blob: 04df618161b34f39ba2a27cbf3ed7f62d037b7dc [file] [log] [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/message_loop/message_pump_kqueue.h"
#include <sys/errno.h>
#include <atomic>
#include "base/apple/mach_logging.h"
#include "base/apple/scoped_nsautorelease_pool.h"
#include "base/auto_reset.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/mac/mac_util.h"
#include "base/notreached.h"
#include "base/posix/eintr_wrapper.h"
#include "base/task/task_features.h"
#include "base/time/time_override.h"
namespace base {
namespace {
// Under this feature native work is batched. Remove it once crbug.com/1200141
// is resolved.
BASE_FEATURE(kBatchNativeEventsInMessagePumpKqueue,
"BatchNativeEventsInMessagePumpKqueue",
base::FEATURE_DISABLED_BY_DEFAULT);
// Caches the state of the "BatchNativeEventsInMessagePumpKqueue".
std::atomic_bool g_use_batched_version = false;
// Caches the state of the "TimerSlackMac" feature for efficiency.
std::atomic_bool g_timer_slack = false;
#if DCHECK_IS_ON()
// Prior to macOS 10.14, kqueue timers may spuriously wake up, because earlier
// wake ups race with timer resets in the kernel. As of macOS 10.14, updating a
// timer from the thread that reads the kqueue does not cause spurious wakeups.
// Note that updating a kqueue timer from one thread while another thread is
// waiting in a kevent64 invocation is still (inherently) racy.
bool KqueueTimersSpuriouslyWakeUp() {
#if BUILDFLAG(IS_MAC)
return false;
#else
// This still happens on iOS15.
return true;
#endif
}
#endif
int ChangeOneEvent(const ScopedFD& kqueue, kevent64_s* event) {
return HANDLE_EINTR(kevent64(kqueue.get(), event, 1, nullptr, 0, 0, nullptr));
}
} // namespace
MessagePumpKqueue::FdWatchController::FdWatchController(
const Location& from_here)
: FdWatchControllerInterface(from_here) {}
MessagePumpKqueue::FdWatchController::~FdWatchController() {
StopWatchingFileDescriptor();
}
bool MessagePumpKqueue::FdWatchController::StopWatchingFileDescriptor() {
if (!pump_)
return true;
return pump_->StopWatchingFileDescriptor(this);
}
void MessagePumpKqueue::FdWatchController::Init(WeakPtr<MessagePumpKqueue> pump,
int fd,
int mode,
FdWatcher* watcher) {
DCHECK_NE(fd, -1);
DCHECK(!watcher_);
DCHECK(watcher);
DCHECK(pump);
fd_ = fd;
mode_ = mode;
watcher_ = watcher;
pump_ = pump;
}
void MessagePumpKqueue::FdWatchController::Reset() {
fd_ = -1;
mode_ = 0;
watcher_ = nullptr;
pump_ = nullptr;
}
MessagePumpKqueue::MachPortWatchController::MachPortWatchController(
const Location& from_here)
: from_here_(from_here) {}
MessagePumpKqueue::MachPortWatchController::~MachPortWatchController() {
StopWatchingMachPort();
}
bool MessagePumpKqueue::MachPortWatchController::StopWatchingMachPort() {
if (!pump_)
return true;
return pump_->StopWatchingMachPort(this);
}
void MessagePumpKqueue::MachPortWatchController::Init(
WeakPtr<MessagePumpKqueue> pump,
mach_port_t port,
MachPortWatcher* watcher) {
DCHECK(!watcher_);
DCHECK(watcher);
DCHECK(pump);
port_ = port;
watcher_ = watcher;
pump_ = pump;
}
void MessagePumpKqueue::MachPortWatchController::Reset() {
port_ = MACH_PORT_NULL;
watcher_ = nullptr;
pump_ = nullptr;
}
MessagePumpKqueue::MessagePumpKqueue()
: kqueue_(kqueue()), weak_factory_(this) {
PCHECK(kqueue_.is_valid()) << "kqueue";
// Create a Mach port that will be used to wake up the pump by sending
// a message in response to ScheduleWork(). This is significantly faster than
// using an EVFILT_USER event, especially when triggered across threads.
kern_return_t kr = mach_port_allocate(
mach_task_self(), MACH_PORT_RIGHT_RECEIVE,
base::apple::ScopedMachReceiveRight::Receiver(wakeup_).get());
MACH_CHECK(kr == KERN_SUCCESS, kr) << "mach_port_allocate";
// Configure the event to directly receive the Mach message as part of the
// kevent64() call.
kevent64_s event{};
event.ident = wakeup_.get();
event.filter = EVFILT_MACHPORT;
event.flags = EV_ADD;
event.fflags = MACH_RCV_MSG;
event.ext[0] = reinterpret_cast<uint64_t>(&wakeup_buffer_);
event.ext[1] = sizeof(wakeup_buffer_);
int rv = ChangeOneEvent(kqueue_, &event);
PCHECK(rv == 0) << "kevent64";
}
MessagePumpKqueue::~MessagePumpKqueue() {}
void MessagePumpKqueue::InitializeFeatures() {
g_use_batched_version.store(
base::FeatureList::IsEnabled(kBatchNativeEventsInMessagePumpKqueue),
std::memory_order_relaxed);
g_timer_slack.store(FeatureList::IsEnabled(kTimerSlackMac),
std::memory_order_relaxed);
}
void MessagePumpKqueue::Run(Delegate* delegate) {
AutoReset<bool> reset_keep_running(&keep_running_, true);
if (g_use_batched_version.load(std::memory_order_relaxed)) {
RunBatched(delegate);
} else {
while (keep_running_) {
apple::ScopedNSAutoreleasePool pool;
bool do_more_work = DoInternalWork(delegate, nullptr);
if (!keep_running_)
break;
Delegate::NextWorkInfo next_work_info = delegate->DoWork();
do_more_work |= next_work_info.is_immediate();
if (!keep_running_)
break;
if (do_more_work)
continue;
delegate->DoIdleWork();
if (!keep_running_)
break;
DoInternalWork(delegate, &next_work_info);
}
}
}
void MessagePumpKqueue::RunBatched(Delegate* delegate) {
// Look for native work once before the loop starts. Without this call the
// loop would break without checking native work even once in cases where
// QuitWhenIdle was used. This is sometimes the case in tests.
DoInternalWork(delegate, nullptr);
while (keep_running_) {
apple::ScopedNSAutoreleasePool pool;
Delegate::NextWorkInfo next_work_info = delegate->DoWork();
if (!keep_running_)
break;
if (!next_work_info.is_immediate()) {
delegate->DoIdleWork();
}
if (!keep_running_)
break;
int batch_size = 0;
if (DoInternalWork(delegate, &next_work_info)) {
// More than one call can be necessary to fully dispatch all available
// internal work. Making an effort to dispatch more than the minimum
// before moving on to application tasks reduces the overhead of going
// through the whole loop. It also more closely mirrors the behavior of
// application task execution where tasks are batched. A value of 16 was
// chosen via local experimentation showing that is was sufficient to
// dispatch all work in roughly 95% of cases.
constexpr int kMaxAttempts = 16;
while (DoInternalWork(delegate, nullptr) && batch_size < kMaxAttempts) {
++batch_size;
}
}
}
}
void MessagePumpKqueue::Quit() {
keep_running_ = false;
ScheduleWork();
}
void MessagePumpKqueue::ScheduleWork() {
mach_msg_empty_send_t message{};
message.header.msgh_size = sizeof(message);
message.header.msgh_bits =
MACH_MSGH_BITS_REMOTE(MACH_MSG_TYPE_MAKE_SEND_ONCE);
message.header.msgh_remote_port = wakeup_.get();
kern_return_t kr = mach_msg_send(&message.header);
if (kr != KERN_SUCCESS) {
// If ScheduleWork() is being called by other threads faster than the pump
// can dispatch work, the kernel message queue for the wakeup port can fill
// up (this happens under base_perftests, for example). The kernel does
// return a SEND_ONCE right in the case of failure, which must be destroyed
// to avoid leaking.
MACH_DLOG_IF(ERROR, (kr & ~MACH_MSG_IPC_SPACE) != MACH_SEND_NO_BUFFER, kr)
<< "mach_msg_send";
mach_msg_destroy(&message.header);
}
}
void MessagePumpKqueue::ScheduleDelayedWork(
const Delegate::NextWorkInfo& next_work_info) {
// Nothing to do. This MessagePump uses DoWork().
}
bool MessagePumpKqueue::WatchMachReceivePort(
mach_port_t port,
MachPortWatchController* controller,
MachPortWatcher* delegate) {
DCHECK(port != MACH_PORT_NULL);
DCHECK(controller);
DCHECK(delegate);
if (controller->port() != MACH_PORT_NULL) {
DLOG(ERROR)
<< "Cannot use the same MachPortWatchController while it is active";
return false;
}
kevent64_s event{};
event.ident = port;
event.filter = EVFILT_MACHPORT;
event.flags = EV_ADD;
int rv = ChangeOneEvent(kqueue_, &event);
if (rv < 0) {
DPLOG(ERROR) << "kevent64";
return false;
}
++event_count_;
controller->Init(weak_factory_.GetWeakPtr(), port, delegate);
port_controllers_.AddWithID(controller, port);
return true;
}
TimeTicks MessagePumpKqueue::AdjustDelayedRunTime(TimeTicks earliest_time,
TimeTicks run_time,
TimeTicks latest_time) {
if (g_timer_slack.load(std::memory_order_relaxed)) {
return earliest_time;
}
return MessagePump::AdjustDelayedRunTime(earliest_time, run_time,
latest_time);
}
bool MessagePumpKqueue::WatchFileDescriptor(int fd,
bool persistent,
int mode,
FdWatchController* controller,
FdWatcher* delegate) {
DCHECK_GE(fd, 0);
DCHECK(controller);
DCHECK(delegate);
DCHECK_NE(mode & Mode::WATCH_READ_WRITE, 0);
if (controller->fd() != -1 && controller->fd() != fd) {
DLOG(ERROR) << "Cannot use the same FdWatchController on two different FDs";
return false;
}
StopWatchingFileDescriptor(controller);
std::vector<kevent64_s> events;
kevent64_s base_event{};
base_event.ident = static_cast<uint64_t>(fd);
base_event.flags = EV_ADD | (!persistent ? EV_ONESHOT : 0);
if (mode & Mode::WATCH_READ) {
base_event.filter = EVFILT_READ;
base_event.udata = fd_controllers_.Add(controller);
events.push_back(base_event);
}
if (mode & Mode::WATCH_WRITE) {
base_event.filter = EVFILT_WRITE;
base_event.udata = fd_controllers_.Add(controller);
events.push_back(base_event);
}
int rv = HANDLE_EINTR(kevent64(kqueue_.get(), events.data(),
checked_cast<int>(events.size()), nullptr, 0,
0, nullptr));
if (rv < 0) {
DPLOG(ERROR) << "WatchFileDescriptor kevent64";
return false;
}
event_count_ += events.size();
controller->Init(weak_factory_.GetWeakPtr(), fd, mode, delegate);
return true;
}
void MessagePumpKqueue::SetWakeupTimerEvent(const base::TimeTicks& wakeup_time,
base::TimeDelta leeway,
kevent64_s* timer_event) {
// The ident of the wakeup timer. There's only the one timer as the pair
// (ident, filter) is the identity of the event.
constexpr uint64_t kWakeupTimerIdent = 0x0;
timer_event->ident = kWakeupTimerIdent;
timer_event->filter = EVFILT_TIMER;
if (wakeup_time == base::TimeTicks::Max()) {
timer_event->flags = EV_DELETE;
} else {
timer_event->filter = EVFILT_TIMER;
// This updates the timer if it already exists in |kqueue_|.
timer_event->flags = EV_ADD | EV_ONESHOT;
// Specify the sleep in microseconds to avoid undersleeping due to
// numeric problems. The sleep is computed from TimeTicks::Now rather than
// NextWorkInfo::recent_now because recent_now is strictly earlier than
// current wall-clock. Using an earlier wall clock time to compute the
// delta to the next wakeup wall-clock time would guarantee oversleep.
// If wakeup_time is in the past, the delta below will be negative and the
// timer is set immediately.
timer_event->fflags = NOTE_USECONDS;
timer_event->data = (wakeup_time - base::TimeTicks::Now()).InMicroseconds();
if (!leeway.is_zero() && g_timer_slack.load(std::memory_order_relaxed)) {
// Specify slack based on |leeway|.
// See "man kqueue" in recent macOSen for documentation.
timer_event->fflags |= NOTE_LEEWAY;
timer_event->ext[1] = static_cast<uint64_t>(leeway.InMicroseconds());
}
}
}
bool MessagePumpKqueue::StopWatchingMachPort(
MachPortWatchController* controller) {
mach_port_t port = controller->port();
controller->Reset();
port_controllers_.Remove(port);
kevent64_s event{};
event.ident = port;
event.filter = EVFILT_MACHPORT;
event.flags = EV_DELETE;
--event_count_;
int rv = ChangeOneEvent(kqueue_, &event);
if (rv < 0) {
DPLOG(ERROR) << "kevent64";
return false;
}
return true;
}
bool MessagePumpKqueue::StopWatchingFileDescriptor(
FdWatchController* controller) {
int fd = controller->fd();
int mode = controller->mode();
controller->Reset();
if (fd < 0)
return true;
std::vector<kevent64_s> events;
kevent64_s base_event{};
base_event.ident = static_cast<uint64_t>(fd);
base_event.flags = EV_DELETE;
if (mode & Mode::WATCH_READ) {
base_event.filter = EVFILT_READ;
events.push_back(base_event);
}
if (mode & Mode::WATCH_WRITE) {
base_event.filter = EVFILT_WRITE;
events.push_back(base_event);
}
int rv = HANDLE_EINTR(kevent64(kqueue_.get(), events.data(),
checked_cast<int>(events.size()), nullptr, 0,
0, nullptr));
DPLOG_IF(ERROR, rv < 0) << "StopWatchingFileDescriptor kevent64";
// The keys for the IDMap aren't recorded anywhere (they're attached to the
// kevent object in the kernel), so locate the entries by controller pointer.
for (IDMap<FdWatchController*, uint64_t>::iterator it(&fd_controllers_);
!it.IsAtEnd(); it.Advance()) {
if (it.GetCurrentValue() == controller) {
fd_controllers_.Remove(it.GetCurrentKey());
}
}
event_count_ -= events.size();
return rv >= 0;
}
bool MessagePumpKqueue::DoInternalWork(Delegate* delegate,
Delegate::NextWorkInfo* next_work_info) {
if (events_.size() < event_count_) {
events_.resize(event_count_);
}
bool immediate = next_work_info == nullptr;
unsigned int flags = immediate ? KEVENT_FLAG_IMMEDIATE : 0;
if (!immediate) {
MaybeUpdateWakeupTimer(next_work_info->delayed_run_time,
next_work_info->leeway);
DCHECK_EQ(scheduled_wakeup_time_, next_work_info->delayed_run_time);
delegate->BeforeWait();
}
int rv =
HANDLE_EINTR(kevent64(kqueue_.get(), nullptr, 0, events_.data(),
checked_cast<int>(events_.size()), flags, nullptr));
if (rv == 0) {
// No events to dispatch so no need to call ProcessEvents().
return false;
}
PCHECK(rv > 0) << "kevent64";
return ProcessEvents(delegate, static_cast<size_t>(rv));
}
bool MessagePumpKqueue::ProcessEvents(Delegate* delegate, size_t count) {
bool did_work = false;
delegate->BeginNativeWorkBeforeDoWork();
for (size_t i = 0; i < count; ++i) {
auto* event = &events_[i];
if (event->filter == EVFILT_READ || event->filter == EVFILT_WRITE) {
did_work = true;
FdWatchController* controller = fd_controllers_.Lookup(event->udata);
if (!controller) {
// The controller was removed by some other work callout before
// this event could be processed.
continue;
}
FdWatcher* fd_watcher = controller->watcher();
if (event->flags & EV_ONESHOT) {
// If this was a one-shot event, the Controller needs to stop tracking
// the descriptor, so it is not double-removed when it is told to stop
// watching.
controller->Reset();
fd_controllers_.Remove(event->udata);
--event_count_;
}
auto scoped_do_work_item = delegate->BeginWorkItem();
// WatchFileDescriptor() originally upcasts event->ident from an int.
if (event->filter == EVFILT_READ) {
fd_watcher->OnFileCanReadWithoutBlocking(
static_cast<int>(event->ident));
} else if (event->filter == EVFILT_WRITE) {
fd_watcher->OnFileCanWriteWithoutBlocking(
static_cast<int>(event->ident));
}
} else if (event->filter == EVFILT_MACHPORT) {
// WatchMachReceivePort() originally sets event->ident from a mach_port_t.
mach_port_t port = static_cast<mach_port_t>(event->ident);
if (port == wakeup_.get()) {
// The wakeup event has been received, do not treat this as "doing
// work", this just wakes up the pump.
continue;
}
did_work = true;
MachPortWatchController* controller = port_controllers_.Lookup(port);
// The controller could have been removed by some other work callout
// before this event could be processed.
if (controller) {
auto scoped_do_work_item = delegate->BeginWorkItem();
controller->watcher()->OnMachMessageReceived(port);
}
} else if (event->filter == EVFILT_TIMER) {
// The wakeup timer fired.
#if DCHECK_IS_ON()
// On macOS 10.13 and earlier, kqueue timers may spuriously wake up.
// When this happens, the timer will be re-scheduled the next time
// DoInternalWork is entered, which means this doesn't lead to a
// spinning wait.
// When clock overrides are active, TimeTicks::Now may be decoupled from
// wall-clock time, and can therefore not be used to validate whether the
// expected wall-clock time has passed.
if (!KqueueTimersSpuriouslyWakeUp() &&
!subtle::ScopedTimeClockOverrides::overrides_active()) {
// Given the caveats above, assert that the timer didn't fire early.
DCHECK_LE(scheduled_wakeup_time_, base::TimeTicks::Now());
}
#endif
DCHECK_NE(scheduled_wakeup_time_, base::TimeTicks::Max());
scheduled_wakeup_time_ = base::TimeTicks::Max();
--event_count_;
} else {
NOTREACHED_IN_MIGRATION()
<< "Unexpected event for filter " << event->filter;
}
}
return did_work;
}
void MessagePumpKqueue::MaybeUpdateWakeupTimer(
const base::TimeTicks& wakeup_time,
base::TimeDelta leeway) {
if (wakeup_time == scheduled_wakeup_time_) {
// No change in the timer setting necessary.
return;
}
if (wakeup_time == base::TimeTicks::Max()) {
// If the timer was already reset, don't re-reset it on a suspend toggle.
if (scheduled_wakeup_time_ != base::TimeTicks::Max()) {
// Clear the timer.
kevent64_s timer{};
SetWakeupTimerEvent(wakeup_time, leeway, &timer);
int rv = ChangeOneEvent(kqueue_, &timer);
PCHECK(rv == 0) << "kevent64, delete timer";
--event_count_;
}
} else {
// Set/reset the timer.
kevent64_s timer{};
SetWakeupTimerEvent(wakeup_time, leeway, &timer);
int rv = ChangeOneEvent(kqueue_, &timer);
PCHECK(rv == 0) << "kevent64, set timer";
// Bump the event count if we just added the timer.
if (scheduled_wakeup_time_ == base::TimeTicks::Max())
++event_count_;
}
scheduled_wakeup_time_ = wakeup_time;
}
} // namespace base