blob: d2e7b5603dbca6ac628ddfab166948f134d550a2 [file] [log] [blame]
// Copyright 2016 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "component.h"
#include <fcntl.h>
#include <algorithm>
#include <string>
#include <vector>
#include <base/files/file.h>
#include <base/files/file_path.h>
#include <base/files/file_util.h>
#include <base/files/scoped_file.h>
#include <base/json/json_string_value_serializer.h>
#include <base/logging.h>
#include <base/numerics/safe_conversions.h>
#include <base/strings/string_number_conversions.h>
#include <base/posix/eintr_wrapper.h>
#include <base/strings/string_util.h>
#include <crypto/secure_hash.h>
#include <crypto/sha2.h>
#include <crypto/signature_verifier.h>
#include "helper_process.h"
namespace imageloader {
namespace {
// The name of the imageloader manifest file.
constexpr char kManifestName[] = "imageloader.json";
// The name of the fingerprint file.
constexpr char kFingerprintName[] = "manifest.fingerprint";
// The manifest signature.
constexpr char kManifestSignatureName[] = "imageloader.sig.1";
// The current version of the manifest file.
constexpr int kCurrentManifestVersion = 1;
// The name of the version field in the manifest.
constexpr char kManifestVersionField[] = "manifest-version";
// The name of the component version field in the manifest.
constexpr char kVersionField[] = "version";
// The name of the field containing the image hash.
constexpr char kImageHashField[] = "image-sha256-hash";
// The name of the image file.
constexpr char kImageFileName[] = "image.squash";
// The name of the field containing the table hash.
constexpr char kTableHashField[] = "table-sha256-hash";
// The name of the table file.
constexpr char kTableFileName[] = "table";
// The maximum size of any file to read into memory.
constexpr size_t kMaximumFilesize = 4096 * 10;
base::FilePath GetManifestPath(const base::FilePath& component_dir) {
return component_dir.Append(kManifestName);
}
base::FilePath GetSignaturePath(const base::FilePath& component_dir) {
return component_dir.Append(kManifestSignatureName);
}
base::FilePath GetFingerprintPath(const base::FilePath& component_dir) {
return component_dir.Append(kFingerprintName);
}
base::FilePath GetTablePath(const base::FilePath& component_dir) {
return component_dir.Append(kTableFileName);
}
base::FilePath GetImagePath(const base::FilePath& component_dir) {
return component_dir.Append(kImageFileName);
}
bool WriteFileToDisk(const base::FilePath& path, const std::string& contents) {
base::ScopedFD fd(HANDLE_EINTR(open(path.value().c_str(),
O_CREAT | O_WRONLY | O_EXCL,
kComponentFilePerms)));
if (!fd.is_valid()) {
PLOG(ERROR) << "Error creating file for " << path.value();
return false;
}
base::File file(fd.release());
int size = base::checked_cast<int>(contents.size());
return file.Write(0, contents.data(), contents.size()) == size;
}
bool GetSHA256FromString(const std::string& hash_str,
std::vector<uint8_t>* bytes) {
if (!base::HexStringToBytes(hash_str, bytes)) return false;
return bytes->size() == crypto::kSHA256Length;
}
bool GetAndVerifyTable(const base::FilePath& path,
const std::vector<uint8_t>& hash,
std::string* out_table) {
std::string table;
if (!base::ReadFileToStringWithMaxSize(path, &table, kMaximumFilesize)) {
return false;
}
std::vector<uint8_t> table_hash(crypto::kSHA256Length);
crypto::SHA256HashString(table, table_hash.data(), table_hash.size());
if (table_hash != hash) {
LOG(ERROR) << "dm-verity table file has the wrong hash.";
return false;
}
out_table->assign(table);
return true;
}
} // namespace
Component::Component(const base::FilePath& component_dir)
: component_dir_(component_dir), initialized_(false) {}
bool Component::Init(const std::vector<uint8_t>& public_key) {
if (initialized_) {
NOTREACHED() << "Component already initialized";
return false;
}
initialized_ = LoadManifest(public_key);
return initialized_;
}
const Component::Manifest& Component::manifest() {
// If the manifest is accessed without initialization, crash.
CHECK(initialized_);
return manifest_;
}
bool Component::Mount(HelperProcess* mounter, const base::FilePath& dest_dir) {
if (!initialized_) {
NOTREACHED() << "Component not initialized";
return false;
}
// Now read the table in and verify the hash.
std::string table;
if (!GetAndVerifyTable(GetTablePath(component_dir_), manifest_.table_sha256,
&table)) {
LOG(ERROR) << "Could not read and verify dm-verity table.";
return false;
}
base::FilePath image_path(GetImagePath(component_dir_));
base::File image(image_path, base::File::FLAG_OPEN | base::File::FLAG_READ);
if (!image.IsValid()) {
LOG(ERROR) << "Could not open image file.";
return false;
}
base::ScopedFD image_fd(image.TakePlatformFile());
return mounter->SendMountCommand(image_fd.get(), dest_dir.value(), table);
}
bool Component::ParseManifest() {
// Now deserialize the manifest json and read out the rest of the component.
int error_code;
std::string error_message;
JSONStringValueDeserializer deserializer(manifest_raw_);
std::unique_ptr<base::Value> value =
deserializer.Deserialize(&error_code, &error_message);
if (!value) {
LOG(ERROR) << "Could not deserialize the manifest file. Error "
<< error_code << ": " << error_message;
return false;
}
base::DictionaryValue* manifest_dict = nullptr;
if (!value->GetAsDictionary(&manifest_dict)) {
LOG(ERROR) << "Could not parse manifest file as JSON.";
return false;
}
// This will have to be changed if the manifest version is bumped.
int version;
if (!manifest_dict->GetInteger(kManifestVersionField, &version)) {
LOG(ERROR) << "Could not parse manifest version field from manifest.";
return false;
}
if (version != kCurrentManifestVersion) {
LOG(ERROR) << "Unsupported version of the manifest.";
return false;
}
manifest_.manifest_version = version;
std::string image_hash_str;
if (!manifest_dict->GetString(kImageHashField, &image_hash_str)) {
LOG(ERROR) << "Could not parse image hash from manifest.";
return false;
}
if (!GetSHA256FromString(image_hash_str, &(manifest_.image_sha256))) {
LOG(ERROR) << "Could not convert image hash to bytes.";
return false;
}
std::string table_hash_str;
if (!manifest_dict->GetString(kTableHashField, &table_hash_str)) {
LOG(ERROR) << "Could not parse table hash from manifest.";
return false;
}
if (!GetSHA256FromString(table_hash_str, &(manifest_.table_sha256))) {
LOG(ERROR) << "Could not convert table hash to bytes.";
return false;
}
if (!manifest_dict->GetString(kVersionField, &(manifest_.version))) {
LOG(ERROR) << "Could not parse component version from manifest.";
return false;
}
return true;
}
bool Component::LoadManifest(const std::vector<uint8_t>& public_key) {
if (!base::ReadFileToStringWithMaxSize(GetManifestPath(component_dir_),
&manifest_raw_, kMaximumFilesize)) {
LOG(ERROR) << "Could not read manifest file.";
return false;
}
if (!base::ReadFileToStringWithMaxSize(GetSignaturePath(component_dir_),
&manifest_sig_, kMaximumFilesize)) {
LOG(ERROR) << "Could not read signature file.";
return false;
}
crypto::SignatureVerifier verifier;
if (!verifier.VerifyInit(
crypto::SignatureVerifier::ECDSA_SHA256,
reinterpret_cast<const uint8_t*>(manifest_sig_.data()),
base::checked_cast<int>(manifest_sig_.size()), public_key.data(),
base::checked_cast<int>(public_key.size()))) {
LOG(ERROR) << "Failed to initialize signature verification.";
return false;
}
verifier.VerifyUpdate(reinterpret_cast<const uint8_t*>(manifest_raw_.data()),
base::checked_cast<int>(manifest_raw_.size()));
if (!verifier.VerifyFinal()) {
LOG(ERROR) << "Manifest failed signature verification.";
return false;
}
return ParseManifest();
}
bool Component::CopyTo(const base::FilePath& dest_dir) {
if (!initialized_) {
NOTREACHED() << "Component not initialized";
return false;
}
if (!WriteFileToDisk(GetManifestPath(dest_dir), manifest_raw_) ||
!WriteFileToDisk(GetSignaturePath(dest_dir), manifest_sig_)) {
LOG(ERROR) << "Could not write manifest and signature to disk.";
return false;
}
base::FilePath table_src(GetTablePath(component_dir_));
base::FilePath table_dest(GetTablePath(dest_dir));
if (!CopyComponentFile(table_src, table_dest, manifest_.table_sha256)) {
LOG(ERROR) << "Could not copy table file.";
return false;
}
base::FilePath image_src(GetImagePath(component_dir_));
base::FilePath image_dest(GetImagePath(dest_dir));
if (!CopyComponentFile(image_src, image_dest, manifest_.image_sha256)) {
LOG(ERROR) << "Could not copy image file.";
return false;
}
if (!CopyFingerprintFile(component_dir_, dest_dir)) {
LOG(ERROR) << "Could not copy manifest.fingerprint file.";
return false;
}
return true;
}
bool Component::CopyComponentFile(const base::FilePath& src,
const base::FilePath& dest_path,
const std::vector<uint8_t>& expected_hash) {
base::File file(src, base::File::FLAG_OPEN | base::File::FLAG_READ);
if (!file.IsValid()) return false;
base::ScopedFD dest(
HANDLE_EINTR(open(dest_path.value().c_str(), O_CREAT | O_WRONLY | O_EXCL,
kComponentFilePerms)));
if (!dest.is_valid()) return false;
base::File out_file(dest.release());
std::unique_ptr<crypto::SecureHash> sha256(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
std::vector<uint8_t> file_hash(crypto::kSHA256Length);
if (!ReadHashAndCopyFile(&file, &file_hash, &out_file)) {
LOG(ERROR) << "Failed to read image file.";
return false;
}
if (expected_hash != file_hash) {
LOG(ERROR) << "Image is corrupt or modified.";
return false;
}
return true;
}
bool Component::ReadHashAndCopyFile(base::File* file,
std::vector<uint8_t>* file_hash,
base::File* out_file) {
std::unique_ptr<crypto::SecureHash> sha256(
crypto::SecureHash::Create(crypto::SecureHash::SHA256));
int size = file->GetLength();
if (size <= 0) return false;
int rv = 0, bytes_read = 0;
char buf[4096];
do {
int remaining = size - bytes_read;
int bytes_to_read =
std::min(remaining, base::checked_cast<int>(sizeof(buf)));
rv = file->ReadAtCurrentPos(buf, bytes_to_read);
if (rv <= 0) break;
bytes_read += rv;
sha256->Update(buf, rv);
if (out_file) {
out_file->WriteAtCurrentPos(buf, rv);
}
} while (bytes_read <= size);
sha256->Finish(file_hash->data(), file_hash->size());
return bytes_read == size;
}
bool Component::CopyFingerprintFile(const base::FilePath& src,
const base::FilePath& dest) {
base::FilePath fingerprint_path(GetFingerprintPath(src));
if (base::PathExists(fingerprint_path)) {
std::string fingerprint_contents;
if (!base::ReadFileToStringWithMaxSize(
fingerprint_path, &fingerprint_contents, kMaximumFilesize)) {
return false;
}
if (!IsValidFingerprintFile(fingerprint_contents)) return false;
if (!WriteFileToDisk(GetFingerprintPath(dest), fingerprint_contents)) {
return false;
}
}
return true;
}
// The client inserts manifest.fingerprint into components after unpacking the
// CRX. The file is used for delta updates. Since Chrome OS doesn't rely on it
// for security of the disk image, we are fine with sanity checking the contents
// and then preserving the unsigned file.
bool Component::IsValidFingerprintFile(const std::string& contents) {
return contents.size() <= 256 &&
std::find_if_not(contents.begin(), contents.end(), [](char ch) {
return base::IsAsciiAlpha(ch) || base::IsAsciiDigit(ch) || ch == '.';
}) == contents.end();
}
} // namespace imageloader