blob: c2c184f11f73b72aa77e3cdfb15838e5008c96ad [file] [log] [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TASK_SEQUENCE_MANAGER_SEQUENCE_MANAGER_H_
#define BASE_TASK_SEQUENCE_MANAGER_SEQUENCE_MANAGER_H_
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "base/base_export.h"
#include "base/dcheck_is_on.h"
#include "base/memory/raw_ptr.h"
#include "base/message_loop/message_pump_type.h"
#include "base/task/sequence_manager/task_queue_impl.h"
#include "base/task/sequence_manager/task_time_observer.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/single_thread_task_runner.h"
#include "base/time/default_tick_clock.h"
namespace base {
class MessagePump;
class TaskObserver;
namespace sequence_manager {
class TimeDomain;
// SequenceManager manages TaskQueues which have different properties
// (e.g. priority, common task type) multiplexing all posted tasks into
// a single backing sequence (currently bound to a single thread, which is
// refererred as *main thread* in the comments below). SequenceManager
// implementation can be used in a various ways to apply scheduling logic.
class BASE_EXPORT SequenceManager {
public:
class Observer {
public:
virtual ~Observer() = default;
// Called back on the main thread.
virtual void OnBeginNestedRunLoop() = 0;
virtual void OnExitNestedRunLoop() = 0;
};
struct MetricRecordingSettings {
// This parameter will be updated for consistency on creation (setting
// value to 0 when ThreadTicks are not supported).
explicit MetricRecordingSettings(
double task_sampling_rate_for_recording_cpu_time);
// The proportion of the tasks for which the cpu time will be
// sampled or 0 if this is not enabled.
// Since randomised sampling requires the use of Rand(), it is enabled only
// on platforms which support it.
// If it is 1 then cpu time is measured for each task, so the integral
// metrics (as opposed to per-task metrics) can be recorded.
double task_sampling_rate_for_recording_cpu_time = 0;
bool records_cpu_time_for_some_tasks() const {
return task_sampling_rate_for_recording_cpu_time > 0.0;
}
bool records_cpu_time_for_all_tasks() const {
return task_sampling_rate_for_recording_cpu_time == 1.0;
}
};
class BASE_EXPORT PrioritySettings {
public:
// This limit is based on an implementation detail of `TaskQueueSelector`'s
// `ActivePriorityTracker`, which can be refactored if more priorities are
// needed.
static constexpr size_t kMaxPriorities = sizeof(size_t) * 8 - 1;
static PrioritySettings CreateDefault();
template <typename T,
typename = typename std::enable_if_t<std::is_enum_v<T>>>
PrioritySettings(T priority_count, T default_priority)
: PrioritySettings(
static_cast<TaskQueue::QueuePriority>(priority_count),
static_cast<TaskQueue::QueuePriority>(default_priority)) {
static_assert(
std::is_same_v<std::underlying_type_t<T>, TaskQueue::QueuePriority>,
"Enumerated priorites must have the same underlying type as "
"TaskQueue::QueuePriority");
}
PrioritySettings(TaskQueue::QueuePriority priority_count,
TaskQueue::QueuePriority default_priority);
~PrioritySettings();
PrioritySettings(PrioritySettings&&) noexcept;
PrioritySettings& operator=(PrioritySettings&&);
TaskQueue::QueuePriority priority_count() const { return priority_count_; }
TaskQueue::QueuePriority default_priority() const {
return default_priority_;
}
#if BUILDFLAG(ENABLE_BASE_TRACING)
void SetProtoPriorityConverter(
perfetto::protos::pbzero::SequenceManagerTask::Priority (
*proto_priority_converter)(TaskQueue::QueuePriority)) {
proto_priority_converter_ = proto_priority_converter;
}
perfetto::protos::pbzero::SequenceManagerTask::Priority TaskPriorityToProto(
TaskQueue::QueuePriority priority) const;
#endif
private:
TaskQueue::QueuePriority priority_count_;
TaskQueue::QueuePriority default_priority_;
#if BUILDFLAG(ENABLE_BASE_TRACING)
perfetto::protos::pbzero::SequenceManagerTask::Priority (
*proto_priority_converter_)(TaskQueue::QueuePriority) = nullptr;
#endif
#if DCHECK_IS_ON()
public:
PrioritySettings(
TaskQueue::QueuePriority priority_count,
TaskQueue::QueuePriority default_priority,
std::vector<TimeDelta> per_priority_cross_thread_task_delay,
std::vector<TimeDelta> per_priority_same_thread_task_delay);
const std::vector<TimeDelta>& per_priority_cross_thread_task_delay() const {
return per_priority_cross_thread_task_delay_;
}
const std::vector<TimeDelta>& per_priority_same_thread_task_delay() const {
return per_priority_same_thread_task_delay_;
}
private:
// Scheduler policy induced raciness is an area of concern. This lets us
// apply an extra delay per priority for cross thread posting.
std::vector<TimeDelta> per_priority_cross_thread_task_delay_;
// Like the above but for same thread posting.
std::vector<TimeDelta> per_priority_same_thread_task_delay_;
#endif
};
// Settings defining the desired SequenceManager behaviour: the type of the
// MessageLoop and whether randomised sampling should be enabled.
struct BASE_EXPORT Settings {
class Builder;
Settings();
Settings(const Settings&) = delete;
Settings& operator=(const Settings&) = delete;
// In the future MessagePump (which is move-only) will also be a setting,
// so we are making Settings move-only in preparation.
Settings(Settings&& move_from) noexcept;
~Settings();
MessagePumpType message_loop_type = MessagePumpType::DEFAULT;
bool randomised_sampling_enabled = false;
raw_ptr<const TickClock, DanglingUntriaged> clock =
DefaultTickClock::GetInstance();
// Whether or not queueing timestamp will be added to tasks.
bool add_queue_time_to_tasks = false;
// Whether many tasks may run between each check for native work.
bool can_run_tasks_by_batches = false;
PrioritySettings priority_settings = PrioritySettings::CreateDefault();
#if DCHECK_IS_ON()
// TODO(alexclarke): Consider adding command line flags to control these.
enum class TaskLogging {
kNone,
kEnabled,
kEnabledWithBacktrace,
// Logs high priority tasks and the lower priority tasks they skipped
// past. Useful for debugging test failures caused by scheduler policy
// changes.
kReorderedOnly,
};
TaskLogging task_execution_logging = TaskLogging::kNone;
// If true PostTask will emit a debug log.
bool log_post_task = false;
// If true debug logs will be emitted when a delayed task becomes eligible
// to run.
bool log_task_delay_expiry = false;
// If not zero this seeds a PRNG used by the task selection logic to choose
// a random TaskQueue for a given priority rather than the TaskQueue with
// the oldest EnqueueOrder.
uint64_t random_task_selection_seed = 0;
#endif // DCHECK_IS_ON()
};
virtual ~SequenceManager() = default;
// Binds the SequenceManager and its TaskQueues to the current thread. Should
// only be called once. Note that CreateSequenceManagerOnCurrentThread()
// performs this initialization automatically.
virtual void BindToCurrentThread() = 0;
// Returns the task runner the current task was posted on. Returns null if no
// task is currently running. Must be called on the bound thread.
virtual scoped_refptr<SequencedTaskRunner> GetTaskRunnerForCurrentTask() = 0;
// Finishes the initialization for a SequenceManager created via
// CreateUnboundSequenceManager(). Must not be called in any other
// circumstances. The ownership of the pump is transferred to SequenceManager.
virtual void BindToMessagePump(std::unique_ptr<MessagePump> message_pump) = 0;
// Must be called on the main thread.
// Can be called only once, before creating TaskQueues.
// Observer must outlive the SequenceManager.
virtual void SetObserver(Observer* observer) = 0;
// Must be called on the main thread.
virtual void AddTaskTimeObserver(TaskTimeObserver* task_time_observer) = 0;
virtual void RemoveTaskTimeObserver(TaskTimeObserver* task_time_observer) = 0;
// Sets `time_domain` to be used by this scheduler and associated task queues.
// Only one time domain can be set at a time. `time_domain` must outlive this
// SequenceManager, even if ResetTimeDomain() is called. This has no effect on
// previously scheduled tasks and it is recommended that `time_domain` be set
// before posting any task to avoid inconsistencies in time. Otherwise,
// replacing `time_domain` is very subtle and should be reserved for developer
// only use cases (e.g. virtual time in devtools) where any flakiness caused
// by a racy time update isn't surprising.
virtual void SetTimeDomain(TimeDomain* time_domain) = 0;
// Disassociates the current `time_domain` and reverts to using
// RealTimeDomain.
virtual void ResetTimeDomain() = 0;
virtual const TickClock* GetTickClock() const = 0;
virtual TimeTicks NowTicks() const = 0;
// Returns a wake-up for the next delayed task which is not ripe for
// execution. If there are no such tasks (immediate tasks don't count),
// returns nullopt.
virtual std::optional<WakeUp> GetNextDelayedWakeUp() const = 0;
// Sets the SingleThreadTaskRunner that will be returned by
// SingleThreadTaskRunner::GetCurrentDefault on the main thread.
virtual void SetDefaultTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) = 0;
// Removes all canceled delayed tasks, and considers resizing to fit all
// internal queues.
virtual void ReclaimMemory() = 0;
// Returns true if no tasks were executed in TaskQueues that monitor
// quiescence since the last call to this method.
virtual bool GetAndClearSystemIsQuiescentBit() = 0;
// Set the number of tasks executed in a single SequenceManager invocation.
// Increasing this number reduces the overhead of the tasks dispatching
// logic at the cost of a potentially worse latency. 1 by default.
virtual void SetWorkBatchSize(int work_batch_size) = 0;
// Enables crash keys that can be set in the scope of a task which help
// to identify the culprit if upcoming work results in a crash.
// Key names must be thread-specific to avoid races and corrupted crash dumps.
virtual void EnableCrashKeys(const char* async_stack_crash_key) = 0;
// Returns the metric recording configuration for the current SequenceManager.
virtual const MetricRecordingSettings& GetMetricRecordingSettings() const = 0;
virtual TaskQueue::QueuePriority GetPriorityCount() const = 0;
// Creates a `TaskQueue` and returns a `TaskQueue::Handle`for it. The queue is
// owned by the handle and shut down when the handle is destroyed. Must be
// called on the main thread.
virtual TaskQueue::Handle CreateTaskQueue(const TaskQueue::Spec& spec) = 0;
// Returns true iff this SequenceManager has no immediate work to do. I.e.
// there are no pending non-delayed tasks or delayed tasks that are due to
// run. This method ignores any pending delayed tasks that might have become
// eligible to run since the last task was executed. This is important because
// if it did tests would become flaky depending on the exact timing of this
// call. This is moderately expensive.
virtual bool IsIdleForTesting() = 0;
// The total number of posted tasks that haven't executed yet.
virtual size_t GetPendingTaskCountForTesting() const = 0;
// Returns a JSON string which describes all pending tasks.
virtual std::string DescribeAllPendingTasks() const = 0;
// While Now() is less than `prioritize_until` we will alternate between a
// SequenceManager task and a yielding to the underlying sequence (e.g., the
// message pump).
virtual void PrioritizeYieldingToNative(base::TimeTicks prioritize_until) = 0;
// Adds an observer which reports task execution. Can only be called on the
// same thread that `this` is running on.
virtual void AddTaskObserver(TaskObserver* task_observer) = 0;
// Removes an observer which reports task execution. Can only be called on the
// same thread that `this` is running on.
virtual void RemoveTaskObserver(TaskObserver* task_observer) = 0;
};
class BASE_EXPORT SequenceManager::Settings::Builder {
public:
Builder();
~Builder();
// Sets the MessagePumpType which is used to create a MessagePump.
Builder& SetMessagePumpType(MessagePumpType message_loop_type);
Builder& SetRandomisedSamplingEnabled(bool randomised_sampling_enabled);
// Sets the TickClock the SequenceManager uses to obtain Now.
Builder& SetTickClock(const TickClock* clock);
// Whether or not queueing timestamp will be added to tasks.
Builder& SetAddQueueTimeToTasks(bool add_queue_time_to_tasks);
// Whether many tasks may run between each check for native work.
Builder& SetCanRunTasksByBatches(bool can_run_tasks_by_batches);
Builder& SetPrioritySettings(PrioritySettings settings);
#if DCHECK_IS_ON()
// Controls task execution logging.
Builder& SetTaskLogging(TaskLogging task_execution_logging);
// Whether or not PostTask will emit a debug log.
Builder& SetLogPostTask(bool log_post_task);
// Whether or not debug logs will be emitted when a delayed task becomes
// eligible to run.
Builder& SetLogTaskDelayExpiry(bool log_task_delay_expiry);
// If not zero this seeds a PRNG used by the task selection logic to choose a
// random TaskQueue for a given priority rather than the TaskQueue with the
// oldest EnqueueOrder.
Builder& SetRandomTaskSelectionSeed(uint64_t random_task_selection_seed);
#endif // DCHECK_IS_ON()
Settings Build();
private:
Settings settings_;
};
// Create SequenceManager using MessageLoop on the current thread.
// Implementation is located in sequence_manager_impl.cc.
// TODO(scheduler-dev): Remove after every thread has a SequenceManager.
BASE_EXPORT std::unique_ptr<SequenceManager>
CreateSequenceManagerOnCurrentThread(SequenceManager::Settings settings);
// Create a SequenceManager using the given MessagePump on the current thread.
// MessagePump instances can be created with
// MessagePump::CreateMessagePumpForType().
BASE_EXPORT std::unique_ptr<SequenceManager>
CreateSequenceManagerOnCurrentThreadWithPump(
std::unique_ptr<MessagePump> message_pump,
SequenceManager::Settings settings = SequenceManager::Settings());
// Create an unbound SequenceManager (typically for a future thread or because
// additional setup is required before binding). The SequenceManager can be
// initialized on the current thread and then needs to be bound and initialized
// on the target thread by calling one of the Bind*() methods.
BASE_EXPORT std::unique_ptr<SequenceManager> CreateUnboundSequenceManager(
SequenceManager::Settings settings = SequenceManager::Settings());
} // namespace sequence_manager
} // namespace base
#endif // BASE_TASK_SEQUENCE_MANAGER_SEQUENCE_MANAGER_H_