s", keyfile);
if (EVP_CIPHER_key_length(algo) != DIGEST_LENGTH) {
ERROR("cipher key size mismatch (got %d, want %d)",
EVP_CIPHER_key_length(algo), DIGEST_LENGTH);
goto out;
}
if (access(keyfile, R_OK)) {
/* This file being missing is handled in caller, so
* do not emit error message.
*/
INFO("%s does not exist.", keyfile);
goto out;
}
if (!g_file_get_contents(keyfile, (gchar **)&cipher, &length,
&error)) {
ERROR("Unable to read %s: %s", keyfile, error->message);
g_error_free(error);
goto out;
}
plain = malloc(length + EVP_CIPHER_block_size(algo));
if (!plain) {
PERROR("malloc");
goto free_cipher;
}
DEBUG("Decrypting keyfile %s", keyfile);
/* Use the default IV. */
if (!EVP_DecryptInit(&ctx, algo, system_key, NULL)) {
SSL_ERROR("EVP_DecryptInit");
goto free_plain;
}
if (!EVP_DecryptUpdate(&ctx, plain, &plain_length, cipher, length)) {
SSL_ERROR("EVP_DecryptUpdate");
goto free_ctx;
}
if (!EVP_DecryptFinal(&ctx, plain+plain_length, &final_len)) {
SSL_ERROR("EVP_DecryptFinal");
goto free_ctx;
}
plain_length += final_len;
if (plain_length != DIGEST_LENGTH) {
ERROR("Decrypted encryption key length (%d) is not %d.",
plain_length, DIGEST_LENGTH);
goto free_ctx;
}
debug_dump_hex("encryption key", plain, DIGEST_LENGTH);
key = stringify_hex(plain, DIGEST_LENGTH);
free_ctx:
EVP_CIPHER_CTX_cleanup(&ctx);
free_plain:
free(plain);
free_cipher:
g_free(cipher);
out:
DEBUG("key:%p", key);
return key;
}
int keyfile_write(const char *keyfile, uint8_t *system_key, char *string)
{
int rc = 0;
size_t length;
uint8_t plain[DIGEST_LENGTH];
uint8_t *cipher = NULL;
int cipher_length, final_len;
GError *error = NULL;
EVP_CIPHER_CTX ctx;
const EVP_CIPHER *algo = EVP_aes_256_cbc();
mode_t mask;
DEBUG("Staring to process keyfile %s", keyfile);
/* Have key file be read/write only by root user. */
mask = umask(0077);
if (EVP_CIPHER_key_length(algo) != DIGEST_LENGTH) {
ERROR("cipher key size mismatch (got %d, want %d)",
EVP_CIPHER_key_length(algo), DIGEST_LENGTH);
goto out;
}
if (access(keyfile, R_OK) == 0) {
ERROR("%s already exists.", keyfile);
goto out;
}
length = strlen(string);
if (length != sizeof(plain) * 2) {
ERROR("Encryption key string length (%zu) is not %zu.",
length, sizeof(plain) * 2);
goto out;
}
length = sizeof(plain);
if (!hexify_string(string, plain, length)) {
ERROR("Failed to convert encryption key to byte array");
goto out;
}
debug_dump_hex("encryption key", plain, DIGEST_LENGTH);
cipher = malloc(length + EVP_CIPHER_block_size(algo));
if (!cipher) {
PERROR("malloc");
goto out;
}
DEBUG("Encrypting keyfile %s", keyfile);
/* Use the default IV. */
if (!EVP_EncryptInit(&ctx, algo, system_key, NULL)) {
SSL_ERROR("EVP_EncryptInit");
goto free_cipher;
}
if (!EVP_EncryptUpdate(&ctx, cipher, &cipher_length,
(unsigned char *)plain, length)) {
SSL_ERROR("EVP_EncryptUpdate");
goto free_ctx;
}
if (!EVP_EncryptFinal(&ctx, cipher+cipher_length, &final_len)) {
SSL_ERROR("EVP_EncryptFinal");
goto free_ctx;
}
length = cipher_length + final_len;
DEBUG("Writing %zu bytes to %s", length, keyfile);
/* TODO(keescook): use fd here, and set secure delete. Unsupported
* by ext4 currently. :(
* int f;
* ioctl(fd, EXT2_IOC_GETFLAGS, &f);
* f |= EXT2_SECRM_FL;
* ioctl(fd, EXT2_IOC_SETFLAGS, &f);
*/
if (!g_file_set_contents(keyfile, (gchar *)cipher, length, &error)) {
ERROR("Unable to write %s: %s", keyfile, error->message);
g_error_free(error);
goto free_ctx;
}
rc = 1;
free_ctx:
EVP_CIPHER_CTX_cleanup(&ctx);
free_cipher:
free(cipher);
out:
umask(mask);
DEBUG("keyfile write rc:%d", rc);
return rc;
}