blob: a835d086282bcf223424f2189bd15bf85e99e85d [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/message_loop/message_pump_glib.h"
#include <fcntl.h>
#include <glib.h>
#include <math.h>
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/notreached.h"
#include "base/numerics/safe_conversions.h"
#include "base/posix/eintr_wrapper.h"
#include "base/synchronization/lock.h"
#include "base/threading/platform_thread.h"
namespace base {
namespace {
// Priorities of event sources are important to let everything be processed.
// In particular, GTK event source should have the highest priority (because
// UI events come from it), then Wayland events (the ones coming from the FD
// watcher), and the lowest priority is GLib events (our base message pump).
//
// The g_source API uses ints to denote priorities, and the lower is its value,
// the higher is the priority (i.e., they are ordered backwards).
constexpr int kPriorityWork = G_PRIORITY_DEFAULT_IDLE;
constexpr int kPriorityFdWatch = G_PRIORITY_DEFAULT_IDLE - 10;
// See the explanation above.
static_assert(G_PRIORITY_DEFAULT < kPriorityFdWatch &&
kPriorityFdWatch < kPriorityWork,
"Wrong priorities are set for event sources!");
// Return a timeout suitable for the glib loop according to |next_task_time|, -1
// to block forever, 0 to return right away, or a timeout in milliseconds from
// now.
int GetTimeIntervalMilliseconds(TimeTicks next_task_time) {
if (next_task_time.is_null())
return 0;
else if (next_task_time.is_max())
return -1;
auto timeout_ms =
(next_task_time - TimeTicks::Now()).InMillisecondsRoundedUp();
return timeout_ms < 0 ? 0 : saturated_cast<int>(timeout_ms);
}
bool RunningOnMainThread() {
auto pid = getpid();
auto tid = PlatformThread::CurrentId();
return pid > 0 && tid > 0 && pid == tid;
}
// A brief refresher on GLib:
// GLib sources have four callbacks: Prepare, Check, Dispatch and Finalize.
// On each iteration of the GLib pump, it calls each source's Prepare function.
// This function should return TRUE if it wants GLib to call its Dispatch, and
// FALSE otherwise. It can also set a timeout in this case for the next time
// Prepare should be called again (it may be called sooner).
// After the Prepare calls, GLib does a poll to check for events from the
// system. File descriptors can be attached to the sources. The poll may block
// if none of the Prepare calls returned TRUE. It will block indefinitely, or
// by the minimum time returned by a source in Prepare.
// After the poll, GLib calls Check for each source that returned FALSE
// from Prepare. The return value of Check has the same meaning as for Prepare,
// making Check a second chance to tell GLib we are ready for Dispatch.
// Finally, GLib calls Dispatch for each source that is ready. If Dispatch
// returns FALSE, GLib will destroy the source. Dispatch calls may be recursive
// (i.e., you can call Run from them), but Prepare and Check cannot.
// Finalize is called when the source is destroyed.
// NOTE: It is common for subsystems to want to process pending events while
// doing intensive work, for example the flash plugin. They usually use the
// following pattern (recommended by the GTK docs):
// while (gtk_events_pending()) {
// gtk_main_iteration();
// }
//
// gtk_events_pending just calls g_main_context_pending, which does the
// following:
// - Call prepare on all the sources.
// - Do the poll with a timeout of 0 (not blocking).
// - Call check on all the sources.
// - *Does not* call dispatch on the sources.
// - Return true if any of prepare() or check() returned true.
//
// gtk_main_iteration just calls g_main_context_iteration, which does the whole
// thing, respecting the timeout for the poll (and block, although it is to if
// gtk_events_pending returned true), and call dispatch.
//
// Thus it is important to only return true from prepare or check if we
// actually have events or work to do. We also need to make sure we keep
// internal state consistent so that if prepare/check return true when called
// from gtk_events_pending, they will still return true when called right
// after, from gtk_main_iteration.
//
// For the GLib pump we try to follow the Windows UI pump model:
// - Whenever we receive a wakeup event or the timer for delayed work expires,
// we run DoWork. That part will also run in the other event pumps.
// - We also run DoWork, and possibly DoIdleWork, in the main loop,
// around event handling.
//
// ---------------------------------------------------------------------------
//
// An overview on the way that we track work items:
//
// ScopedDoWorkItems are used by this pump to track native work. They are
// stored by value in |state_| and are set/cleared as the pump runs. Their
// setting and clearing is done in the functions
// {Set,Clear,EnsureSet,EnsureCleared}ScopedWorkItem. Control flow in GLib is
// quite non-obvious because chrome is not notified when a nested loop is
// entered/exited. To detect nested loops, MessagePumpGlib uses
// |state_->do_work_depth| which is incremented when DoWork is entered, and a
// GLib library function, g_main_depth(), which indicates the current number of
// Dispatch() calls on the stack. To react to them, two separate
// ScopedDoWorkItems are used (a standard one used for all native work, and a
// second one used exclusively for forcing nesting when there is a native loop
// spinning). Note that `ThreadController` flags all nesting as
// `Phase::kNested` so separating native and application work while nested isn't
// supported nor a goal.
//
// It should also be noted that a second GSource has been added to GLib,
// referred to as the "observer" source. It is used because in the case where
// native work occurs on wakeup that is higher priority than Chrome (all of
// GTK), chrome won't even get notified that the pump is awake.
//
// There are several cases to consider wrt. nesting level and order. In
// order, we have:
// A. [root] -> MessagePump::Run() -> native event -> g_main_context_iteration
// B. [root] -> MessagePump::Run() -> DoWork -> g_main_context_iteration
// C. [root] -> native -> DoWork -> MessagePump -> [...]
// The second two cases are identical for our purposes, and the last one turns
// out to be handled without any extra headache.
//
// Consider nesting case A, where native work is called from
// |g_main_context_iteration()| from the pump, and that native work spins up a
// loop. For our purposes, this is a nested loop, because control is not
// returned to the pump once one iteration of the pump is complete. In this
// case, the pump needs to enter nesting without DoWork being involved at
// all. This is accomplished using |MessagePumpGlib::NestIfRequired()|, which is
// called during the Prepare() phase of GLib. As the pump records state on entry
// and exit from GLib using |OnEntryToGlib| and |OnExitFromGlib|, we can compare
// |g_main_depth| at |HandlePrepare| with the one before we entered
// |g_main_context_iteration|. If it is higher, there is a native loop being
// spun, and |RegisterNesting| is called, forcing nesting by initializing two
// work items at once. These are destroyed after the exit from
// |g_main_context_iteration| using |OnExitFromGlib|.
//
// Then, considering nesting case B, |state_->do_work_depth| is incremented
// during any Chrome work, to allow the pump to detect re-entrancy during a
// chrome work item. This is required because `g_main_depth` is not incremented
// in any `DoWork` call not occuring during `Dispatch()` (i.e. during
// `MessagePumpGlib::Run()`). In this case, a nested loop is recorded, and the
// pump sets-and-clears scoped work items during Prepare, Check, and Dispatch. A
// work item can never be active when control flow returns to GLib (i.e. on
// return) during a nested loop, because the nested loop could exit at any
// point. This is fine because TimeKeeper is only concerned with the fact that a
// nested loop is in progress, as opposed to the various phases of the nested
// loop.
//
// Finally, consider nesting case C, where a native loop is spinning
// entirely outside of Chrome, such as inside a signal handler, the pump might
// create and destroy DoWorkItems during Prepare() and Check(), but these work
// items will always get cleared during Dispatch(), before the pump enters a
// DoWork(), leading to the pump showing non-nested native work without the
// thread controller being active, the correct situation (which won't occur
// outside of startup or shutdown). Once Dispatch() is called, the pump's
// nesting tracking works correctly, as state_->do_work_depth is increased, and
// upon re-entrancy we detect the nested loop, which is correct, as this is the
// only point at which the loop actually becomes "nested".
//
// -----------------------------------------------------------------------------
//
// As an overview of the steps taken by MessagePumpGLib to ensure that nested
// loops are detected adequately during each phase of the GLib loop:
//
// 0: Before entering GLib:
// 0.1: Record state about current state of GLib (g_main_depth()) for
// case 1.1.2.
//
// 1: Prepare.
// 1.1: Detection of nested loops
// 1.1.1: If |state_->do_work_depth| > 0, we are in nesting case B detailed
// above. A work item must be newly created during this function to
// trigger nesting, and is destroyed to ensure proper destruction order
// in the case where GLib quits after Prepare().
//
// 1.1.2: Otherwise, check if we are in nesting case A above. If yes, trigger
// nesting using ScopedDoWorkItems. The nesting will be cleared at exit
// from GLib.
//
// This check occurs only in |HandleObserverPrepare|, not in
// |HandlePrepare|.
//
// A third party is running a glib message loop. Since Chrome work is
// registered with GLib at |G_PRIORITY_DEFAULT_IDLE|, a relatively low
// priority, sources of default-or-higher priority will be Dispatch()ed
// first. Since only one source is Dispatched per loop iteration,
// |HandlePrepare| can get called several times in a row in the case that
// there are any other events in the queue. A ScopedDoWorkItem is created
// and destroyed to record this. That work item triggers nesting.
//
// 1.2: Other considerations
// 1.2.1: Sleep occurs between Prepare() and Check(). If Chrome will pass a
// nonzero poll time to GLib, the inner ScopedDoWorkItem is cleared and
// BeforeWait() is called. In nesting case A, the nesting work item will
// not be cleared. A nested loop will typically not block.
//
// Since Prepare() is called before Check() in all cases, the bulk of
// nesting detection is done in Prepare().
//
// 2: Check.
// 2.1: Detection of nested loops:
// 2.1.1: In nesting case B, |ClearScopedWorkItem()| on exit. A third party is
// running a glib message loop. It is possible that at any point the
// nested message loop will quit. In this case, we don't want to leave a
// nested DoWorkItem on the stack.
//
// 2.2: Other considerations
// 2.2.1: A ScopedDoWorkItem may be created (if it was not already present) at
// the entry to Check() to record a wakeup in the case that the pump
// slept. It is important to note that this occurs both in
// |HandleObserverCheck| and |HandleCheck| to ensure that at every point
// as the pump enters the Dispatch phase it is awake. In the case it is
// already awake, this is a very cheap operation.
//
// 3: Dispatch
// 3.1 Detection of nested loops
// 3.1.1: |state_->do_work_depth| is incremented on entry and decremented on
// exit. This is used to detect nesting case B.
//
// 3.1.2: Nested loops can be quit at any point, and so ScopedDoWorkItems can't
// be left on the stack for the same reasons as in 1.1.1/2.1.1.
//
// 3.2 Other considerations
// 3.2.1: Since DoWork creates its own work items, ScopedDoWorkItems are not
// used as this would trigger nesting in all cases.
//
// 4: Post GLib
// 4.1: Detection of nested loops
// 4.1.1: |state_->do_work_depth| is also increased during the DoWork in Run()
// as nesting in that case [calling glib from third party code] needs to
// clear all work items after return to avoid improper destruction order.
//
// 4.2: Other considerations:
// 4.2.1: DoWork uses its own work item, so no ScopedDoWorkItems are active in
// this case.
struct WorkSource : public GSource {
raw_ptr<MessagePumpGlib> pump;
};
gboolean WorkSourcePrepare(GSource* source, gint* timeout_ms) {
*timeout_ms = static_cast<WorkSource*>(source)->pump->HandlePrepare();
// We always return FALSE, so that our timeout is honored. If we were
// to return TRUE, the timeout would be considered to be 0 and the poll
// would never block. Once the poll is finished, Check will be called.
return FALSE;
}
gboolean WorkSourceCheck(GSource* source) {
// Only return TRUE if Dispatch should be called.
return static_cast<WorkSource*>(source)->pump->HandleCheck();
}
gboolean WorkSourceDispatch(GSource* source,
GSourceFunc unused_func,
gpointer unused_data) {
static_cast<WorkSource*>(source)->pump->HandleDispatch();
// Always return TRUE so our source stays registered.
return TRUE;
}
void WorkSourceFinalize(GSource* source) {
// Since the WorkSource object memory is managed by glib, WorkSource implicit
// destructor is never called, and thus WorkSource's raw_ptr never release
// its internal reference on the pump pointer. This leads to adding pressure
// to the BRP quarantine.
static_cast<WorkSource*>(source)->pump = nullptr;
}
// I wish these could be const, but g_source_new wants non-const.
GSourceFuncs g_work_source_funcs = {WorkSourcePrepare, WorkSourceCheck,
WorkSourceDispatch, WorkSourceFinalize};
struct ObserverSource : public GSource {
raw_ptr<MessagePumpGlib> pump;
};
gboolean ObserverPrepare(GSource* gsource, gint* timeout_ms) {
auto* source = static_cast<ObserverSource*>(gsource);
source->pump->HandleObserverPrepare();
*timeout_ms = -1;
// We always want to poll.
return FALSE;
}
gboolean ObserverCheck(GSource* gsource) {
auto* source = static_cast<ObserverSource*>(gsource);
return source->pump->HandleObserverCheck();
}
void ObserverFinalize(GSource* source) {
// Read the comment in `WorkSourceFinalize`, the issue is exactly the same.
static_cast<ObserverSource*>(source)->pump = nullptr;
}
GSourceFuncs g_observer_funcs = {ObserverPrepare, ObserverCheck, nullptr,
ObserverFinalize};
struct FdWatchSource : public GSource {
raw_ptr<MessagePumpGlib> pump;
raw_ptr<MessagePumpGlib::FdWatchController> controller;
};
gboolean FdWatchSourcePrepare(GSource* source, gint* timeout_ms) {
*timeout_ms = -1;
return FALSE;
}
gboolean FdWatchSourceCheck(GSource* gsource) {
auto* source = static_cast<FdWatchSource*>(gsource);
return source->pump->HandleFdWatchCheck(source->controller) ? TRUE : FALSE;
}
gboolean FdWatchSourceDispatch(GSource* gsource,
GSourceFunc unused_func,
gpointer unused_data) {
auto* source = static_cast<FdWatchSource*>(gsource);
source->pump->HandleFdWatchDispatch(source->controller);
return TRUE;
}
void FdWatchSourceFinalize(GSource* gsource) {
// Read the comment in `WorkSourceFinalize`, the issue is exactly the same.
auto* source = static_cast<FdWatchSource*>(gsource);
source->pump = nullptr;
source->controller = nullptr;
}
GSourceFuncs g_fd_watch_source_funcs = {
FdWatchSourcePrepare, FdWatchSourceCheck, FdWatchSourceDispatch,
FdWatchSourceFinalize};
} // namespace
struct MessagePumpGlib::RunState {
explicit RunState(Delegate* delegate) : delegate(delegate) {
CHECK(delegate);
}
const raw_ptr<Delegate> delegate;
// Used to flag that the current Run() invocation should return ASAP.
bool should_quit = false;
// Keeps track of the number of calls to DoWork() on the stack for the current
// Run() invocation. Used to detect reentrancy from DoWork in order to make
// decisions about tracking nested work.
int do_work_depth = 0;
// Value of g_main_depth() captured before the call to
// g_main_context_iteration() in Run(). nullopt if Run() is not calling
// g_main_context_iteration(). Used to track whether the pump has forced a
// nested state due to a native pump.
std::optional<int> g_depth_on_iteration;
// Used to keep track of the native event work items processed by the message
// pump.
Delegate::ScopedDoWorkItem scoped_do_work_item;
// Used to force the pump into a nested state when a native runloop was
// dispatched from main.
Delegate::ScopedDoWorkItem native_loop_do_work_item;
// The information of the next task available at this run-level. Stored in
// RunState because different set of tasks can be accessible at various
// run-levels (e.g. non-nestable tasks).
Delegate::NextWorkInfo next_work_info;
};
MessagePumpGlib::MessagePumpGlib()
: state_(nullptr), wakeup_gpollfd_(std::make_unique<GPollFD>()) {
DCHECK(!g_main_context_get_thread_default());
if (RunningOnMainThread()) {
context_ = g_main_context_default();
} else {
owned_context_ = std::unique_ptr<GMainContext, GMainContextDeleter>(
g_main_context_new());
context_ = owned_context_.get();
g_main_context_push_thread_default(context_);
}
// Create our wakeup pipe, which is used to flag when work was scheduled.
int fds[2];
[[maybe_unused]] int ret = pipe2(fds, O_CLOEXEC);
DCHECK_EQ(ret, 0);
wakeup_pipe_read_ = fds[0];
wakeup_pipe_write_ = fds[1];
wakeup_gpollfd_->fd = wakeup_pipe_read_;
wakeup_gpollfd_->events = G_IO_IN;
observer_source_ = std::unique_ptr<GSource, GSourceDeleter>(
g_source_new(&g_observer_funcs, sizeof(ObserverSource)));
static_cast<ObserverSource*>(observer_source_.get())->pump = this;
g_source_attach(observer_source_.get(), context_);
work_source_ = std::unique_ptr<GSource, GSourceDeleter>(
g_source_new(&g_work_source_funcs, sizeof(WorkSource)));
static_cast<WorkSource*>(work_source_.get())->pump = this;
g_source_add_poll(work_source_.get(), wakeup_gpollfd_.get());
g_source_set_priority(work_source_.get(), kPriorityWork);
// This is needed to allow Run calls inside Dispatch.
g_source_set_can_recurse(work_source_.get(), TRUE);
g_source_attach(work_source_.get(), context_);
}
MessagePumpGlib::~MessagePumpGlib() {
work_source_.reset();
close(wakeup_pipe_read_);
close(wakeup_pipe_write_);
context_ = nullptr;
owned_context_.reset();
}
MessagePumpGlib::FdWatchController::FdWatchController(const Location& location)
: FdWatchControllerInterface(location) {}
MessagePumpGlib::FdWatchController::~FdWatchController() {
if (IsInitialized()) {
auto* source = static_cast<FdWatchSource*>(source_);
source->controller = nullptr;
CHECK(StopWatchingFileDescriptor());
}
if (was_destroyed_) {
DCHECK(!*was_destroyed_);
*was_destroyed_ = true;
}
}
bool MessagePumpGlib::FdWatchController::StopWatchingFileDescriptor() {
if (!IsInitialized())
return false;
g_source_destroy(source_);
g_source_unref(source_.ExtractAsDangling());
watcher_ = nullptr;
return true;
}
bool MessagePumpGlib::FdWatchController::IsInitialized() const {
return !!source_;
}
bool MessagePumpGlib::FdWatchController::InitOrUpdate(int fd,
int mode,
FdWatcher* watcher) {
gushort event_flags = 0;
if (mode & WATCH_READ) {
event_flags |= G_IO_IN;
}
if (mode & WATCH_WRITE) {
event_flags |= G_IO_OUT;
}
if (!IsInitialized()) {
poll_fd_ = std::make_unique<GPollFD>();
poll_fd_->fd = fd;
} else {
if (poll_fd_->fd != fd)
return false;
// Combine old/new event masks.
event_flags |= poll_fd_->events;
// Destroy previous source
bool stopped = StopWatchingFileDescriptor();
DCHECK(stopped);
}
poll_fd_->events = event_flags;
poll_fd_->revents = 0;
source_ = g_source_new(&g_fd_watch_source_funcs, sizeof(FdWatchSource));
DCHECK(source_);
g_source_add_poll(source_, poll_fd_.get());
g_source_set_can_recurse(source_, TRUE);
g_source_set_callback(source_, nullptr, nullptr, nullptr);
g_source_set_priority(source_, kPriorityFdWatch);
watcher_ = watcher;
return true;
}
bool MessagePumpGlib::FdWatchController::Attach(MessagePumpGlib* pump) {
DCHECK(pump);
if (!IsInitialized()) {
return false;
}
auto* source = static_cast<FdWatchSource*>(source_);
source->controller = this;
source->pump = pump;
g_source_attach(source_, pump->context_);
return true;
}
void MessagePumpGlib::FdWatchController::NotifyCanRead() {
if (!watcher_)
return;
DCHECK(poll_fd_);
watcher_->OnFileCanReadWithoutBlocking(poll_fd_->fd);
}
void MessagePumpGlib::FdWatchController::NotifyCanWrite() {
if (!watcher_)
return;
DCHECK(poll_fd_);
watcher_->OnFileCanWriteWithoutBlocking(poll_fd_->fd);
}
bool MessagePumpGlib::WatchFileDescriptor(int fd,
bool persistent,
int mode,
FdWatchController* controller,
FdWatcher* watcher) {
DCHECK_GE(fd, 0);
DCHECK(controller);
DCHECK(watcher);
DCHECK(mode == WATCH_READ || mode == WATCH_WRITE || mode == WATCH_READ_WRITE);
// WatchFileDescriptor should be called on the pump thread. It is not
// threadsafe, so the watcher may never be registered.
DCHECK_CALLED_ON_VALID_THREAD(watch_fd_caller_checker_);
if (!controller->InitOrUpdate(fd, mode, watcher)) {
DPLOG(ERROR) << "FdWatchController init failed (fd=" << fd << ")";
return false;
}
return controller->Attach(this);
}
void MessagePumpGlib::HandleObserverPrepare() {
// |state_| may be null during tests.
if (!state_) {
return;
}
if (state_->do_work_depth > 0) {
// Contingency 1.1.1 detailed above
SetScopedWorkItem();
ClearScopedWorkItem();
} else {
// Contingency 1.1.2 detailed above
NestIfRequired();
}
return;
}
bool MessagePumpGlib::HandleObserverCheck() {
// |state_| may be null in tests.
if (!state_) {
return FALSE;
}
// Make sure we record the fact that we're awake. Chrome won't get Check()ed
// if a higher priority work item returns TRUE from Check().
EnsureSetScopedWorkItem();
if (state_->do_work_depth > 0) {
// Contingency 2.1.1
ClearScopedWorkItem();
}
// The observer never needs to run anything.
return FALSE;
}
// Return the timeout we want passed to poll.
int MessagePumpGlib::HandlePrepare() {
// |state_| may be null during tests.
if (!state_)
return 0;
const int next_wakeup_millis =
GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time);
if (next_wakeup_millis != 0) {
// When this is called, it is not possible to know for sure if a
// ScopedWorkItem is on the stack, because HandleObserverCheck may have set
// it during an iteration of the pump where a high priority native work item
// executed.
EnsureClearedScopedWorkItem();
state_->delegate->BeforeWait();
}
return next_wakeup_millis;
}
bool MessagePumpGlib::HandleCheck() {
if (!state_) // state_ may be null during tests.
return false;
// Ensure pump is awake.
EnsureSetScopedWorkItem();
if (state_->do_work_depth > 0) {
// Contingency 2.1.1
ClearScopedWorkItem();
}
// We usually have a single message on the wakeup pipe, since we are only
// signaled when the queue went from empty to non-empty, but there can be
// two messages if a task posted a task, hence we read at most two bytes.
// The glib poll will tell us whether there was data, so this read
// shouldn't block.
if (wakeup_gpollfd_->revents & G_IO_IN) {
char msg[2];
const long num_bytes = HANDLE_EINTR(read(wakeup_pipe_read_, msg, 2));
if (num_bytes < 1) {
NOTREACHED_IN_MIGRATION() << "Error reading from the wakeup pipe.";
}
DCHECK((num_bytes == 1 && msg[0] == '!') ||
(num_bytes == 2 && msg[0] == '!' && msg[1] == '!'));
// Since we ate the message, we need to record that we have immediate work,
// because HandleCheck() may be called without HandleDispatch being called
// afterwards.
state_->next_work_info = {TimeTicks()};
return true;
}
// As described in the summary at the top : Check is a second-chance to
// Prepare, verify whether we have work ready again.
if (GetTimeIntervalMilliseconds(state_->next_work_info.delayed_run_time) ==
0) {
return true;
}
return false;
}
void MessagePumpGlib::HandleDispatch() {
// Contingency 3.2.1
EnsureClearedScopedWorkItem();
// Contingency 3.1.1
++state_->do_work_depth;
state_->next_work_info = state_->delegate->DoWork();
--state_->do_work_depth;
if (state_ && state_->do_work_depth > 0) {
// Contingency 3.1.2
EnsureClearedScopedWorkItem();
}
}
void MessagePumpGlib::Run(Delegate* delegate) {
RunState state(delegate);
RunState* previous_state = state_;
state_ = &state;
// We really only do a single task for each iteration of the loop. If we
// have done something, assume there is likely something more to do. This
// will mean that we don't block on the message pump until there was nothing
// more to do. We also set this to true to make sure not to block on the
// first iteration of the loop, so RunUntilIdle() works correctly.
bool more_work_is_plausible = true;
// We run our own loop instead of using g_main_loop_quit in one of the
// callbacks. This is so we only quit our own loops, and we don't quit
// nested loops run by others. TODO(deanm): Is this what we want?
for (;;) {
// ScopedWorkItem to account for any native work until the runloop starts
// running chrome work.
SetScopedWorkItem();
// Don't block if we think we have more work to do.
bool block = !more_work_is_plausible;
OnEntryToGlib();
more_work_is_plausible = g_main_context_iteration(context_, block);
OnExitFromGlib();
if (state_->should_quit)
break;
// Contingency 4.2.1
EnsureClearedScopedWorkItem();
// Contingency 4.1.1
++state_->do_work_depth;
state_->next_work_info = state_->delegate->DoWork();
--state_->do_work_depth;
more_work_is_plausible |= state_->next_work_info.is_immediate();
if (state_->should_quit)
break;
if (more_work_is_plausible)
continue;
state_->delegate->DoIdleWork();
if (state_->should_quit)
break;
}
state_ = previous_state;
}
void MessagePumpGlib::Quit() {
if (state_) {
state_->should_quit = true;
} else {
NOTREACHED_IN_MIGRATION() << "Quit called outside Run!";
}
}
void MessagePumpGlib::ScheduleWork() {
// This can be called on any thread, so we don't want to touch any state
// variables as we would then need locks all over. This ensures that if
// we are sleeping in a poll that we will wake up.
char msg = '!';
if (HANDLE_EINTR(write(wakeup_pipe_write_, &msg, 1)) != 1) {
NOTREACHED_IN_MIGRATION()
<< "Could not write to the UI message loop wakeup pipe!";
}
}
void MessagePumpGlib::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
// We need to wake up the loop in case the poll timeout needs to be
// adjusted. This will cause us to try to do work, but that's OK.
ScheduleWork();
}
bool MessagePumpGlib::HandleFdWatchCheck(FdWatchController* controller) {
DCHECK(controller);
gushort flags = controller->poll_fd_->revents;
return (flags & G_IO_IN) || (flags & G_IO_OUT);
}
void MessagePumpGlib::HandleFdWatchDispatch(FdWatchController* controller) {
DCHECK(controller);
DCHECK(controller->poll_fd_);
gushort flags = controller->poll_fd_->revents;
if ((flags & G_IO_IN) && (flags & G_IO_OUT)) {
// Both callbacks will be called. It is necessary to check that
// |controller| is not destroyed.
bool controller_was_destroyed = false;
controller->was_destroyed_ = &controller_was_destroyed;
controller->NotifyCanWrite();
if (!controller_was_destroyed)
controller->NotifyCanRead();
if (!controller_was_destroyed)
controller->was_destroyed_ = nullptr;
} else if (flags & G_IO_IN) {
controller->NotifyCanRead();
} else if (flags & G_IO_OUT) {
controller->NotifyCanWrite();
}
}
bool MessagePumpGlib::ShouldQuit() const {
CHECK(state_);
return state_->should_quit;
}
void MessagePumpGlib::SetScopedWorkItem() {
// |state_| can be null during tests
if (!state_) {
return;
}
// If there exists a ScopedDoWorkItem in the current RunState, it cannot be
// overwritten.
CHECK(state_->scoped_do_work_item.IsNull());
// In the case that we're more than two work items deep, don't bother tracking
// individual native events anymore. Note that this won't cause out-of-order
// end work items, because the work item is cleared before entering the second
// DoWork().
if (state_->do_work_depth < 2) {
state_->scoped_do_work_item = state_->delegate->BeginWorkItem();
}
}
void MessagePumpGlib::ClearScopedWorkItem() {
// |state_| can be null during tests
if (!state_) {
return;
}
CHECK(!state_->scoped_do_work_item.IsNull());
// See identical check in SetScopedWorkItem
if (state_->do_work_depth < 2) {
state_->scoped_do_work_item = Delegate::ScopedDoWorkItem();
}
}
void MessagePumpGlib::EnsureSetScopedWorkItem() {
// |state_| can be null during tests
if (!state_) {
return;
}
if (state_->scoped_do_work_item.IsNull()) {
SetScopedWorkItem();
}
}
void MessagePumpGlib::EnsureClearedScopedWorkItem() {
// |state_| can be null during tests
if (!state_) {
return;
}
if (!state_->scoped_do_work_item.IsNull()) {
ClearScopedWorkItem();
}
}
void MessagePumpGlib::RegisterNested() {
// |state_| can be null during tests
if (!state_) {
return;
}
CHECK(state_->native_loop_do_work_item.IsNull());
// Transfer `scoped_do_work_item` to `native_do_work_item`, and so the
// ephemeral `scoped_do_work_item` will be coming in and out of existence on
// top of `native_do_work_item`, whose state hasn't been deleted.
if (state_->scoped_do_work_item.IsNull()) {
state_->native_loop_do_work_item = state_->delegate->BeginWorkItem();
} else {
// This clears state_->scoped_do_work_item.
state_->native_loop_do_work_item = std::move(state_->scoped_do_work_item);
}
SetScopedWorkItem();
ClearScopedWorkItem();
}
void MessagePumpGlib::UnregisterNested() {
// |state_| can be null during tests
if (!state_) {
return;
}
CHECK(!state_->native_loop_do_work_item.IsNull());
EnsureClearedScopedWorkItem();
// Nesting exits here.
state_->native_loop_do_work_item = Delegate::ScopedDoWorkItem();
}
void MessagePumpGlib::NestIfRequired() {
// |state_| can be null during tests
if (!state_) {
return;
}
if (state_->native_loop_do_work_item.IsNull() &&
state_->g_depth_on_iteration.has_value() &&
g_main_depth() != state_->g_depth_on_iteration.value()) {
RegisterNested();
}
}
void MessagePumpGlib::UnnestIfRequired() {
// |state_| can be null during tests
if (!state_) {
return;
}
if (!state_->native_loop_do_work_item.IsNull()) {
UnregisterNested();
}
}
void MessagePumpGlib::OnEntryToGlib() {
// |state_| can be null during tests
if (!state_) {
return;
}
CHECK(!state_->g_depth_on_iteration.has_value());
state_->g_depth_on_iteration.emplace(g_main_depth());
}
void MessagePumpGlib::OnExitFromGlib() {
// |state_| can be null during tests
if (!state_) {
return;
}
state_->g_depth_on_iteration.reset();
UnnestIfRequired();
}
} // namespace base