blob: e3ef45722488cf9e4dc580a41700e5b8da850c27 [file] [log] [blame]
/* ====================================================================
* Copyright (c) 2008 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#ifndef __CROS_EC_AES_GCM_H
#define __CROS_EC_AES_GCM_H
#include "common.h"
#include "endian.h"
#include "util.h"
// block128_f is the type of a 128-bit, block cipher.
typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
const void *key);
// GCM definitions
typedef struct { uint64_t hi,lo; } u128;
// gmult_func multiplies |Xi| by the GCM key and writes the result back to
// |Xi|.
typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]);
// ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
// |inp|. The result is written back to |Xi| and the |len| argument must be a
// multiple of 16.
typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16],
const uint8_t *inp, size_t len);
// This differs from upstream's |gcm128_context| in that it does not have the
// |key| pointer, in order to make it |memcpy|-friendly. Rather the key is
// passed into each call that needs it.
struct gcm128_context {
// Following 6 names follow names in GCM specification
union {
uint64_t u[2];
uint32_t d[4];
uint8_t c[16];
size_t t[16 / sizeof(size_t)];
} Yi, EKi, EK0, len, Xi;
// Note that the order of |Xi|, |H| and |Htable| is fixed by the MOVBE-based,
// x86-64, GHASH assembly.
u128 H;
u128 Htable[16];
gmult_func gmult;
ghash_func ghash;
unsigned int mres, ares;
block128_f block;
};
// GCM.
//
// This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
// not have a |key| pointer that points to the key as upstream's version does.
// Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
// can be safely copied.
typedef struct gcm128_context GCM128_CONTEXT;
// CRYPTO_gcm128_init initialises |ctx| to use |block| (typically AES) with
// the given key. |block_is_hwaes| is one if |block| is |aes_hw_encrypt|.
void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key,
block128_f block, int block_is_hwaes);
// CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
// same key that was passed to |CRYPTO_gcm128_init|.
void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
const uint8_t *iv, size_t iv_len);
// CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
// This must be called before and data is encrypted. It returns one on success
// and zero otherwise.
int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
size_t len);
// CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
// must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
// on success and zero otherwise.
int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
const uint8_t *in, uint8_t *out,
size_t len);
// CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
// must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
// on success and zero otherwise.
int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
const uint8_t *in, uint8_t *out,
size_t len);
// CRYPTO_gcm128_finish calculates the authenticator and compares it against
// |len| bytes of |tag|. It returns one on success and zero otherwise.
int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
size_t len);
// CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
// The minimum of |len| and 16 bytes are copied into |tag|.
void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
size_t len);
#endif // __CROS_EC_AES_GCM_H