| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/task/single_thread_task_executor.h" |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <string> |
| #include <vector> |
| |
| #include "base/bind.h" |
| #include "base/callback_helpers.h" |
| #include "base/compiler_specific.h" |
| #include "base/logging.h" |
| #include "base/memory/ptr_util.h" |
| #include "base/memory/raw_ptr.h" |
| #include "base/memory/ref_counted.h" |
| #include "base/message_loop/message_pump_for_io.h" |
| #include "base/message_loop/message_pump_type.h" |
| #include "base/pending_task.h" |
| #include "base/posix/eintr_wrapper.h" |
| #include "base/run_loop.h" |
| #include "base/synchronization/waitable_event.h" |
| #include "base/task/current_thread.h" |
| #include "base/task/single_thread_task_runner.h" |
| #include "base/task/task_observer.h" |
| #include "base/task/thread_pool/thread_pool_instance.h" |
| #include "base/test/bind.h" |
| #include "base/test/gtest_util.h" |
| #include "base/test/metrics/histogram_tester.h" |
| #include "base/test/test_simple_task_runner.h" |
| #include "base/test/test_timeouts.h" |
| #include "base/threading/platform_thread.h" |
| #include "base/threading/sequence_local_storage_slot.h" |
| #include "base/threading/thread.h" |
| #include "base/threading/thread_task_runner_handle.h" |
| #include "base/time/time.h" |
| #include "build/build_config.h" |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "third_party/abseil-cpp/absl/types/optional.h" |
| |
| #if BUILDFLAG(IS_ANDROID) |
| #include "base/android/java_handler_thread.h" |
| #include "base/android/jni_android.h" |
| #include "base/test/android/java_handler_thread_helpers.h" |
| #endif |
| |
| #if BUILDFLAG(IS_WIN) |
| #include "base/message_loop/message_pump_win.h" |
| #include "base/process/memory.h" |
| #include "base/win/current_module.h" |
| #include "base/win/message_window.h" |
| #include "base/win/scoped_handle.h" |
| |
| #include <windows.h> |
| #endif |
| |
| using ::testing::IsNull; |
| using ::testing::NotNull; |
| |
| namespace base { |
| |
| // TODO(darin): Platform-specific MessageLoop tests should be grouped together |
| // to avoid chopping this file up with so many #ifdefs. |
| |
| TEST(SingleThreadTaskExecutorTest, GetTaskExecutorForCurrentThread) { |
| EXPECT_THAT(GetTaskExecutorForCurrentThread(), IsNull()); |
| |
| { |
| SingleThreadTaskExecutor single_thread_task_executor; |
| EXPECT_THAT(GetTaskExecutorForCurrentThread(), NotNull()); |
| } |
| |
| EXPECT_THAT(GetTaskExecutorForCurrentThread(), IsNull()); |
| } |
| |
| TEST(SingleThreadTaskExecutorTest, |
| GetTaskExecutorForCurrentThreadInPostedTask) { |
| SingleThreadTaskExecutor single_thread_task_executor; |
| TaskExecutor* task_executor = GetTaskExecutorForCurrentThread(); |
| |
| EXPECT_THAT(task_executor, NotNull()); |
| |
| RunLoop run_loop; |
| single_thread_task_executor.task_runner()->PostTask( |
| FROM_HERE, BindLambdaForTesting([&]() { |
| EXPECT_EQ(GetTaskExecutorForCurrentThread(), task_executor); |
| run_loop.Quit(); |
| })); |
| |
| run_loop.Run(); |
| } |
| |
| namespace { |
| |
| class Foo : public RefCounted<Foo> { |
| public: |
| Foo() : test_count_(0) {} |
| |
| Foo(const Foo&) = delete; |
| Foo& operator=(const Foo&) = delete; |
| |
| void Test0() { ++test_count_; } |
| |
| void Test1ConstRef(const std::string& a) { |
| ++test_count_; |
| result_.append(a); |
| } |
| |
| void Test1Ptr(std::string* a) { |
| ++test_count_; |
| result_.append(*a); |
| } |
| |
| void Test1Int(int a) { test_count_ += a; } |
| |
| void Test2Ptr(std::string* a, std::string* b) { |
| ++test_count_; |
| result_.append(*a); |
| result_.append(*b); |
| } |
| |
| void Test2Mixed(const std::string& a, std::string* b) { |
| ++test_count_; |
| result_.append(a); |
| result_.append(*b); |
| } |
| |
| int test_count() const { return test_count_; } |
| const std::string& result() const { return result_; } |
| |
| private: |
| friend class RefCounted<Foo>; |
| |
| ~Foo() = default; |
| |
| int test_count_; |
| std::string result_; |
| }; |
| |
| // This function runs slowly to simulate a large amount of work being done. |
| static void SlowFunc(TimeDelta pause, int* quit_counter) { |
| PlatformThread::Sleep(pause); |
| if (--(*quit_counter) == 0) |
| RunLoop::QuitCurrentWhenIdleDeprecated(); |
| } |
| |
| // This function records the time when Run was called in a Time object, which is |
| // useful for building a variety of SingleThreadTaskExecutor tests. |
| static void RecordRunTimeFunc(TimeTicks* run_time, int* quit_counter) { |
| *run_time = TimeTicks::Now(); |
| |
| // Cause our Run function to take some time to execute. As a result we can |
| // count on subsequent RecordRunTimeFunc()s running at a future time, |
| // without worry about the resolution of our system clock being an issue. |
| SlowFunc(Milliseconds(10), quit_counter); |
| } |
| |
| enum TaskType { |
| MESSAGEBOX, |
| ENDDIALOG, |
| RECURSIVE, |
| TIMEDMESSAGELOOP, |
| QUITMESSAGELOOP, |
| ORDERED, |
| PUMPS, |
| SLEEP, |
| RUNS, |
| }; |
| |
| // Saves the order in which the tasks executed. |
| struct TaskItem { |
| TaskItem(TaskType t, int c, bool s) : type(t), cookie(c), start(s) {} |
| |
| TaskType type; |
| int cookie; |
| bool start; |
| |
| bool operator==(const TaskItem& other) const { |
| return type == other.type && cookie == other.cookie && start == other.start; |
| } |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, TaskType type) { |
| switch (type) { |
| case MESSAGEBOX: |
| os << "MESSAGEBOX"; |
| break; |
| case ENDDIALOG: |
| os << "ENDDIALOG"; |
| break; |
| case RECURSIVE: |
| os << "RECURSIVE"; |
| break; |
| case TIMEDMESSAGELOOP: |
| os << "TIMEDMESSAGELOOP"; |
| break; |
| case QUITMESSAGELOOP: |
| os << "QUITMESSAGELOOP"; |
| break; |
| case ORDERED: |
| os << "ORDERED"; |
| break; |
| case PUMPS: |
| os << "PUMPS"; |
| break; |
| case SLEEP: |
| os << "SLEEP"; |
| break; |
| default: |
| NOTREACHED(); |
| os << "Unknown TaskType"; |
| break; |
| } |
| return os; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const TaskItem& item) { |
| if (item.start) |
| return os << item.type << " " << item.cookie << " starts"; |
| return os << item.type << " " << item.cookie << " ends"; |
| } |
| |
| class TaskList { |
| public: |
| void RecordStart(TaskType type, int cookie) { |
| TaskItem item(type, cookie, true); |
| DVLOG(1) << item; |
| task_list_.push_back(item); |
| } |
| |
| void RecordEnd(TaskType type, int cookie) { |
| TaskItem item(type, cookie, false); |
| DVLOG(1) << item; |
| task_list_.push_back(item); |
| } |
| |
| size_t Size() { return task_list_.size(); } |
| |
| TaskItem Get(int n) { return task_list_[n]; } |
| |
| private: |
| std::vector<TaskItem> task_list_; |
| }; |
| |
| class DummyTaskObserver : public TaskObserver { |
| public: |
| explicit DummyTaskObserver(int num_tasks) |
| : num_tasks_started_(0), num_tasks_processed_(0), num_tasks_(num_tasks) {} |
| |
| DummyTaskObserver(int num_tasks, int num_tasks_started) |
| : num_tasks_started_(num_tasks_started), |
| num_tasks_processed_(0), |
| num_tasks_(num_tasks) {} |
| |
| DummyTaskObserver(const DummyTaskObserver&) = delete; |
| DummyTaskObserver& operator=(const DummyTaskObserver&) = delete; |
| |
| ~DummyTaskObserver() override = default; |
| |
| void WillProcessTask(const PendingTask& pending_task, |
| bool /* was_blocked_or_low_priority */) override { |
| num_tasks_started_++; |
| EXPECT_LE(num_tasks_started_, num_tasks_); |
| EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1); |
| } |
| |
| void DidProcessTask(const PendingTask& pending_task) override { |
| num_tasks_processed_++; |
| EXPECT_LE(num_tasks_started_, num_tasks_); |
| EXPECT_EQ(num_tasks_started_, num_tasks_processed_); |
| } |
| |
| int num_tasks_started() const { return num_tasks_started_; } |
| int num_tasks_processed() const { return num_tasks_processed_; } |
| |
| private: |
| int num_tasks_started_; |
| int num_tasks_processed_; |
| const int num_tasks_; |
| }; |
| |
| // A method which reposts itself |depth| times. |
| void RecursiveFunc(TaskList* order, int cookie, int depth) { |
| order->RecordStart(RECURSIVE, cookie); |
| if (depth > 0) { |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&RecursiveFunc, order, cookie, depth - 1)); |
| } |
| order->RecordEnd(RECURSIVE, cookie); |
| } |
| |
| void QuitFunc(TaskList* order, int cookie) { |
| order->RecordStart(QUITMESSAGELOOP, cookie); |
| RunLoop::QuitCurrentWhenIdleDeprecated(); |
| order->RecordEnd(QUITMESSAGELOOP, cookie); |
| } |
| |
| #if BUILDFLAG(IS_WIN) |
| |
| void SubPumpFunc(OnceClosure on_done) { |
| CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop |
| allow_nestable_tasks; |
| MSG msg; |
| while (::GetMessage(&msg, NULL, 0, 0)) { |
| ::TranslateMessage(&msg); |
| ::DispatchMessage(&msg); |
| } |
| std::move(on_done).Run(); |
| } |
| |
| const wchar_t kMessageBoxTitle[] = L"SingleThreadTaskExecutor Unit Test"; |
| |
| // SingleThreadTaskExecutor implicitly start a "modal message loop". Modal |
| // dialog boxes, common controls (like OpenFile) and StartDoc printing function |
| // can cause implicit message loops. |
| void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) { |
| order->RecordStart(MESSAGEBOX, cookie); |
| absl::optional<CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop> |
| maybe_allow_nesting; |
| if (is_reentrant) |
| maybe_allow_nesting.emplace(); |
| ::MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK); |
| order->RecordEnd(MESSAGEBOX, cookie); |
| } |
| |
| // Will end the MessageBox. |
| void EndDialogFunc(TaskList* order, int cookie) { |
| order->RecordStart(ENDDIALOG, cookie); |
| HWND window = GetActiveWindow(); |
| if (window != NULL) { |
| EXPECT_NE(::EndDialog(window, IDCONTINUE), 0); |
| // Cheap way to signal that the window wasn't found if RunEnd() isn't |
| // called. |
| order->RecordEnd(ENDDIALOG, cookie); |
| } |
| } |
| |
| // A method which posts a RecursiveFunc that will want to run while |
| // ::MessageBox() is active. |
| void RecursiveFuncWin(scoped_refptr<SingleThreadTaskRunner> task_runner, |
| HANDLE event, |
| bool expect_window, |
| TaskList* order, |
| bool message_box_is_reentrant) { |
| task_runner->PostTask(FROM_HERE, BindOnce(&RecursiveFunc, order, 1, 2)); |
| task_runner->PostTask( |
| FROM_HERE, BindOnce(&MessageBoxFunc, order, 2, message_box_is_reentrant)); |
| task_runner->PostTask(FROM_HERE, BindOnce(&RecursiveFunc, order, 3, 2)); |
| // The trick here is that for nested task processing, this task will be |
| // ran _inside_ the MessageBox message loop, dismissing the MessageBox |
| // without a chance. |
| // For non-nested task processing, this will be executed _after_ the |
| // MessageBox will have been dismissed by the code below, where |
| // expect_window_ is true. |
| task_runner->PostTask(FROM_HERE, BindOnce(&EndDialogFunc, order, 4)); |
| task_runner->PostTask(FROM_HERE, BindOnce(&QuitFunc, order, 5)); |
| |
| // Enforce that every tasks are sent before starting to run the main thread |
| // message loop. |
| ASSERT_TRUE(SetEvent(event)); |
| |
| // Poll for the MessageBox. Don't do this at home! At the speed we do it, |
| // you will never realize one MessageBox was shown. |
| for (; expect_window;) { |
| HWND window = ::FindWindowW(L"#32770", kMessageBoxTitle); |
| if (window) { |
| // Dismiss it. |
| for (;;) { |
| HWND button = ::FindWindowExW(window, NULL, L"Button", NULL); |
| if (button != NULL) { |
| EXPECT_EQ(0, ::SendMessage(button, WM_LBUTTONDOWN, 0, 0)); |
| EXPECT_EQ(0, ::SendMessage(button, WM_LBUTTONUP, 0, 0)); |
| break; |
| } |
| } |
| break; |
| } |
| } |
| } |
| |
| #endif // BUILDFLAG(IS_WIN) |
| |
| void Post128KTasksThenQuit(SingleThreadTaskRunner* executor_task_runner, |
| TimeTicks begin_ticks, |
| TimeTicks last_post_ticks, |
| TimeDelta slowest_delay, |
| OnceClosure on_done, |
| int num_posts_done = 0) { |
| const int kNumTimes = 128000; |
| |
| // Tasks should be running on a decent heart beat. Some platforms/bots however |
| // have a hard time posting+running *all* tasks before test timeout, add |
| // detailed logging for diagnosis where this flakes. |
| const auto now = TimeTicks::Now(); |
| const auto scheduling_delay = now - last_post_ticks; |
| if (scheduling_delay > slowest_delay) |
| slowest_delay = scheduling_delay; |
| |
| if (num_posts_done == kNumTimes) { |
| std::move(on_done).Run(); |
| return; |
| } else if (now - begin_ticks >= TestTimeouts::action_max_timeout()) { |
| ADD_FAILURE() << "Couldn't run all tasks." |
| << "\nNumber of tasks remaining: " |
| << kNumTimes - num_posts_done |
| << "\nSlowest scheduling delay: " << slowest_delay |
| << "\nAverage per task: " |
| << (now - begin_ticks) / num_posts_done; |
| std::move(on_done).Run(); |
| return; |
| } |
| |
| executor_task_runner->PostTask( |
| FROM_HERE, |
| BindOnce(&Post128KTasksThenQuit, Unretained(executor_task_runner), |
| begin_ticks, now, slowest_delay, std::move(on_done), |
| num_posts_done + 1)); |
| } |
| |
| #if BUILDFLAG(IS_WIN) |
| |
| class TestIOHandler : public MessagePumpForIO::IOHandler { |
| public: |
| TestIOHandler(const wchar_t* name, HANDLE signal); |
| |
| void OnIOCompleted(MessagePumpForIO::IOContext* context, |
| DWORD bytes_transfered, |
| DWORD error) override; |
| |
| void Init(); |
| OVERLAPPED* context() { return &context_.overlapped; } |
| DWORD size() { return sizeof(buffer_); } |
| |
| private: |
| char buffer_[48]; |
| MessagePumpForIO::IOContext context_; |
| HANDLE signal_; |
| win::ScopedHandle file_; |
| }; |
| |
| TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal) |
| : MessagePumpForIO::IOHandler(FROM_HERE), signal_(signal) { |
| memset(buffer_, 0, sizeof(buffer_)); |
| |
| file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING, |
| FILE_FLAG_OVERLAPPED, NULL)); |
| EXPECT_TRUE(file_.is_valid()); |
| } |
| |
| void TestIOHandler::Init() { |
| CurrentIOThread::Get()->RegisterIOHandler(file_.get(), this); |
| |
| DWORD read; |
| EXPECT_FALSE(ReadFile(file_.get(), buffer_, size(), &read, context())); |
| EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError()); |
| } |
| |
| void TestIOHandler::OnIOCompleted(MessagePumpForIO::IOContext* context, |
| DWORD bytes_transfered, |
| DWORD error) { |
| ASSERT_TRUE(context == &context_); |
| ASSERT_TRUE(SetEvent(signal_)); |
| } |
| |
| void RunTest_IOHandler() { |
| win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL)); |
| ASSERT_TRUE(callback_called.is_valid()); |
| |
| const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe"; |
| win::ScopedHandle server( |
| CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); |
| ASSERT_TRUE(server.is_valid()); |
| |
| Thread thread("IOHandler test"); |
| Thread::Options options; |
| options.message_pump_type = MessagePumpType::IO; |
| ASSERT_TRUE(thread.StartWithOptions(std::move(options))); |
| |
| TestIOHandler handler(kPipeName, callback_called.get()); |
| thread.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&TestIOHandler::Init, Unretained(&handler))); |
| // Make sure the thread runs and sleeps for lack of work. |
| PlatformThread::Sleep(Milliseconds(100)); |
| |
| const char buffer[] = "Hello there!"; |
| DWORD written; |
| EXPECT_TRUE(WriteFile(server.get(), buffer, sizeof(buffer), &written, NULL)); |
| |
| DWORD result = WaitForSingleObject(callback_called.get(), 1000); |
| EXPECT_EQ(WAIT_OBJECT_0, result); |
| |
| thread.Stop(); |
| } |
| |
| #endif // BUILDFLAG(IS_WIN) |
| |
| } // namespace |
| |
| //----------------------------------------------------------------------------- |
| // Each test is run against each type of SingleThreadTaskExecutor. That way we |
| // are sure that SingleThreadTaskExecutor works properly in all configurations. |
| // Of course, in some cases, a unit test may only be for a particular type of |
| // loop. |
| |
| class SingleThreadTaskExecutorTypedTest |
| : public ::testing::TestWithParam<MessagePumpType> { |
| public: |
| SingleThreadTaskExecutorTypedTest() = default; |
| |
| SingleThreadTaskExecutorTypedTest(const SingleThreadTaskExecutorTypedTest&) = |
| delete; |
| SingleThreadTaskExecutorTypedTest& operator=( |
| const SingleThreadTaskExecutorTypedTest&) = delete; |
| |
| ~SingleThreadTaskExecutorTypedTest() = default; |
| |
| static std::string ParamInfoToString( |
| ::testing::TestParamInfo<MessagePumpType> param_info) { |
| switch (param_info.param) { |
| case MessagePumpType::DEFAULT: |
| return "default_pump"; |
| case MessagePumpType::IO: |
| return "IO_pump"; |
| case MessagePumpType::UI: |
| return "UI_pump"; |
| case MessagePumpType::CUSTOM: |
| break; |
| #if BUILDFLAG(IS_ANDROID) |
| case MessagePumpType::JAVA: |
| break; |
| #endif // BUILDFLAG(IS_ANDROID) |
| #if BUILDFLAG(IS_APPLE) |
| case MessagePumpType::NS_RUNLOOP: |
| break; |
| #endif // BUILDFLAG(IS_APPLE) |
| } |
| NOTREACHED(); |
| return ""; |
| } |
| }; |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, PostTask) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| // Add tests to message loop |
| scoped_refptr<Foo> foo(new Foo()); |
| std::string a("a"), b("b"), c("c"), d("d"); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&Foo::Test0, foo)); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&Foo::Test1Ptr, foo, &b)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&Foo::Test1Int, foo, 100)); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&Foo::Test2Ptr, foo, &a, &c)); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&Foo::Test2Mixed, foo, a, &d)); |
| // After all tests, post a message that will shut down the message loop |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated)); |
| |
| // Now kick things off |
| RunLoop().Run(); |
| |
| EXPECT_EQ(foo->test_count(), 105); |
| EXPECT_EQ(foo->result(), "abacad"); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, PostDelayedTask_Basic) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| // Test that PostDelayedTask results in a delayed task. |
| |
| const TimeDelta kDelay = Milliseconds(100); |
| |
| int num_tasks = 1; |
| TimeTicks run_time; |
| |
| TimeTicks time_before_run = TimeTicks::Now(); |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), kDelay); |
| RunLoop().Run(); |
| TimeTicks time_after_run = TimeTicks::Now(); |
| |
| EXPECT_EQ(0, num_tasks); |
| EXPECT_LT(kDelay, time_after_run - time_before_run); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, PostDelayedTask_InDelayOrder) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| // Test that two tasks with different delays run in the right order. |
| int num_tasks = 2; |
| TimeTicks run_time1, run_time2; |
| |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), |
| Milliseconds(200)); |
| // If we get a large pause in execution (due to a context switch) here, this |
| // test could fail. |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), |
| Milliseconds(10)); |
| |
| RunLoop().Run(); |
| EXPECT_EQ(0, num_tasks); |
| |
| EXPECT_TRUE(run_time2 < run_time1); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, PostDelayedTask_InPostOrder) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| // Test that two tasks with the same delay run in the order in which they |
| // were posted. |
| // |
| // NOTE: This is actually an approximate test since the API only takes a |
| // "delay" parameter, so we are not exactly simulating two tasks that get |
| // posted at the exact same time. It would be nice if the API allowed us to |
| // specify the desired run time. |
| |
| const TimeDelta kDelay = Milliseconds(100); |
| |
| int num_tasks = 2; |
| TimeTicks run_time1, run_time2; |
| |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay); |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay); |
| |
| RunLoop().Run(); |
| EXPECT_EQ(0, num_tasks); |
| |
| EXPECT_TRUE(run_time1 < run_time2); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, PostDelayedTask_InPostOrder_2) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| // Test that a delayed task still runs after a normal tasks even if the |
| // normal tasks take a long time to run. |
| |
| const TimeDelta kPause = Milliseconds(50); |
| |
| int num_tasks = 2; |
| TimeTicks run_time; |
| |
| executor.task_runner()->PostTask(FROM_HERE, |
| BindOnce(&SlowFunc, kPause, &num_tasks)); |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), |
| Milliseconds(10)); |
| |
| TimeTicks time_before_run = TimeTicks::Now(); |
| RunLoop().Run(); |
| TimeTicks time_after_run = TimeTicks::Now(); |
| |
| EXPECT_EQ(0, num_tasks); |
| |
| EXPECT_LT(kPause, time_after_run - time_before_run); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, PostDelayedTask_InPostOrder_3) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| // Test that a delayed task still runs after a pile of normal tasks. The key |
| // difference between this test and the previous one is that here we return |
| // the SingleThreadTaskExecutor a lot so we give the SingleThreadTaskExecutor |
| // plenty of opportunities to maybe run the delayed task. It should know not |
| // to do so until the delayed task's delay has passed. |
| |
| int num_tasks = 11; |
| TimeTicks run_time1, run_time2; |
| |
| // Clutter the ML with tasks. |
| for (int i = 1; i < num_tasks; ++i) |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks)); |
| |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), |
| Milliseconds(1)); |
| |
| RunLoop().Run(); |
| EXPECT_EQ(0, num_tasks); |
| |
| EXPECT_TRUE(run_time2 > run_time1); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, PostDelayedTask_SharedTimer) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| // Test that the interval of the timer, used to run the next delayed task, is |
| // set to a value corresponding to when the next delayed task should run. |
| |
| // By setting num_tasks to 1, we ensure that the first task to run causes the |
| // run loop to exit. |
| int num_tasks = 1; |
| TimeTicks run_time1, run_time2; |
| |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time1, &num_tasks), |
| Seconds(1000)); |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time2, &num_tasks), |
| Milliseconds(10)); |
| |
| TimeTicks start_time = TimeTicks::Now(); |
| |
| RunLoop().Run(); |
| EXPECT_EQ(0, num_tasks); |
| |
| // Ensure that we ran in far less time than the slower timer. |
| TimeDelta total_time = TimeTicks::Now() - start_time; |
| EXPECT_GT(5000, total_time.InMilliseconds()); |
| |
| // In case both timers somehow run at nearly the same time, sleep a little |
| // and then run all pending to force them both to have run. This is just |
| // encouraging flakiness if there is any. |
| PlatformThread::Sleep(Milliseconds(100)); |
| RunLoop().RunUntilIdle(); |
| |
| EXPECT_TRUE(run_time1.is_null()); |
| EXPECT_FALSE(run_time2.is_null()); |
| } |
| |
| namespace { |
| |
| // This is used to inject a test point for recording the destructor calls for |
| // Closure objects send to MessageLoop::PostTask(). It is awkward usage since we |
| // are trying to hook the actual destruction, which is not a common operation. |
| class RecordDeletionProbe : public RefCounted<RecordDeletionProbe> { |
| public: |
| RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted) |
| : post_on_delete_(post_on_delete), was_deleted_(was_deleted) {} |
| void Run() {} |
| |
| private: |
| friend class RefCounted<RecordDeletionProbe>; |
| |
| ~RecordDeletionProbe() { |
| *was_deleted_ = true; |
| if (post_on_delete_.get()) |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&RecordDeletionProbe::Run, post_on_delete_)); |
| } |
| |
| scoped_refptr<RecordDeletionProbe> post_on_delete_; |
| raw_ptr<bool> was_deleted_; |
| }; |
| |
| } // namespace |
| |
| /* TODO(darin): SingleThreadTaskExecutor does not support deleting all tasks in |
| */ |
| /* the destructor. */ |
| /* Fails, http://crbug.com/50272. */ |
| TEST_P(SingleThreadTaskExecutorTypedTest, DISABLED_EnsureDeletion) { |
| bool a_was_deleted = false; |
| bool b_was_deleted = false; |
| { |
| SingleThreadTaskExecutor executor(GetParam()); |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&RecordDeletionProbe::Run, |
| new RecordDeletionProbe(nullptr, &a_was_deleted))); |
| // TODO(ajwong): Do we really need 1000ms here? |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, |
| BindOnce(&RecordDeletionProbe::Run, |
| new RecordDeletionProbe(nullptr, &b_was_deleted)), |
| Milliseconds(1000)); |
| } |
| EXPECT_TRUE(a_was_deleted); |
| EXPECT_TRUE(b_was_deleted); |
| } |
| |
| /* TODO(darin): SingleThreadTaskExecutor does not support deleting all tasks in |
| */ |
| /* the destructor. */ |
| /* Fails, http://crbug.com/50272. */ |
| TEST_P(SingleThreadTaskExecutorTypedTest, DISABLED_EnsureDeletion_Chain) { |
| bool a_was_deleted = false; |
| bool b_was_deleted = false; |
| bool c_was_deleted = false; |
| { |
| SingleThreadTaskExecutor executor(GetParam()); |
| // The scoped_refptr for each of the below is held either by the chained |
| // RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback. |
| RecordDeletionProbe* a = new RecordDeletionProbe(nullptr, &a_was_deleted); |
| RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted); |
| RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted); |
| executor.task_runner()->PostTask(FROM_HERE, |
| BindOnce(&RecordDeletionProbe::Run, c)); |
| } |
| EXPECT_TRUE(a_was_deleted); |
| EXPECT_TRUE(b_was_deleted); |
| EXPECT_TRUE(c_was_deleted); |
| } |
| |
| namespace { |
| |
| void NestingFunc(int* depth) { |
| if (*depth > 0) { |
| *depth -= 1; |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&NestingFunc, depth)); |
| |
| RunLoop(RunLoop::Type::kNestableTasksAllowed).Run(); |
| } |
| base::RunLoop::QuitCurrentWhenIdleDeprecated(); |
| } |
| |
| } // namespace |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, Nesting) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| int depth = 50; |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&NestingFunc, &depth)); |
| RunLoop().Run(); |
| EXPECT_EQ(depth, 0); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, Recursive) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&RecursiveFunc, &order, 1, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&RecursiveFunc, &order, 2, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&QuitFunc, &order, 3)); |
| |
| RunLoop().Run(); |
| |
| // FIFO order. |
| ASSERT_EQ(14U, order.Size()); |
| EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); |
| EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); |
| EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); |
| EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); |
| EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); |
| EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); |
| EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true)); |
| EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false)); |
| } |
| |
| namespace { |
| |
| void OrderedFunc(TaskList* order, int cookie) { |
| order->RecordStart(ORDERED, cookie); |
| order->RecordEnd(ORDERED, cookie); |
| } |
| |
| } // namespace |
| |
| // Tests that non nestable tasks run in FIFO if there are no nested loops. |
| TEST_P(SingleThreadTaskExecutorTypedTest, NonNestableWithNoNesting) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| ThreadTaskRunnerHandle::Get()->PostNonNestableTask( |
| FROM_HERE, BindOnce(&OrderedFunc, &order, 1)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&QuitFunc, &order, 3)); |
| RunLoop().Run(); |
| |
| // FIFO order. |
| ASSERT_EQ(6U, order.Size()); |
| EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true)); |
| EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false)); |
| EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true)); |
| EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false)); |
| EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); |
| EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); |
| } |
| |
| namespace { |
| |
| void FuncThatPumps(TaskList* order, int cookie) { |
| order->RecordStart(PUMPS, cookie); |
| RunLoop(RunLoop::Type::kNestableTasksAllowed).RunUntilIdle(); |
| order->RecordEnd(PUMPS, cookie); |
| } |
| |
| void SleepFunc(TaskList* order, int cookie, TimeDelta delay) { |
| order->RecordStart(SLEEP, cookie); |
| PlatformThread::Sleep(delay); |
| order->RecordEnd(SLEEP, cookie); |
| } |
| |
| } // namespace |
| |
| // Tests that non nestable tasks don't run when there's code in the call stack. |
| TEST_P(SingleThreadTaskExecutorTypedTest, NonNestableDelayedInNestedLoop) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&FuncThatPumps, &order, 1)); |
| ThreadTaskRunnerHandle::Get()->PostNonNestableTask( |
| FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 3)); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&SleepFunc, &order, 4, Milliseconds(50))); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 5)); |
| ThreadTaskRunnerHandle::Get()->PostNonNestableTask( |
| FROM_HERE, BindOnce(&QuitFunc, &order, 6)); |
| |
| RunLoop().Run(); |
| |
| // FIFO order. |
| ASSERT_EQ(12U, order.Size()); |
| EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true)); |
| EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true)); |
| EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false)); |
| EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true)); |
| EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false)); |
| EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true)); |
| EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false)); |
| EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false)); |
| EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true)); |
| EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false)); |
| EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true)); |
| EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false)); |
| } |
| |
| namespace { |
| |
| void FuncThatRuns(TaskList* order, int cookie, RunLoop* run_loop) { |
| order->RecordStart(RUNS, cookie); |
| run_loop->Run(); |
| order->RecordEnd(RUNS, cookie); |
| } |
| |
| void FuncThatQuitsNow() { |
| base::RunLoop::QuitCurrentDeprecated(); |
| } |
| |
| } // namespace |
| |
| // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. |
| TEST_P(SingleThreadTaskExecutorTypedTest, QuitNow) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&FuncThatQuitsNow)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 3)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&FuncThatQuitsNow)); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&OrderedFunc, &order, 4)); // never runs |
| |
| RunLoop().Run(); |
| |
| ASSERT_EQ(6U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopQuitTop) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop outer_run_loop; |
| RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| outer_run_loop.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_run_loop.QuitClosure()); |
| |
| outer_run_loop.Run(); |
| |
| ASSERT_EQ(4U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopQuitNested) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop outer_run_loop; |
| RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_run_loop.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| outer_run_loop.QuitClosure()); |
| |
| outer_run_loop.Run(); |
| |
| ASSERT_EQ(4U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Quits current loop and immediately runs a nested loop. |
| void QuitAndRunNestedLoop(TaskList* order, |
| int cookie, |
| RunLoop* outer_run_loop, |
| RunLoop* nested_run_loop) { |
| order->RecordStart(RUNS, cookie); |
| outer_run_loop->Quit(); |
| nested_run_loop->Run(); |
| order->RecordEnd(RUNS, cookie); |
| } |
| |
| // Test that we can run nested loop after quitting the current one. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopNestedAfterQuit) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop outer_run_loop; |
| RunLoop nested_run_loop; |
| |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_run_loop.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&QuitAndRunNestedLoop, &order, 1, &outer_run_loop, |
| &nested_run_loop)); |
| |
| outer_run_loop.Run(); |
| |
| ASSERT_EQ(2U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopQuitBogus) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop outer_run_loop; |
| RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); |
| RunLoop bogus_run_loop; |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| bogus_run_loop.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| outer_run_loop.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_run_loop.QuitClosure()); |
| |
| outer_run_loop.Run(); |
| |
| ASSERT_EQ(4U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Tests RunLoopQuit only quits the corresponding MessageLoop::Run. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopQuitDeep) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop outer_run_loop; |
| RunLoop nested_loop1(RunLoop::Type::kNestableTasksAllowed); |
| RunLoop nested_loop2(RunLoop::Type::kNestableTasksAllowed); |
| RunLoop nested_loop3(RunLoop::Type::kNestableTasksAllowed); |
| RunLoop nested_loop4(RunLoop::Type::kNestableTasksAllowed); |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_loop1))); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&FuncThatRuns, &order, 2, Unretained(&nested_loop2))); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&FuncThatRuns, &order, 3, Unretained(&nested_loop3))); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&FuncThatRuns, &order, 4, Unretained(&nested_loop4))); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 5)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| outer_run_loop.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 6)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_loop1.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 7)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_loop2.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 8)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_loop3.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 9)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| nested_loop4.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 10)); |
| |
| outer_run_loop.Run(); |
| |
| ASSERT_EQ(18U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Tests RunLoopQuit works before RunWithID. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopQuitOrderBefore) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop run_loop; |
| |
| run_loop.Quit(); |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&OrderedFunc, &order, 1)); // never runs |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&FuncThatQuitsNow)); // never runs |
| |
| run_loop.Run(); |
| |
| ASSERT_EQ(0U, order.Size()); |
| } |
| |
| // Tests RunLoopQuit works during RunWithID. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopQuitOrderDuring) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop run_loop; |
| |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 1)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, run_loop.QuitClosure()); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&OrderedFunc, &order, 2)); // never runs |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&FuncThatQuitsNow)); // never runs |
| |
| run_loop.Run(); |
| |
| ASSERT_EQ(2U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Tests RunLoopQuit works after RunWithID. |
| TEST_P(SingleThreadTaskExecutorTypedTest, RunLoopQuitOrderAfter) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| |
| TaskList order; |
| |
| RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| BindOnce(&FuncThatRuns, &order, 1, Unretained(&nested_run_loop))); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 2)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&FuncThatQuitsNow)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 3)); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, nested_run_loop.QuitClosure()); // has no affect |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&OrderedFunc, &order, 4)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&FuncThatQuitsNow)); |
| |
| nested_run_loop.allow_quit_current_deprecated_ = true; |
| |
| RunLoop outer_run_loop; |
| outer_run_loop.Run(); |
| |
| ASSERT_EQ(8U, order.Size()); |
| int task_index = 0; |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true)); |
| EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false)); |
| EXPECT_EQ(static_cast<size_t>(task_index), order.Size()); |
| } |
| |
| // Regression test for crbug.com/170904 where posting tasks recursively caused |
| // the message loop to hang in MessagePumpGLib, due to the buffer of the |
| // internal pipe becoming full. Test all SingleThreadTaskExecutor types to |
| // ensure this issue does not exist in other MessagePumps. |
| // |
| // On Linux, the pipe buffer size is 64KiB by default. The bug caused one byte |
| // accumulated in the pipe per two posts, so we should repeat 128K times to |
| // reproduce the bug. |
| #if BUILDFLAG(IS_CHROMEOS) |
| // TODO(crbug.com/1188497): This test is unreasonably slow on CrOS and flakily |
| // times out (100x slower than other platforms which take < 1s to complete |
| // it). |
| #define MAYBE_RecursivePostsDoNotFloodPipe DISABLED_RecursivePostsDoNotFloodPipe |
| #else |
| #define MAYBE_RecursivePostsDoNotFloodPipe RecursivePostsDoNotFloodPipe |
| #endif |
| TEST_P(SingleThreadTaskExecutorTypedTest, MAYBE_RecursivePostsDoNotFloodPipe) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| const auto begin_ticks = TimeTicks::Now(); |
| RunLoop run_loop; |
| Post128KTasksThenQuit(executor.task_runner().get(), begin_ticks, begin_ticks, |
| TimeDelta(), run_loop.QuitClosure()); |
| run_loop.Run(); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, NestableTasksAllowedAtTopLevel) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| EXPECT_TRUE(CurrentThread::Get()->NestableTasksAllowed()); |
| } |
| |
| // Nestable tasks shouldn't be allowed to run reentrantly by default (regression |
| // test for https://crbug.com/754112). |
| TEST_P(SingleThreadTaskExecutorTypedTest, NestableTasksDisallowedByDefault) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| RunLoop run_loop; |
| executor.task_runner()->PostTask( |
| FROM_HERE, |
| BindOnce( |
| [](RunLoop* run_loop) { |
| EXPECT_FALSE(CurrentThread::Get()->NestableTasksAllowed()); |
| run_loop->Quit(); |
| }, |
| Unretained(&run_loop))); |
| run_loop.Run(); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, |
| NestableTasksProcessedWhenRunLoopAllows) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| RunLoop run_loop; |
| executor.task_runner()->PostTask( |
| FROM_HERE, |
| BindOnce( |
| [](RunLoop* run_loop) { |
| // This test would hang if this RunLoop wasn't of type |
| // kNestableTasksAllowed (i.e. this is testing that this is |
| // processed and doesn't hang). |
| RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, |
| BindOnce( |
| [](RunLoop* nested_run_loop) { |
| // Each additional layer of application task nesting |
| // requires its own allowance. The kNestableTasksAllowed |
| // RunLoop allowed this task to be processed but further |
| // nestable tasks are by default disallowed from this |
| // layer. |
| EXPECT_FALSE( |
| CurrentThread::Get()->NestableTasksAllowed()); |
| nested_run_loop->Quit(); |
| }, |
| Unretained(&nested_run_loop))); |
| nested_run_loop.Run(); |
| |
| run_loop->Quit(); |
| }, |
| Unretained(&run_loop))); |
| run_loop.Run(); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, |
| NestableTasksAllowedExplicitlyInScope) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| RunLoop run_loop; |
| executor.task_runner()->PostTask( |
| FROM_HERE, |
| BindOnce( |
| [](RunLoop* run_loop) { |
| { |
| CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop |
| allow_nestable_tasks; |
| EXPECT_TRUE(CurrentThread::Get()->NestableTasksAllowed()); |
| } |
| EXPECT_FALSE(CurrentThread::Get()->NestableTasksAllowed()); |
| run_loop->Quit(); |
| }, |
| Unretained(&run_loop))); |
| run_loop.Run(); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, IsIdleForTesting) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| EXPECT_TRUE(CurrentThread::Get()->IsIdleForTesting()); |
| executor.task_runner()->PostTask(FROM_HERE, BindOnce([]() {})); |
| executor.task_runner()->PostDelayedTask(FROM_HERE, BindOnce([]() {}), |
| Milliseconds(10)); |
| EXPECT_FALSE(CurrentThread::Get()->IsIdleForTesting()); |
| RunLoop().RunUntilIdle(); |
| EXPECT_TRUE(CurrentThread::Get()->IsIdleForTesting()); |
| |
| PlatformThread::Sleep(Milliseconds(20)); |
| EXPECT_TRUE(CurrentThread::Get()->IsIdleForTesting()); |
| } |
| |
| TEST_P(SingleThreadTaskExecutorTypedTest, IsIdleForTestingNonNestableTask) { |
| SingleThreadTaskExecutor executor(GetParam()); |
| RunLoop run_loop; |
| EXPECT_TRUE(CurrentThread::Get()->IsIdleForTesting()); |
| bool nested_task_run = false; |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindLambdaForTesting([&]() { |
| RunLoop nested_run_loop(RunLoop::Type::kNestableTasksAllowed); |
| |
| executor.task_runner()->PostNonNestableTask( |
| FROM_HERE, BindLambdaForTesting([&]() { nested_task_run = true; })); |
| |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindLambdaForTesting([&]() { |
| EXPECT_FALSE(nested_task_run); |
| EXPECT_TRUE(CurrentThread::Get()->IsIdleForTesting()); |
| })); |
| |
| nested_run_loop.RunUntilIdle(); |
| EXPECT_FALSE(nested_task_run); |
| EXPECT_FALSE(CurrentThread::Get()->IsIdleForTesting()); |
| })); |
| |
| run_loop.RunUntilIdle(); |
| |
| EXPECT_TRUE(nested_task_run); |
| EXPECT_TRUE(CurrentThread::Get()->IsIdleForTesting()); |
| } |
| |
| INSTANTIATE_TEST_SUITE_P(All, |
| SingleThreadTaskExecutorTypedTest, |
| ::testing::Values(MessagePumpType::DEFAULT, |
| MessagePumpType::UI, |
| MessagePumpType::IO), |
| SingleThreadTaskExecutorTypedTest::ParamInfoToString); |
| |
| #if BUILDFLAG(IS_WIN) |
| |
| // Verifies that the SingleThreadTaskExecutor ignores WM_QUIT, rather than |
| // quitting. Users of SingleThreadTaskExecutor typically expect to control when |
| // their RunLoops stop Run()ning explicitly, via QuitClosure() etc (see |
| // https://crbug.com/720078). |
| TEST(SingleThreadTaskExecutorTest, WmQuitIsIgnored) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| // Post a WM_QUIT message to the current thread. |
| ::PostQuitMessage(0); |
| |
| // Post a task to the current thread, with a small delay to make it less |
| // likely that we process the posted task before looking for WM_* messages. |
| bool task_was_run = false; |
| RunLoop run_loop; |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, |
| BindOnce( |
| [](bool* flag, OnceClosure closure) { |
| *flag = true; |
| std::move(closure).Run(); |
| }, |
| &task_was_run, run_loop.QuitClosure()), |
| TestTimeouts::tiny_timeout()); |
| |
| // Run the loop, and ensure that the posted task is processed before we quit. |
| run_loop.Run(); |
| EXPECT_TRUE(task_was_run); |
| } |
| |
| TEST(SingleThreadTaskExecutorTest, PostDelayedTask_SharedTimer_SubPump) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| // Test that the interval of the timer, used to run the next delayed task, is |
| // set to a value corresponding to when the next delayed task should run. |
| |
| // By setting num_tasks to 1, we ensure that the first task to run causes the |
| // run loop to exit. |
| int num_tasks = 1; |
| TimeTicks run_time; |
| |
| RunLoop run_loop; |
| |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); |
| |
| // This very delayed task should never run. |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&RecordRunTimeFunc, &run_time, &num_tasks), |
| Seconds(1000)); |
| |
| // This slightly delayed task should run from within SubPumpFunc. |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, BindOnce(&::PostQuitMessage, 0), Milliseconds(10)); |
| |
| Time start_time = Time::Now(); |
| |
| run_loop.Run(); |
| EXPECT_EQ(1, num_tasks); |
| |
| // Ensure that we ran in far less time than the slower timer. |
| TimeDelta total_time = Time::Now() - start_time; |
| EXPECT_GT(5000, total_time.InMilliseconds()); |
| |
| // In case both timers somehow run at nearly the same time, sleep a little |
| // and then run all pending to force them both to have run. This is just |
| // encouraging flakiness if there is any. |
| PlatformThread::Sleep(Milliseconds(100)); |
| RunLoop().RunUntilIdle(); |
| |
| EXPECT_TRUE(run_time.is_null()); |
| } |
| |
| namespace { |
| |
| // When this fires (per the associated WM_TIMER firing), it posts an |
| // application task to quit the native loop. |
| bool QuitOnSystemTimer(UINT message, |
| WPARAM wparam, |
| LPARAM lparam, |
| LRESULT* result) { |
| if (message == static_cast<UINT>(WM_TIMER)) { |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| BindOnce(&::PostQuitMessage, 0)); |
| } |
| *result = 0; |
| return true; |
| } |
| |
| // When this fires (per the associated WM_TIMER firing), it posts a delayed |
| // application task to quit the native loop. |
| bool DelayedQuitOnSystemTimer(UINT message, |
| WPARAM wparam, |
| LPARAM lparam, |
| LRESULT* result) { |
| if (message == static_cast<UINT>(WM_TIMER)) { |
| ThreadTaskRunnerHandle::Get()->PostDelayedTask( |
| FROM_HERE, BindOnce(&::PostQuitMessage, 0), Milliseconds(10)); |
| } |
| *result = 0; |
| return true; |
| } |
| |
| } // namespace |
| |
| // This is a regression test for |
| // https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125 |
| // See below for the delayed task version. |
| TEST(SingleThreadTaskExecutorTest, PostImmediateTaskFromSystemPump) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| RunLoop run_loop; |
| |
| // A native message window to generate a system message which invokes |
| // QuitOnSystemTimer() when the native timer fires. |
| win::MessageWindow local_message_window; |
| local_message_window.Create(BindRepeating(&QuitOnSystemTimer)); |
| ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr)); |
| |
| // The first task will enter a native message loop. This test then verifies |
| // that the pump is able to run an immediate application task after the native |
| // pump went idle. |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); |
| |
| // Test success is determined by not hanging in this Run() call. |
| run_loop.Run(); |
| } |
| |
| // This is a regression test for |
| // https://crrev.com/c/1455266/9/base/message_loop/message_pump_win.cc#125 This |
| // is the delayed task equivalent of the above PostImmediateTaskFromSystemPump |
| // test. |
| // |
| // As a reminder of how this works, here's the sequence of events in this test: |
| // 1) Test start: |
| // work_deduplicator.cc(24): BindToCurrentThread |
| // work_deduplicator.cc(34): OnWorkRequested |
| // thread_controller_with_message_pump_impl.cc(237) : DoWork |
| // work_deduplicator.cc(50): OnWorkStarted |
| // 2) SubPumpFunc entered: |
| // message_loop_unittest.cc(278): SubPumpFunc |
| // 3) ScopedAllowApplicationTasksInNativeNestedLoop triggers nested |
| // ScheduleWork: work_deduplicator.cc(34): OnWorkRequested |
| // 4) Nested system loop starts and pumps internal kMsgHaveWork: |
| // message_loop_unittest.cc(282): SubPumpFunc : Got Message |
| // message_pump_win.cc(302): HandleWorkMessage |
| // thread_controller_with_message_pump_impl.cc(237) : DoWork |
| // 5) Attempt to DoWork(), there's nothing to do, NextWorkInfo indicates delay. |
| // work_deduplicator.cc(50): OnWorkStarted |
| // work_deduplicator.cc(58): WillCheckForMoreWork |
| // work_deduplicator.cc(67): DidCheckForMoreWork |
| // 6) Return control to HandleWorkMessage() which schedules native timer |
| // and goes to sleep (no kMsgHaveWork in native queue). |
| // message_pump_win.cc(328): HandleWorkMessage ScheduleNativeTimer |
| // 7) Native timer fires and posts the delayed application task: |
| // message_loop_unittest.cc(282): SubPumpFunc : Got Message |
| // message_loop_unittest.cc(1581): DelayedQuitOnSystemTimer |
| // !! This is the critical step verified by this test. Since the |
| // ThreadController is idle after (6), it won't be invoked again and thus |
| // won't get a chance to return a NextWorkInfo that indicates the next |
| // delay. A native timer is thus required to have SubPumpFunc handle it. |
| // work_deduplicator.cc(42): OnDelayedWorkRequested |
| // message_pump_win.cc(129): ScheduleDelayedWork |
| // 9) The scheduled native timer fires and runs application task binding |
| // ::PostQuitMessage : |
| // message_loop_unittest.cc(282) SubPumpFunc : Got Message |
| // work_deduplicator.cc(50): OnWorkStarted |
| // thread_controller_with_message_pump_impl.cc(237) : DoWork |
| // 10) SequenceManager updates delay to none and notifies |
| // (TODO(scheduler-dev): Could remove this step but WorkDeduplicator knows |
| // to ignore at least): |
| // work_deduplicator.cc(42): OnDelayedWorkRequested |
| // 11) Nested application task completes and SubPumpFunc unwinds: |
| // work_deduplicator.cc(58): WillCheckForMoreWork |
| // work_deduplicator.cc(67): DidCheckForMoreWork |
| // 12) ~ScopedAllowApplicationTasksInNativeNestedLoop() makes sure |
| // WorkDeduplicator knows we're back in DoWork() (not relevant in this test |
| // but important overall). work_deduplicator.cc(50): OnWorkStarted |
| // 13) Application task which ran SubPumpFunc completes and test finishes. |
| // work_deduplicator.cc(67): DidCheckForMoreWork |
| TEST(SingleThreadTaskExecutorTest, PostDelayedTaskFromSystemPump) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| RunLoop run_loop; |
| |
| // A native message window to generate a system message which invokes |
| // DelayedQuitOnSystemTimer() when the native timer fires. |
| win::MessageWindow local_message_window; |
| local_message_window.Create(BindRepeating(&DelayedQuitOnSystemTimer)); |
| ASSERT_TRUE(::SetTimer(local_message_window.hwnd(), 0, 20, nullptr)); |
| |
| // The first task will enter a native message loop. This test then verifies |
| // that the pump is able to run a delayed application task after the native |
| // pump went idle. |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); |
| |
| // Test success is determined by not hanging in this Run() call. |
| run_loop.Run(); |
| } |
| |
| TEST(SingleThreadTaskExecutorTest, WmQuitIsVisibleToSubPump) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| // Regression test for https://crbug.com/888559. When processing a |
| // kMsgHaveWork we peek and remove the next message and dispatch that ourself, |
| // to minimize impact of these messages on message-queue processing. If we |
| // received kMsgHaveWork dispatched by a nested pump (e.g. ::GetMessage() |
| // loop) then there is a risk that the next message is that loop's WM_QUIT |
| // message, which must be processed directly by ::GetMessage() for the loop to |
| // actually quit. This test verifies that WM_QUIT exits works as expected even |
| // if it happens to immediately follow a kMsgHaveWork in the queue. |
| |
| RunLoop run_loop; |
| |
| // This application task will enter the subpump. |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); |
| |
| // This application task will post a native WM_QUIT. |
| executor.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); |
| |
| // The presence of this application task means that the pump will see a |
| // non-empty queue after processing the previous application task (which |
| // posted the WM_QUIT) and hence will repost a kMsgHaveWork message in the |
| // native event queue. Without the fix to https://crbug.com/888559, this would |
| // previously result in the subpump processing kMsgHaveWork and it stealing |
| // the WM_QUIT message, leaving the test hung in the subpump. |
| executor.task_runner()->PostTask(FROM_HERE, DoNothing()); |
| |
| // Test success is determined by not hanging in this Run() call. |
| run_loop.Run(); |
| } |
| |
| TEST(SingleThreadTaskExecutorTest, |
| RepostingWmQuitDoesntStarveUpcomingNativeLoop) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| // This test ensures that application tasks are being processed by the native |
| // subpump despite the kMsgHaveWork event having already been consumed by the |
| // time the subpump is entered. This is subtly enforced by |
| // CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop which |
| // will ScheduleWork() upon construction (and if it's absent, the |
| // SingleThreadTaskExecutor shouldn't process application tasks so |
| // kMsgHaveWork is irrelevant). Note: This test also fails prior to the fix |
| // for https://crbug.com/888559 (in fact, the last two tasks are sufficient as |
| // a regression test), probably because of a dangling kMsgHaveWork recreating |
| // the effect from |
| // SingleThreadTaskExecutorTest.NativeMsgProcessingDoesntStealWmQuit. |
| |
| RunLoop run_loop; |
| |
| // This application task will post a native WM_QUIT which will be ignored |
| // by the main message pump. |
| executor.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); |
| |
| // Make sure the pump does a few extra cycles and processes (ignores) the |
| // WM_QUIT. |
| executor.task_runner()->PostTask(FROM_HERE, DoNothing()); |
| executor.task_runner()->PostTask(FROM_HERE, DoNothing()); |
| |
| // This application task will enter the subpump. |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); |
| |
| // Post an application task that will post WM_QUIT to the nested loop. The |
| // test will hang if the subpump doesn't process application tasks as it |
| // should. |
| executor.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); |
| |
| // Test success is determined by not hanging in this Run() call. |
| run_loop.Run(); |
| } |
| |
| // TODO(https://crbug.com/890016): Enable once multiple layers of nested loops |
| // works. |
| TEST(SingleThreadTaskExecutorTest, |
| DISABLED_UnwindingMultipleSubPumpsDoesntStarveApplicationTasks) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| // Regression test for https://crbug.com/890016. |
| // Tests that the subpump is still processing application tasks after |
| // unwinding from nested subpumps (i.e. that they didn't consume the last |
| // kMsgHaveWork). |
| |
| RunLoop run_loop; |
| |
| // Enter multiple levels of nested subpumps. |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&SubPumpFunc, run_loop.QuitClosure())); |
| executor.task_runner()->PostTask(FROM_HERE, |
| BindOnce(&SubPumpFunc, DoNothing())); |
| executor.task_runner()->PostTask(FROM_HERE, |
| BindOnce(&SubPumpFunc, DoNothing())); |
| |
| // Quit two layers (with tasks in between to allow each quit to be handled |
| // before continuing -- ::PostQuitMessage() sets a bit, it's not a real queued |
| // message : |
| // https://blogs.msdn.microsoft.com/oldnewthing/20051104-33/?p=33453). |
| executor.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); |
| executor.task_runner()->PostTask(FROM_HERE, DoNothing()); |
| executor.task_runner()->PostTask(FROM_HERE, DoNothing()); |
| executor.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); |
| executor.task_runner()->PostTask(FROM_HERE, DoNothing()); |
| executor.task_runner()->PostTask(FROM_HERE, DoNothing()); |
| |
| bool last_task_ran = false; |
| executor.task_runner()->PostTask( |
| FROM_HERE, BindOnce([](bool* to_set) { *to_set = true; }, |
| Unretained(&last_task_ran))); |
| |
| executor.task_runner()->PostTask(FROM_HERE, BindOnce(&::PostQuitMessage, 0)); |
| |
| run_loop.Run(); |
| |
| EXPECT_TRUE(last_task_ran); |
| } |
| |
| namespace { |
| |
| // A side effect of this test is the generation a beep. Sorry. |
| void RunTest_NestingDenial2(MessagePumpType message_pump_type) { |
| SingleThreadTaskExecutor executor(message_pump_type); |
| |
| Thread worker("NestingDenial2_worker"); |
| Thread::Options options; |
| options.message_pump_type = message_pump_type; |
| ASSERT_EQ(true, worker.StartWithOptions(std::move(options))); |
| TaskList order; |
| win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); |
| worker.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(), |
| event.get(), true, &order, false)); |
| // Let the other thread execute. |
| WaitForSingleObject(event.get(), INFINITE); |
| RunLoop().Run(); |
| |
| ASSERT_EQ(17u, order.Size()); |
| EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true)); |
| EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false)); |
| EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true)); |
| EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false)); |
| // When EndDialogFunc is processed, the window is already dismissed, hence no |
| // "end" entry. |
| EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true)); |
| EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true)); |
| EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false)); |
| EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true)); |
| EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false)); |
| EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true)); |
| EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false)); |
| } |
| |
| } // namespace |
| |
| // This test occasionally hangs, would need to be turned into an |
| // interactive_ui_test, see http://crbug.com/44567. |
| TEST(SingleThreadTaskExecutorTest, DISABLED_NestingDenial2) { |
| RunTest_NestingDenial2(MessagePumpType::DEFAULT); |
| RunTest_NestingDenial2(MessagePumpType::UI); |
| RunTest_NestingDenial2(MessagePumpType::IO); |
| } |
| |
| // A side effect of this test is the generation a beep. Sorry. This test also |
| // needs to process windows messages on the current thread. |
| TEST(SingleThreadTaskExecutorTest, NestingSupport2) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| |
| Thread worker("NestingSupport2_worker"); |
| Thread::Options options; |
| options.message_pump_type = MessagePumpType::UI; |
| ASSERT_EQ(true, worker.StartWithOptions(std::move(options))); |
| TaskList order; |
| win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); |
| worker.task_runner()->PostTask( |
| FROM_HERE, BindOnce(&RecursiveFuncWin, ThreadTaskRunnerHandle::Get(), |
| event.get(), false, &order, true)); |
| // Let the other thread execute. |
| WaitForSingleObject(event.get(), INFINITE); |
| RunLoop().Run(); |
| |
| ASSERT_EQ(18u, order.Size()); |
| EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true)); |
| // Note that this executes in the MessageBox modal loop. |
| EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true)); |
| EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false)); |
| EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true)); |
| EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false)); |
| EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false)); |
| /* The order can subtly change here. The reason is that when RecursiveFunc(1) |
| is called in the main thread, if it is faster than getting to the |
| PostTask(FROM_HERE, BindOnce(&QuitFunc) execution, the order of task |
| execution can change. We don't care anyway that the order isn't correct. |
| EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true)); |
| EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false)); |
| EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); |
| */ |
| EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true)); |
| EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false)); |
| EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true)); |
| EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false)); |
| EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true)); |
| EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false)); |
| } |
| |
| #endif // BUILDFLAG(IS_WIN) |
| |
| #if BUILDFLAG(IS_WIN) |
| TEST(SingleThreadTaskExecutorTest, IOHandler) { |
| RunTest_IOHandler(); |
| } |
| |
| TEST(SingleThreadTaskExecutorTest, HighResolutionTimer) { |
| SingleThreadTaskExecutor executor; |
| Time::EnableHighResolutionTimer(true); |
| |
| constexpr TimeDelta kFastTimer = Milliseconds(5); |
| constexpr TimeDelta kSlowTimer = Milliseconds(100); |
| |
| { |
| // Post a fast task to enable the high resolution timers. |
| RunLoop run_loop; |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, |
| BindOnce( |
| [](RunLoop* run_loop) { |
| EXPECT_TRUE(Time::IsHighResolutionTimerInUse()); |
| run_loop->QuitWhenIdle(); |
| }, |
| &run_loop), |
| kFastTimer); |
| run_loop.Run(); |
| } |
| EXPECT_FALSE(Time::IsHighResolutionTimerInUse()); |
| { |
| // Check that a slow task does not trigger the high resolution logic. |
| RunLoop run_loop; |
| executor.task_runner()->PostDelayedTask( |
| FROM_HERE, |
| BindOnce( |
| [](RunLoop* run_loop) { |
| EXPECT_FALSE(Time::IsHighResolutionTimerInUse()); |
| run_loop->QuitWhenIdle(); |
| }, |
| &run_loop), |
| kSlowTimer); |
| run_loop.Run(); |
| } |
| Time::EnableHighResolutionTimer(false); |
| Time::ResetHighResolutionTimerUsage(); |
| } |
| |
| #endif // BUILDFLAG(IS_WIN) |
| |
| namespace { |
| // Inject a test point for recording the destructor calls for Closure objects |
| // send to MessageLoop::PostTask(). It is awkward usage since we are trying to |
| // hook the actual destruction, which is not a common operation. |
| class DestructionObserverProbe : public RefCounted<DestructionObserverProbe> { |
| public: |
| DestructionObserverProbe(bool* task_destroyed, |
| bool* destruction_observer_called) |
| : task_destroyed_(task_destroyed), |
| destruction_observer_called_(destruction_observer_called) {} |
| virtual void Run() { |
| // This task should never run. |
| ADD_FAILURE(); |
| } |
| |
| private: |
| friend class RefCounted<DestructionObserverProbe>; |
| |
| virtual ~DestructionObserverProbe() { |
| EXPECT_FALSE(*destruction_observer_called_); |
| *task_destroyed_ = true; |
| } |
| |
| raw_ptr<bool> task_destroyed_; |
| raw_ptr<bool> destruction_observer_called_; |
| }; |
| |
| class MLDestructionObserver : public CurrentThread::DestructionObserver { |
| public: |
| MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called) |
| : task_destroyed_(task_destroyed), |
| destruction_observer_called_(destruction_observer_called), |
| task_destroyed_before_message_loop_(false) {} |
| void WillDestroyCurrentMessageLoop() override { |
| task_destroyed_before_message_loop_ = *task_destroyed_; |
| *destruction_observer_called_ = true; |
| } |
| bool task_destroyed_before_message_loop() const { |
| return task_destroyed_before_message_loop_; |
| } |
| |
| private: |
| raw_ptr<bool> task_destroyed_; |
| raw_ptr<bool> destruction_observer_called_; |
| bool task_destroyed_before_message_loop_; |
| }; |
| |
| } // namespace |
| |
| TEST(SingleThreadTaskExecutorTest, DestructionObserverTest) { |
| // Verify that the destruction observer gets called at the very end (after |
| // all the pending tasks have been destroyed). |
| auto executor = std::make_unique<SingleThreadTaskExecutor>(); |
| const TimeDelta kDelay = Milliseconds(100); |
| |
| bool task_destroyed = false; |
| bool destruction_observer_called = false; |
| |
| MLDestructionObserver observer(&task_destroyed, &destruction_observer_called); |
| CurrentThread::Get()->AddDestructionObserver(&observer); |
| executor->task_runner()->PostDelayedTask( |
| FROM_HERE, |
| BindOnce(&DestructionObserverProbe::Run, |
| base::MakeRefCounted<DestructionObserverProbe>( |
| &task_destroyed, &destruction_observer_called)), |
| kDelay); |
| executor.reset(); |
| EXPECT_TRUE(observer.task_destroyed_before_message_loop()); |
| // The task should have been destroyed when we deleted the loop. |
| EXPECT_TRUE(task_destroyed); |
| EXPECT_TRUE(destruction_observer_called); |
| } |
| |
| // Verify that SingleThreadTaskExecutor sets ThreadMainTaskRunner::current() and |
| // it posts tasks on that message loop. |
| TEST(SingleThreadTaskExecutorTest, ThreadMainTaskRunner) { |
| SingleThreadTaskExecutor executor; |
| |
| scoped_refptr<Foo> foo(new Foo()); |
| std::string a("a"); |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&Foo::Test1ConstRef, foo, a)); |
| |
| // Post quit task; |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce(&RunLoop::QuitCurrentWhenIdleDeprecated)); |
| |
| // Now kick things off |
| RunLoop().Run(); |
| |
| EXPECT_EQ(foo->test_count(), 1); |
| EXPECT_EQ(foo->result(), "a"); |
| } |
| |
| TEST(SingleThreadTaskExecutorTest, type) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| EXPECT_EQ(executor.type(), MessagePumpType::UI); |
| } |
| |
| #if BUILDFLAG(IS_WIN) |
| void EmptyFunction() {} |
| |
| void PostMultipleTasks() { |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| base::BindOnce(&EmptyFunction)); |
| ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, |
| base::BindOnce(&EmptyFunction)); |
| } |
| |
| static const int kSignalMsg = WM_USER + 2; |
| |
| void PostWindowsMessage(HWND message_hwnd) { |
| PostMessage(message_hwnd, kSignalMsg, 0, 2); |
| } |
| |
| void EndTest(bool* did_run, HWND hwnd) { |
| *did_run = true; |
| PostMessage(hwnd, WM_CLOSE, 0, 0); |
| } |
| |
| int kMyMessageFilterCode = 0x5002; |
| |
| LRESULT CALLBACK TestWndProcThunk(HWND hwnd, |
| UINT message, |
| WPARAM wparam, |
| LPARAM lparam) { |
| if (message == WM_CLOSE) |
| EXPECT_TRUE(DestroyWindow(hwnd)); |
| if (message != kSignalMsg) |
| return DefWindowProc(hwnd, message, wparam, lparam); |
| |
| switch (lparam) { |
| case 1: |
| // First, we post a task that will post multiple no-op tasks to make sure |
| // that the pump's incoming task queue does not become empty during the |
| // test. |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, base::BindOnce(&PostMultipleTasks)); |
| // Next, we post a task that posts a windows message to trigger the second |
| // stage of the test. |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, base::BindOnce(&PostWindowsMessage, hwnd)); |
| break; |
| case 2: |
| // Since we're about to enter a modal loop, tell the message loop that we |
| // intend to nest tasks. |
| CurrentThread::ScopedAllowApplicationTasksInNativeNestedLoop |
| allow_nestable_tasks; |
| bool did_run = false; |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, base::BindOnce(&EndTest, &did_run, hwnd)); |
| // Run a nested windows-style message loop and verify that our task runs. |
| // If it doesn't, then we'll loop here until the test times out. |
| MSG msg; |
| while (GetMessage(&msg, 0, 0, 0)) { |
| if (!CallMsgFilter(&msg, kMyMessageFilterCode)) |
| DispatchMessage(&msg); |
| // If this message is a WM_CLOSE, explicitly exit the modal loop. |
| // Posting a WM_QUIT should handle this, but unfortunately |
| // MessagePumpWin eats WM_QUIT messages even when running inside a modal |
| // loop. |
| if (msg.message == WM_CLOSE) |
| break; |
| } |
| EXPECT_TRUE(did_run); |
| RunLoop::QuitCurrentWhenIdleDeprecated(); |
| break; |
| } |
| return 0; |
| } |
| |
| TEST(SingleThreadTaskExecutorTest, AlwaysHaveUserMessageWhenNesting) { |
| SingleThreadTaskExecutor executor(MessagePumpType::UI); |
| HINSTANCE instance = CURRENT_MODULE(); |
| WNDCLASSEX wc = {0}; |
| wc.cbSize = sizeof(wc); |
| wc.lpfnWndProc = TestWndProcThunk; |
| wc.hInstance = instance; |
| wc.lpszClassName = L"SingleThreadTaskExecutorTest_HWND"; |
| ATOM atom = RegisterClassEx(&wc); |
| ASSERT_TRUE(atom); |
| |
| HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0, |
| HWND_MESSAGE, 0, instance, 0); |
| ASSERT_TRUE(message_hwnd) << GetLastError(); |
| |
| ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1)); |
| |
| RunLoop().Run(); |
| |
| ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance)); |
| } |
| #endif // BUILDFLAG(IS_WIN) |
| |
| // Verify that tasks posted to and code running in the scope of the same |
| // SingleThreadTaskExecutor access the same SequenceLocalStorage values. |
| TEST(SingleThreadTaskExecutorTest, SequenceLocalStorageSetGet) { |
| SingleThreadTaskExecutor executor; |
| |
| SequenceLocalStorageSlot<int> slot; |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); })); |
| |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindLambdaForTesting([&]() { EXPECT_EQ(*slot, 11); })); |
| |
| RunLoop().RunUntilIdle(); |
| EXPECT_EQ(*slot, 11); |
| } |
| |
| // Verify that tasks posted to and code running in different MessageLoops access |
| // different SequenceLocalStorage values. |
| TEST(SingleThreadTaskExecutorTest, SequenceLocalStorageDifferentMessageLoops) { |
| SequenceLocalStorageSlot<int> slot; |
| |
| { |
| SingleThreadTaskExecutor executor; |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindLambdaForTesting([&]() { slot.emplace(11); })); |
| |
| RunLoop().RunUntilIdle(); |
| EXPECT_EQ(*slot, 11); |
| } |
| |
| SingleThreadTaskExecutor executor; |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindLambdaForTesting([&]() { EXPECT_FALSE(slot); })); |
| |
| RunLoop().RunUntilIdle(); |
| EXPECT_NE(slot.GetOrCreateValue(), 11); |
| } |
| |
| namespace { |
| |
| class PostTaskOnDestroy { |
| public: |
| PostTaskOnDestroy(int times) : times_remaining_(times) {} |
| |
| PostTaskOnDestroy(const PostTaskOnDestroy&) = delete; |
| PostTaskOnDestroy& operator=(const PostTaskOnDestroy&) = delete; |
| |
| ~PostTaskOnDestroy() { PostTaskWithPostingDestructor(times_remaining_); } |
| |
| // Post a task that will repost itself on destruction |times| times. |
| static void PostTaskWithPostingDestructor(int times) { |
| if (times > 0) { |
| ThreadTaskRunnerHandle::Get()->PostTask( |
| FROM_HERE, BindOnce([](std::unique_ptr<PostTaskOnDestroy>) {}, |
| std::make_unique<PostTaskOnDestroy>(times - 1))); |
| } |
| } |
| |
| private: |
| const int times_remaining_; |
| }; |
| |
| } // namespace |
| |
| // Test that SingleThreadTaskExecutor destruction handles a task's destructor |
| // posting another task. |
| TEST(SingleThreadTaskExecutorDestructionTest, |
| DestroysFineWithPostTaskOnDestroy) { |
| SingleThreadTaskExecutor executor; |
| |
| PostTaskOnDestroy::PostTaskWithPostingDestructor(10); |
| } |
| |
| } // namespace base |